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Abstract—Multi-access Edge Computing (MEC) is an emerg-
ing technology aimed to improve the communication latency
and scalability e.g. of cloud-based connected vehicle applications
and services. This is accomplished by bringing services closer to
the end users, that is, to the network edge. In a high-mobility
scenario, such as one involving vehicles, there will be a need for
handovers between different MEC servers in order to maintain
the required communication latency. Part of the application data
may also be relevant to multiple MEC servers, covering over-
lapping geographical areas or being hosted by different network
operators. This paper focuses on these situations and studies the
problem of maintaining service continuity and synchronization of
relevant data among multiple MEC servers to support vehicular
applications. The analysis is conducted in the context of two
example applications with different requirements, namely platoon
management and shared world model, with promising results
regarding their suitability for future implementation.

Keywords—Automotive services, edge computing, orchestration,
system architecture.

I. INTRODUCTION

The advance towards fully automated driving is an evolu-
tionary process where dependable, low latency communication
among vehicles plays a crucial role as well as seamless
connectivity to the internet enabling supportive applications
and services that cannot be realized efficiently in a fully
centralized way. Enhancing the operation of connected and
automated vehicles with these applications will require bring-
ing the cloud infrastructure and services physically closer to
the vehicles. Multi-access Edge Computing (MEC) [1] aims
at realizing this by incorporating servers into the networked
system architecture. Depending on the deployment scenario
and service requirements, MEC servers may be placed by the
cloud and telecom operators such that they are even collocated
with the wireless access points (AP). Thus, the MEC servers
can be used for achieving low-enough latencies even for safety
critical services for connected vehicles.

In connected vehicle scenarios [2], the use cases of MEC
include computation task offloading and vehicular edge cloud
services. In the former, a computation task is transferred
partially or wholly from a vehicle for execution on a MEC
server, and only the result is fed back to the vehicle. In the
latter, MEC servers are used for hosting cloud applications and
services at the network edge. The edge cloud services may
collect various and even vast amounts of real-time vehicular
sensor and IoT data, including video and LiDAR, for localized
processing and analysis. IoT data from other sources, such as

the roadside infrastructure or traffic management service, can
be incorporated as well for enhanced situational awareness. For
such services, MEC can provide better scalability by reducing
the traffic load on the core network in addition to lower
communication latencies than traditional cloud services.

To fully benefit from MEC, vehicles should connect au-
tomatically to the optimal MEC server for the edge services
[3]. Vehicles are highly mobile, thus the optimal MEC server
changes whenever a vehicle moves too far from the serving
MEC server. The notion of far in this case depends on the
requirements of the application. The limiting factor may be the
tolerated communication delay, or it may refer to the bound-
aries of the geographical area served by an edge application
instance. Another example is roaming, in which the MEC
server may change due to the changing of the network operator
when crossing a country border. The handover process should
include the selection of the optimal MEC server [4] and ensure
service continuity despite the server change. Furthermore, if
each vehicle is connected to a single operator network/MEC
infrastructure at a time, some services may benefit from
vehicular application data exchange across multiple operators,
servicing the same geographical area.

This paper studies two connected and automated vehicle
applications that rely on IoT data and MEC and are currently
being developed in the EU AUTOPILOT project [5], viz.
Platoon Management (PM) and Shared World Model (SWM).
For the applications, MEC holds near time critical data, such
as dynamic local maps (HD maps) or information for vehicles
that want to join a platoon. In this paper, we describe an
overall system architecture and specific designs for supporting
the applications’ deployment in MEC. Particular emphasis is
put on the issue of synchronizing application data among
multiple MEC servers, e.g. when a platoon moves from one
MEC service area to another one or to enhance the situational
awareness across the service areas. For each application, de-
tailed requirements for data synchronization between vehicles
and MEC server as well as among neighboring MEC servers
are provided. Based on the specifications and requirements,
we provide an initial assessment of the applications’ delay
performance and the scalability of their designs in realistic
settings. Given the promising results of the feasibility study of
the proposed overall solution, we will move to the implemen-
tation phase and experimental evaluation in our future work.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III introduces the use cases
of MEC. Section IV describes the overall system architecture
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and application designs. Section V provides the performance
assessment. Finally, Section VI concludes the paper.

II. RELATED WORK

In the MEC reference architecture [1], defined by ETSI,
the Mobile Edge Orchestrator (MEO) is the entity responsible
for managing applications and resources in the whole MEC
system, including also connectivity and mobility support. The
standard defines three options for maintaining continuity of the
service between a MEC application and UE when the MEC
server changes: (i) Application state relocation, (ii) Application
instance relocation within a MEC system, and (iii) Application
instance relocation between a MEC system and an external
cloud. The implementation of the approaches is however out
of the scope of ETSI’s standard. Furthermore, the triggering of
the MEC server change depends on the optimization criteria
used. For example, the optimization of low-latency LTE/5G
services within a MEC system is studied in [4].

The mechanisms needed for supporting session continuity
in the case of a handover and application state or instance
relocation depend on the application type. That is, if the
application is stateful or stateless [6]. The stateless paradigm
is more flexibile as it maintains information and session state
only in the client side. It is also a key enabler of the mi-
croservice architecture [6], [7], which is a means of developing
software applications as a suite of independently deployable,
small, modular services, in which each service runs a unique
process and communicates through a well-defined, lightweight
mechanism such as REST. The approach is different from the
traditional monolith application, built as a single autonomous
unit, and is thus seen as a potential approach for implementing
MEC applications and other future 5G services [7]–[10].

Replicated distributed storage can be utilized together with
stateless applications in order to store state, thereby avoiding
too large client request messages. However, in the case of a
storage-dependent application, the system must support data
synchronization, managing the periodical propagation of data
storage, in order to maintain data volume coherency and thus
ensure session continuity despite migration [6].

Especially lightweight virtualization technologies, such as
Docker, are seen as potential platforms for deploying appli-
cations in MEC [6]. Some works, proposing solutions for
application migration using VMs or containers, already exist
in the literature. A management architecture and replica-
based approach for ultra-short latency service provisioning in
mobile MEC environments is proposed in [6]. The solution is
evaluated in the context of stateless applications deployed in
Docker containers. Approaches for moving a network service
function on the fly from cloud to an edge node are discussed
in [11]. The paper presents experimental results for the VM
migration case, which is the heaviest one in terms of bandwidth
consumption and service down time compared to application or
session transfer. A generic layered migration framework, using
incremental file synchronization, is proposed for applications
that are encapsulated in a container or VM in [12].

This paper advances the literature by conducting an initial
feasibility analysis of the operation of vehicular applications in
a MEC system. The analysis is based on two actual connected
and automated vehicle application designs, presented in this

paper. To the best of our knowledge, this is the first analysis
of MEC use in platoon management or shared world model.

III. CONNECTED VEHICLE USE CASES FOR MEC

This section introduces the two vehicular use case appli-
cations for MEC considered in this paper. Both applications
benefit from MEC but have different requirements regarding
the data synchronization among multiple MEC servers.

A. Platoon Management

Platooning relates to the function where vehicles automati-
cally follow one another in a relatively close distance. Driving
in a platoon requires the vehicles to use V2V communications
to anticipate timely on maneuvers of the other vehicles in the
platoon. Several benefits for platooning exist, such as improve-
ment of traffic throughput and homogeneity, enhancement of
traffic safety, and reduction of fuel consumption and emissions.

Platooning includes three distinct phases: finding a platoon
to join and navigating to it (formation), merging with (driving)
a platoon and maintaining a platoon. The first one is non-
time critical and contains high level (discovery, authentication)
information on available platoons, and it typically would run in
the service cloud provider. The second, would run on a MEC
node, since it needs to have information on the current state of
the platoon, which goes beyond the V2V communication range
and is used to assist vehicles joining the platoon. Finally, the
third one, maintaining the platoon, would typically run on the
vehicles and uses V2V communication.

In this paper, we focus on the platoon manager, which
maintains information about the status of platoons, or “virtual
vehicles”, and their environment. The platoon manager is
also assisting or controlling the platoons based on enhanced
situational awareness. The service must be ubiquitous along
the route of the platoon, despite of changing of the serving
MEC server. The service may need to continue even, if the
platoon roams out of the serving operator’s network coverage
area, for example, when crossing a country border.

B. Shared World Model

Automated vehicles rely on their embedded environmental
perception sensors, such as cameras, LiDAR, radar to build
the so-called world model that is used as basis for crucial
tasks such as path planning. The ego vehicle’s world model
provides a high-level description of the vehicle’s surroundings
which can be extended with SWM data, coming from other
sources when connected roadside services.

In this paper, we consider vehicles that continuously push
their local world model data to a MEC-hosted application that
maintains a broader view of its served geographical area. In
this way, vehicles traveling in the area can effectively extend
their range of awareness and react more timely and efficiently
to hazardous situations. Although the relevance of the world
model data is mainly local to a single MEC server, neighboring
MEC servers may share some overlapping geographical areas
or data of interest. Maintaining an extensive world model
of the surroundings, therefore, requires information exchange
between MEC servers and in some cases even between MEC
servers hosted by different operators.
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IV. SYSTEM ARCHITECTURE

This section introduces the overall system architecture
and design decisions of the connected and automated driving
MEC applications. It also analyzes the requirements of the
applications on data synchronization within the MEC system.

A. Overview

The overall system architecture considered in this paper is
illustrated in Fig. 1. The architecture includes two types of
vehicles, namely connected and automated vehicles. Vehicles
use 4G/5G connectivity (Uu interface) to access the cloud
services (V2N), whereas 4G/5G (PC5 interface) or ITS-G5
are used for communicating with the other vehicles (V2V)
and roadside infrastructure (V2I). The roadside infrastructure
can provide information to the cloud services via the Uu in-
terface. Depending on the prevailing business model, vehicles
and roadside infrastructure may connect to different mobile
network operator (MNO) networks. Two MNO networks are
included in Fig. 1 for the sake of completeness.

Fig. 1. A network and node architecture for the connected and automated
vehicle applications.

The distributed cloud infrastructure in Fig. 1 includes a
remote cloud facility and edge clouds, implemented with MEC
and located physically closer to the vehicles at the edge of
the mobile network. The figure also illustrates the placement
of the PM and SWM applications within the architecture.
The PM and SWM services are implemented using distributed
application functionalities running in the vehicles, edge, and
cloud. For example, for PM, this means that non-time critical
tasks are handled by the backend PM application (e.g. handling
AAA of participants wanting to platoon or rendezvous point
planning), near-time critical task are placed in the MEC hosts
(e.g. managing process of vehicles joining or leaving platoon
or SWM services), and finally the platooning function, residing
in vehicles, maintain the vehicle in a platoon (keeping distance,
speeding up or slowing down, changing lanes, etc.). Fig. 1 also
suggests that virtualization technologies may be utilized for
flexible application function management in the architecture.

For communicating application data or instances between
the MEC hosts for synchronization or relocation purposes, four
main routing options are depicted in Fig. 1. In the MNO1
network, the communications can take place via the direct X2
interface between eNB1 and eNB2 as long as there is enough
capacity. Alternatively, the data goes through the core network
(S1). When exchanging data between MEC applications hosted
by different MNOs, the communications takes a longer route
via both the MNO1 and MNO2 core networks. Finally, data
that is neither time-critical nor bandwidth intensive may be
distributed via the backend applications.

B. The Platoon Management Application

The PM application design, focusing on the functionalities
located in the vehicle and MEC, is depicted in Fig. 2. In the
MEC host, the Platoon Manager component manages the local
platoons in the area. The state of a platoon is stored in a local
platoon status database. It also facilitates platoon formation
and platoon disengaging, as well as vehicles joining/leaving the
platoon. Other vehicles that are not yet in V2V communication
range can use the PM application to start communicating with
nearby platoons during the formation process. Furthermore,
it provides platoon-specific tactical-level advice, concerning
traffic lights, lanes, speed, engaging, and disengaging. Other
functionalities, residing in the cloud (not depicted), take care of
matching vehicles with existing or new platoons and delegates
tactical decisions to the correct MEC server.

Fig. 2. The platoon management application architecture.

In a dynamic situation, as moving vehicles represent, the
changing of a MEC host becomes inevitable. To operate
seamlessly, the PM application has specific requirements for
data synchronization among multiple MEC servers:

• Type: Handover event-based synchronization. Platoon
states need to be transferred only for platoons that are
leaving the local PM (control) area in order to avoid
interruptions in the vehicle merge/leave processes or
loss of information on the current platoon state.

• Session continuity support: Yes. Platoon formation
can happen any moment, which means that the platoon
status can possibly change during a handover from a
local PM area to another.

• Type and amount of data transferred: Platoon status
messages are sent by each vehicle to the PM at every
second. Advisory data messages for the searching and
formation platooning phases are sent by the PM to
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vehicle at every second. The three messages together
account for approximately between 200 and 300 bytes.

• Criticality of the data: The messages concern
tactical-level advices that are not time-critical but at
the same time affect the platoon behavior from a safety
point of view, since vehicles are expected to follow
the advices. When vehicles are in V2V range, V2V
communication will take over the operational control.

C. The Shared World Model Application

The SWM application architecture is shown in Fig. 3. In
the vehicle, a vehicle world model is continuously updated
based on the fusion of both the ego and SWM data. The ego
world model is based on internal sensor data and the SWM is
collected from the MEC host. Control and actuator components
use the vehicle world model for tasks, such as path planning,
requiring perception knowledge of the environment.

Fig. 3. The shared world model application architecture.

In the MEC host, two main components are in place.
The SWM data manager collects SWM data coming from
multiple vehicles in the vicinity and fuses it to keep a coherent
representation of the local environment. It also filters and sends
out relevant SWM data back to vehicles to increase their per-
ception awareness. The SWM data synchronizer transfers data
to neighboring MEC hosts that might be relevant to vehicles
traveling in adjacent geographical regions. Considering that
the data transferred to other MEC hosts has a lower level of
criticality, the frequency of such synchronization events might
be lower compared to local world model updates.

The requirements of the SWM application regarding data
synchronization among multiple MEC servers include:

• Type: Continuous or periodical synchronization.

• Session continuity support: No. World model data
concerns periodic data pushed by vehicles that are
relevant locally and for a short duration of time.

• Type and amount of data transferred: Header,
road/lane polygon data, and data about detected ob-
jects (relative position, orientation, covariance matrix)
accounts for about 3.5 kB per world model message
sent when assuming that up to 10 objects are detected
simultaneously. The higher the frequency at which
these messages are sent, the more up-to-date the ex-
tended world model of each vehicle will be. For close

distances (e.g., time gap between vehicle and world
model object of 0.5 seconds), we assume a minimum
of 10Hz. For longer distances, the frequency could be
as low as 1Hz for world model data concerning objects
pushed to neighboring MEC hosts.

• Criticality of the data: Both time and space aspects
affect the level of criticality of the data to a particular
vehicle. The world model data has its highest rele-
vance when it includes up-to-date (fresh) data about a
nearby region that might directly affect the vehicle’s
path in the coming (milli-)seconds.

D. Management of the MEC Applications

Each MEC system has a central component, called MEO
[1], that is aware of the deployed MEC hosts, their capabilities
and services, instantiated applications, as well as the network
topology. It is also the entity responsible of ensuring that the
requirements, indicated by the applications in terms of the
resources, services, location, and performance (e.g. maximum
allowed latency), are met. MEO selects the target MEC host
for an application and triggers the relocation procedure, when
needed. In our system architecture, we assume one MEO per
MNO, and the PM and SWM applications require specific
support from MEO. First of all, the considered applications
are most likely installed for a long term in selected MEC
hosts, covering the roads where the PM and SWM services
are available. The area needs to be split between the individual
MEC hosts, with partial overlaps; thus, requiring the knowl-
edge of the overall MEC system topology from MEO. Second,
the applications are location-specific. Thus, they will rely on
the location service (e.g. geolocation or Cell ID based) of the
MEC system. Third, the vehicles or platoons need to connect to
the MEC host, serving the geographical area, in which they are
located. The MEC host change should be triggered proactively
whenever the vehicles or platoons are approaching the border
of the geographical area of the serving MEC host or application
instance. Also, latency may play a role in the triggering
of the MEC host change. Fourth, the MEC host change
should be seamless for the PM application. In addition, both
the applications require knowledge of the neighboring MEC
servers to enable data synchronization. Finally, depending on
the business model, information exchange between MEOs
and MEC applications hosted by different operators may be
needed. This will require collaboration between operators.

V. INITIAL PERFORMANCE ASSESSMENT

This section provides an initial assessment of the perfor-
mance of the two selected applications, based on the proposed
architecture and designs as well as the specific features and
requirements of the applications described in Section IV.

A. Platoon Management

Given the size and frequency of the data messages to be
transferred, the traffic load generated by the PM application on
the radio access network is very low, i.e. less than 250Kbit/s
per platoon in most practical situations (up to 100 vehicles
in platoon) both for up- and downlink. Latencies due to
data processing and transmission (roundtrip) will be negligible
compared to the 1-second heartbeat of the message exchange.
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Even when several platoons are simultaneously served by the
same base station/MEC host, there will be no performance
problems (unless the serving cell is heavily loaded due to
traffic from other applications).

In case of a handover of a platoon between base stations
the Platoon State database at the current MEC host has to be
copied to the MEC host at the other base station. This may be
done (proactively!) via the X2 interface between the involved
base stations or via the core network that connects the base
stations, cf. Fig. 1; if the delay requirements permit, the core
network option is preferred. Given a transfer delay requirement
of about 1 second, and assuming that the amount of data in
the Platoon State database is limited to the number of vehicles
in the platoon times the size of the platoon status messages
(< 300 bytes) sent by the individual vehicles, we dont expect
any capacity and performance problems here. In particular,
the core network option for data transfer between MEC hosts
seems very well appropriate.

B. Shared World Model

The traffic load generated by the SWM application on the
radio access network is considerably higher than for PM, but
in most practical situations it won‘t cause any problems. For
example, in the case that 50 cars are involved, the traffic
rate (for downlink as well as for uplink) will be less than
10 x 50 x 3.5 Kbytes per second, which is about 14 Mbit/s
(for downlink, it’s important that multicast transmission can
be used). Message delays (roundtrip) will in general also be
no problem, but considerably higher transmission speeds are
required than in the PM case in order to keep roundtrip delay
within the system’s heartbeat of (max) 10Hz (e.g., in case of 50
cars, 30 Mbit/s transmission speed in downlink and 1 Mbit/s
per vehicle in uplink would still suffice).

The SWM data synchronizer in the MEC host transfers
data to neighboring MEC hosts at lower frequency than local
updates, i.e. one message per second or less. So the traffic
load generated for synchronization between MEC hosts will
be 1.4 Mbit/s or less per MEC host, if 50 cars per MEC
are involved (50 x 3.5 Kbytes). The data transfer between
MEC hosts may be done via the X2 interface between the
involved base stations or via the core network that connects
these base stations, cf. Fig. 1. Given these example values and
the system’s relatively low heartbeat for this event type we
don’t expect any performance or capacity problems here. In
particular, the core network option for data transfer between
MEC hosts seems very well appropriate for this purpose.

C. Next Steps

Overall, this initial assessment does not reveal potential
capacity or performance problems for the two applications
considered in this paper. Their designs seem well scalable
for use in practical circumstances. However, details such as
processing times for the involved data analyses and other
computations (e.g. for orchestration) have not been taken into
account in our considerations. Although we don’t expect large
effects from these factors, detailed system simulations and
experiments in a testbed, or field trials, are needed for further
analysis of the applications’ performance in various scenarios.

VI. CONCLUSION

The paper studied the problem of synchronizing application
data among multiple MEC servers in order to ensure session
continuity and enhanced situational awareness for connected
and automated vehicle applications. The analysis was con-
ducted in the context of two applications: Platoon Management
and Shared World Models. We proposed an overall system
architecture for the vehicular services as well as more detailed
application designs, including the placement of the application
functionalities in the distributed cloud environment. We also
analyzed the requirements of the applications in terms of data
synchronization, management, and orchestration. Furthermore,
we conducted an initial assessment of the performance of
the applications within the proposed system architecture. As
a conclusion we can state that the overall concept and the
application designs seem well scalable and thus feasible for
practical implementation. Therefore, the future work includes
the implementation of the proposed applications, which is
currently ongoing in AUTOPILOT. We also plan to evaluate
the operation of the applications and their data synchronization
in a real testbed environment, including multiple MEC servers.
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