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ABSTRACT
Over the last years, several pilots with autonomous minibusses operating in urban environments
have been initiated. Unlike regular bus services, autonomous minibusses serve a limited number of
stops and have more flexible schedules since they do not require drivers. This allows the operation
of a line through a combination of sublines, where a subline serves a subset of consecutive stops
in the same order as the original line. This paper studies the subline frequency setting problem
under uncertain passenger demand. We present a frequency setting model that assigns autonomous
minibusses to sublines in order to minimize operational costs and passenger waiting time costs.
Passenger waiting time costs may depend on the combination of several lines whose frequencies
cannot be perfectly aligned for each passenger journey. We present a new estimation of the ex-
pected waiting for passengers to improve the accuracy of the passenger waiting time costs. The
model is originally formulated as a MINLP and it is reformulated as a MILP that can be easily
solved to global optimality. Further, we explicitly consider the uncertainty of passenger demand in
the optimization process by formulating stochastic and robust optimization models, respectively.
The performance of the stochastic and robust optimization models is tested under various passenger
demand scenarios in a bi-directional autonomous minibus line operating in Frankfurt, Germany.
Our analysis shows that a stochastic optimization design has the best on-average performance and
a robust design the most stable performance.

Keywords: autonomous minibusses; vehicle scheduling; subline frequency setting; stochastic
optimization; robust optimization.
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INTRODUCTION

Autonomous minibusses are gaining momentum as they are deployed in several pilots across Eu-
rope to offer last-mile solutions to travelers in urban areas. Recently, five autonomous minibus
trials were launched in five European cities (Helsinki, Gjesdal, Tallinn, Lamia, and Helmond) un-
der the EU project Fabulos Fabulos (/). Autonomous minibusses have been operating in several
EU trials in Frankfurt, Luxembourg, Lyon, Paris, Berlin under speeds than can be up to 40 km/h
Muezner, Duss, Stein and Goebel, Modijefsky (2, 3, 4, 5). They do not need a driver or steward
on board as they are fully autonomous and they typically serve a small number of stops while
providing first/last-mile services.

Operational planning for minibusses follows to a large extend that of traditional buslines Ceder
(6): frequency setting, timetabling and vehicle scheduling — while the last step of crew scheduling
can be ommitted. At the frequency settings stage, the frequency of each service line is planned
considering the trade-off between the operational and the passenger-related costs Yu et al., Szeto
and Wu, Gkiotsalitis and Cats (7, 8, 9). This frequency provides also a first indication of the number
of resources (vehicles) required to operate the service line Ceder, Hassold and Ceder (/0, 11). The
dispatching times of the assigned vehicles are determined at a subsequent step, known as timetable
scheduling Ceder, Gkiotsalitis and Alesiani (/2, 13).

This paper focuses on frequency setting for autonomous vehicle bus lines in the context of un-
certain passenger demand and the use of sublines. A subline serves a consecutive subset of stops
from the main line, and can be obtained from the mainline by short-turning. Sublines thus enable to
provide a higher passenger service level at lower operating costs in case of heterogeneous demand
among the line. The subline frequency setting problem (SFS) minimizes operating costs in terms
of vehicle fleet size and operating time as well as passenger waiting time through the assignment
of frequencies to all possible sublines. Our model includes a novel estimate for passenger waiting
time under the assumption that multiple sublines may serve a single origin-destination pair. To
evaluate the impact of uncertainty in passenger demand, we present a stochastic and robust opti-
mization SFS model, and compare results of these against the deterministic model that does not
consider sublines in a realistic case study based on the autonomous vehicle line in Frankfurt.

To summarize, the main contributions of our work to the state-of-the-art are: (a) the devel-
opment of an easy-to-solve mixed-integer linear programming model for the autonomous minibus
planning problem that stretches the available resources by tailoring them to OD-pairs with higher
demand, and (b) the incorporation of the passenger demand uncertainties in the problem formu-
lation with the development of a robust and a stochastic optimization model for the planning of
autonomous minibusses.

The remainder of this paper is structured as follows: in section 2 we provide the literature
review on bus frequency setting problems that allocate the available vehicle resources to bus lines
or sublines. In section 3, we introduce our SFS model. In section 4, we develop a stochastic and a
robust formulation of the SFS. Our case study is detailed in section 5 where we test the performance
of our robust and stochastic optimization solutions in a simulation study of an autonomous minibus
line operating in Frankfurt. Finally, section 6 provides the concluding remarks of our study and
discusses future research directions.

LITERATURE REVIEW AND CONTRIBUTION
Frequency setting models determine the required number of trips to optimally operate a service
line and the required number of vehicles to operate those trips Ibarra-Rojas et al., Gkiotsalitis and
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Cats, Gkiotsalitis and Cats (/4, 15, 16). Ceder (I7) proposed closed-form expressions that do not
need to solve complex mathematical programs when determining the frequency of a single line.
Namely, in many practical applications the frequency of a bus line is set based on policy headways
or the maximum loading point Ceder (6). Policy headways determine a lower bound of the line
frequency and are used by operators that operate low-frequency services in suburban areas. The
maximum load point method determines the frequency of a line based on the ratio of the number
of passengers on board at the peak-load point to the desired passenger load of the vehicle.

Apart from closed-form expressions that determine the service frequency in a crude manner,
there are several methods that try to find an optimal trade-off between passenger and operational-
related costs (see Yu et al., dell’Olio et al., Cipriani et al., Cats and Gliick (7, 18, 19, 20)). There
are also several works that consider short-turning and interlining lines when setting frequencies
(see Table 1). These works, however, do not consider the uncertainty of passenger demand when
determining the service frequencies of sublines and their non-convex model formulations do not
allow to find globally optimal solutions resulting in the employment of heuristics that compromise
the solution quality.

TABLE 1 : Research studies that consider sublines for exploiting the allocation of vehicles to
OD-pairs with higher demand

Study Key performance Line flexibility Demand uncertainty Solution method
indicators

Delle Site and Filippi Waiting times, running Short-turning Not considered Locally optimal by

(23] costs and personnel costs splitting the problem into

Cortés et al. (22)

Verbas and Mahmassani
23)

Verbas and Mahmassani
24)

Gkiotsalitis et al. (25)

This study

Waiting time, in-vehicle
time, personnel costs and
running costs

Ridership and waiting
time savings

maximize wait time
savings subject to
budget, fleet, vehicle
load, and policy headway
constraints

Passenger waiting costs
and vehicle running and
depreciation costs

Waiting times, running
costs and operating cost
of each extra minibus

Short-turning and
deadheading

Service patterns that only
use a subset of the entire
stops of a route

service patterns

Short-turning and
interlining

Short-turning

Not considered

Not considered

Not considered

Not considered

Considered

tractable subproblems

Locally optimal with
applying an integrated
deadheading-short-
turning

strategy

Locally optimal solution
with KNITRO solver

Locally optimal solution
by solving an upper and
a lower level problem
with KNITRO

Locally optimal solution
with Genetic Algorithm

Globally optimal with
LINDO solver

To consider the vehicle productivity and the operational costs, in this study we use as a baseline
frequency model a modified version of the well-established frequency setting model of Furth and
Wilson (26). Furth and Wilson (26) developed a frequency setting model for a bus line considering
the trade-off between the operational costs and the passenger waiting times. Similarly to our study,
the work of Furth and Wilson (26) focuses on urban, high-frequency services and it is based on the
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assumption that the mean passenger waiting time at a stop is half the mean headway. Our specific
contributions to the baseline model of Furth and Wilson (26) are (i) the inclusion of sublines in
our model formulation, and (ii) the explicit consideration of passenger demand uncertainty in the
optimization process with the development of stochastic and robust optimization models.

SUBLINE FREQUENCY SETTING MODEL

Proposed Model

In our proposed model, we expand the classical bus frequency settings model of Furth and Wilson
(26) to our flexible minibus planning problem where autonomous minibusses can operate in sub-
lines that serve a fraction of stops of the originally planned line. We build a model to answer the
questions:

1. which sublines should we establish?

2. at which frequencies should the established sublines operate?

Our approach focuses on symmetric, bi-directional lines because this is the most typical struc-
ture of autonomous minibus lines operating in several cities (e.g., Frankfurt, Lyon, Luxembourg).

Eligible sublines

We require that all sublines start at the depot. However, they do not need to operate until the end
of the line. Instead, they can short-turn at some pre-selected bus stop(s). We call the bus stops
where short-turning can take place control stops. That is, the generated sublines serve a fraction
of the stops operated by the originally planned line. For instance, Fig.1 presents an originally
planned bi-directional line with three control stops where short-turning is permitted. A subline can
be generated by traveling from a control stop to the symmetric bus stop in the opposite direction.
This results in two potential sublines for the case of Fig.1.

Originally-planned bi-directional line

—
opposite direction

Q)

®

@

®
E
o8 Q ©
Control stops where
short-turning is permitted

——
main direction
Sub-line 1 Sub-line 2
«— «—
opposite direction opposite direction

@
=

B-©
®

—_
main direction main direction

FIGURE 1 : Generation of sublines from an originally planned bi-directional line.
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We should note here that the number of potential sublines is equal to the number of control
point stops. If the number of control stops increases, then the number of generated sublines will
also increase. Importantly, because we visit all stops from the origin to the control stop and do
not allow to skip intermediate stops, the number of generated sublines increases linearly and not
exponentially with the number of control stops, thus resulting in problems with manageable sizes.
It is also important to note that many of the generated sublines might not be deemed operational if
the passenger demand is not sufficient to justify their use.

Assumptions on demand and passenger behavior

We assume that the bus stops of a minibus line are served only by the minibusses of this main
line, e.g., there are no other bus or minibus lines covering (part of) the demand between these
stops. Like in Furth and Wilson (26), we also assume that the deployed vehicles have sufficient
capacity, so that we can neglect denied boarding related to overcrowding. Furthermore, we assume
random passenger arrivals, as common in high-frequency services. Indeed, recent studies have
shown that passengers do not coordinate their arrivals at stops with the arrival times of buses in
high-frequency services, and thus their average waiting time is half the headway (see Welding,
Hickman, Bartholdi III and Eisenstein, Cats (27, 28, 29, 30)).

Finally, we assume that passengers choose the next minibus that departs from their origin
and brings them to their destination, irrespective of the subline. Ergo, the expected waiting time
does not depend on the headways between buses of the same subline only, but on the headways
between all relevant departures for the passengers, i.e., all departures from their origin that visit
their destination.

Operations

To generalize the estimation of operational costs and passenger waiting times from the case of one
line in Furth and Wilson (26) to the case of several sublines, we make the following assumptions
on how the minibus system is going to be operated:

1. Each vehicle is exclusively assigned to one of the available sublines. That is, a vehicle
is not allowed to operate in multiple sublines.

2. The minibusses operate according to a periodic schedule.

Note that Assumption 1 leads to a conservative estimate of the number of vehicles needed to
operate the system. That is, the cost of operation in practice may be lower, if, in a subsequent
step, a vehicle can be assigned to more than one line. Note also that Assumption 2 does not make
a statement about synchronization of vehicles within a period, but only states that the schedule
repeats every period. When operating several sublines we cannot expect that the departures relevant
for a certain OD-pair will be perfectly synchronized with each other. In general, if f, denotes the
number of relevant departures for OD-pair (s,y) per time period, the expected waiting time will
lie somewhere between % (if the relevant departures are perfectly synchronized) and % @f all
relevant departures take place at the same moment in time). We refer to fj, as the service frequency
of OD-pair (s,y). In our models, we use the value % to estimate the waiting time of OD-pair
(s,y). This value is the expected waiting time under the assumption that vehicle departures are
scheduled independently and randomly, assuming equal probability for each departure moment of
a vehicle. In that sense, # constitutes a lower bound on the expected waiting time of a passenger
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with f§, travel options within the hour. Once a set of sublines and their respective frequencies are
known, these can be scheduled in a subsequent timetabling step, so that the actual expected waiting
times will be lower than TotT

Proposed SFS mathematical programming model

Our proposed model extends the classical bus frequency settings model of Furth and Wilson (26)
by borrowing the objectives and constraints of their model - while expanding the formulation in
the case of sublines based on the discussion in the previous sections.

Before we proceed to the formulation of our model, we present its nomenclature:

NOMENCLATURE

Sets

S ordered set of stops of the minibus line in both directions, .7 = (1,2,...,s,...)

4 set of all potential lines Z = (1,2,...,r,...), where line 1 is the original line that serves all
stops s € S and (2,3, ...r,...) are the generated sublines. Note that |Z| = Q+ 1

7 set of OD-pairs with passenger demand. Note that if there is no passenger demand between

stops s € . and § € ., then (s,5) ¢ O

F discrete set of frequencies

Parameters

Q number of generated sublines, which is equivalent to the number of control stops

T time interval of our demand-homogeneous planning period

Byy passengers willing to travel from stop s to y in our demand-homogeneous planning period,
where (s,y) € 0.

Argy A5y = 1 if subline 1 serves the OD-pair (s,y) € 0.

T, round-trip travel time of subline r € #

N number of available minibusses

C] minimum allowed service frequency, ® > 0, to ensure a minimum level of service for any
passenger traveling from stop s to stop y, where (s,y) € &

K minimum number of minibusses that should be assigned to the original line, where K < N

Wi the cost of operating an extra minibus

1%} the cost of a marginal increase in the total vehicle running times

F minimum frequency of a subline

M a very large positive number

Variables

Xy number of minibusses assigned to subline r

Sy the service frequency of OD-pair (s,y) € 0.

fr the service frequency of subline r € %

ar binary variable, where a, = 1 if subline r is deemed operational and 0 otherwise

Our SFS formulation contains 4 variables. Integer variable x, specifies how many vehicles
are assigned to each subline r € Z. Note that according to Assumption 1, vehicles can only serve
a single subline. Choosing x, = 0 means that we do not operate subline r. Next, f, represents
the realized service frequency for OD-pair (s,y) € &, which serves as input for the estimation
of the average travel time. Then, f, represents the selected service frequency for subline r € Z.
This subline frequeny needs to be integer since we assume a periodic timetable (Assumption 2).
Finally, a, is a binary variable that indicates whether subline r € % is operational or not. Our SFS
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formulation is formally presented in the following mathematical model.

T 1

)= Y X (Wi4+WoT | | | + By— (1)

Z(x ) rgggx ( 1 2 \‘TrJ) (s’gleﬁ sty 11
f<F (vrez) @
fo < Y Ay (Ysyeo) G

re#%
fw=0© (Ysyeo) @
xr < arM (Vre %) )
x> a,T,F (Vre ) (6)
Y x <N 7
re#

%0 > K ®)
Xr € Z>g (Vrez) )
feF (Vrez) (10
ar €{0,1} (vreZz) (1)

The objective function (1) of our model strives to establish a trade-off between the reduction
of (i) operational-related costs emerging from the use of additional minibusses and vehicle running
times, and (ii) costs related to passenger waiting times estimated as discussed in 3.1.3 and multi-
plied by the passenger demand. It is subject to the following constraints: Constraint (2) describes
that the round-trip travel time of each subline r € Z, T,, together with the number of assigned
vehicles to this subline x,, provides an upper bound on the subline frequency f,, namely f, < XT:
Constraint (3) sets the service frequency f;, of each OD-pair (s,y) € & to be no larger than the
total frequency assigned to all sublines r that serve OD-pair (s,y). Note that the 0-1 parameter A,
allows us to only consider the minibusses assigned to sublines r € Z that serve the particular OD-
pair (s,y). Constraint (4) ensures each OD-pair (s,y) is served at least with minimum frequency
0, thus guaranteeing a minimum level of service. Constraint (5) enforces that when subline r € #
is operational and therefore x, > 0, a, should be equal to one. Otherwise, a, = 0. Constraint (6)
states that every subline r € % should have at least a minimum frequency of F' to be deemed op-
erational. Constraint (7) is the fleetsize constraint ensuring that no more vehicles are used than the
available fleet N. Constraint (8) ensures that at least K minibusses will serve all stops s € . by
being assigned to the original line serving all stops, subline 0. Constraint (9) restricts the domain
of x, to positive integers, and constraint (10) restricts the domain of frequency f; to that of feasible
frequencies, thus allowing to require a minimum frequency if the subline is selected for operation,
and constraint (11) defines variable a, as binary.

Program (Q) is a MIP because variables a,,x,, fs, receive discrete values. Our MIP is non-
linear because the objective function (1) contains a division by one of the variables. Despite its
nonlinearity, program (Q) belongs to the category of mixed-integer convex programs (MICP) that
can be solved to optimality for mid-sized problems Bonami et al. (37).
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Reformulation to a MILP

Following the ideas presented in Claessens et al. (32) and van der Hurk et al. (33), we reformulate
the SFS to a MILP. Let uy ,, be a binary decision variable, where u s, = 1 if the OD-pair (s,y) € &
is operated with frequency f € .7, and O otherwise. Let also Ty be a parameter indicating the
passenger waiting time cost for a given frequency f € .%#. Note that the precomputation of the
passenger waiting time cost as a function of the frequency would allow for arbitrary functions. In
particular, we could use 7y = fl 7 as proposed earlier.

Then, constraint (4) can be rewritten as:

Y fupy >0  (Y(s,y)€0) (12)
cF

Y up=1 (Vi(sy)e0) (13)
fe#

Note that constraint (13) ensures that each OD-pair (s,y) € & is served only by one frequency
f € . In addition, constraint (12) ensures that the operating frequency f € .# of the OD-pair
(s,y) € O is at least equal to the minimum allowed frequency, ©.

Reckon that the frequency f € .% of all minibusses serving a stop pair (s,y) € & cannot exceed
the number of trips per hour that can be performed by the minibusses, x,, assigned to each subline
r € % (constraints (2),(3),(10)). Constraints (2),(3),(10) are reformulated as:

f'uf,sy < Z Ar,syfr (er g,V(S,y) = ﬁ)
re#

f<z (vrex) (14)

e (Vre,@)

Note that if u s s, = O for some frequency f € .# the inequality constrain (3) holds because the
OD-pair is not served by frequency f. Furthermore, ur, = 1 can only hold for a frequency f that
does not exceed the maximum number of trips per hour that can be performed when fully utilizing
the minibusses x, assigned to sublines r € Z, thatis, if f <Y ,.c5Ars fr-

Finally, reckon that the objective function was stated as:

T 1

efl= Wil xm WY nT H t X By
re# re# r (sy fsy"‘

N—— - ~ P

v~

cost of operating the minibusses  vehicle running times cost  passenger waiting times cost

where the third term is nonlinear.
Given that we now pre-calculate the waiting time costs ¢y = % for each frequency f € .#
the third term of the objective function can be replaced by the linear term:

Y By Y trupg

(sweo  feF

Consequently, for any frequency f € .#, we have tfus g, = 7 if we operate the OD-pair

fot+1 +
(s,y) € O with that frequency, and tfuy ;, = 0 otherwise. Our objective function is reformulated
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as:

T
)= Y x (W1 +WaT, {TD * Y. By ) trus (15)

reZ sy)EC fez

With this reformulation, our mixed-integer linear program (MILP) is:

(Q) min Z(x,u)

s.t.  (x,a,u) satisfy Egs. (5) — (8),(12) — (15)
a, € {0,1} (vrea) (16)
X € Lo (Vre %)
urgy €1{0,1} (VfeZN(s,y) e0)

The resulting MILP guarantees global optimality and results in significant computational im-
provements over (Q) because of its linear nature.

ASSIGNING MINIBUSSES UNDER TRAVEL TIME AND PASSENGER DEMAND UN-
CERTAINTY

Autonomous minibusses operate in dedicated lanes and exhibit stable inter-station travel times.
Nonetheless, the passenger demand might vary significantly in space and time introducing uncer-
tainties when determining the number of vehicles assigned to sublines. In the remainder of this
section we treat the passenger demand B as an uncertain parameter, and present two approaches to
determine optimal subline frequencies under demand uncertainty where we let Z(x, u, b) denote the
value of the objective function in dependence of the variables x, # and the uncertain demand B.

Stochastic optimization model: Minimizing the expected value of our objective function

One frequently-used approach to cope with parameter uncertainty is to search for a solution that
optimizes the expected value of the objective function. In general, this requires knowledge of the
probability distributions governing the uncertain parameters (in our case: the demand distribution).
For our model, however, knowledge on the expected demand per OD-pair is sufficient to compute
the solution minimizing the expectation of the objective function: due to the linearity of the ex-
pected value operator, and due to the fact that the uncertain demand variables only appear in the
objective function, we have

Ep[Z(x,u,B)| :=

T
E|)Y x (W1+W2T {EJ) +( Y. By ) trusy

reR sy)ed  feF

_Zxr(Wl—{-WzT\‘ J)—{- Z E sy thufsy 17)

re% (s,y)e0 feF

In our experiments, we estimate E[Bj,] by the average observed demand B, for OD-pair (s,y) to
compute the number of vehicles and the frequency assignment that minimizes the expected value
of our objective function.
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Robust optimization model
In robust optimization, the travel demand between two stops By, is considered as an uncertain
environmental variable that varies for reasons outside of our control and is the adversary of our
system. Unlike in stochastic optimization, in robust optimization we do not need to know the
probability distribution of the random variables, but only the range (e.g., Bsy € [B’S’;’”7Bm“x]) in
which it can fall. Note that the main difference between robust and stochastic optimization is
that in robust optimization we optimize the outcome in the worst case, while in our stochastic
optimization approach we optimize the outcome in the average case. As it is very unlikely that
all values By, for (s,y) € O take their worst case value simultaneously, we assume that the overall
number of passengers is bounded by a number #/. That is, we consider the uncertainty set %/ :=
{B:Byy € [B?;’”,Bm“"] Y(s,y)eo Bsy < #'} for an adequately chosen &'

Robust optimization seeks to find the number of vehicles assigned to each subline r, such that
our solution performs well at worst-case passenger demand scenarios. This robust optimization
objective that explicitly considers the passenger demand uncertainty is formulated as a min(i)max

problem:

(P) minmax Z(x,u,B)

xX,u BeY

s.t. (x,a,u) satisfy Egs. (5) —(8),(12) — (15)
ar€{0,1} (vrez) (8)
xr € Z>0 (Vre %)
ursy € {0,1} (VfeZN(sy) e0)

Note that for any given passenger demand ‘noise’ B® = {BY } we can find the optimal minibus
assignment to sublines by solving the previously described minimization program Q using B° as
passenger demand input. In some problems, the worst values of B = {Bj, } are easy to guess based
on prior problem knowledge and the minimax problem is reduced to a classical minimization one.
In our case though, the worst-case values of the environmental variables B depend on the settings
of the design variables x in a way that is not intuitively obvious.

To solve our minimax problem, one can employ evolutionary algorithms Cramer et al., Lung
and Dumitrescu (34, 35). However, they do not guarantee convergence and do not exploit the
convexity of our objective function because they treat it as a black box. One prominent strategy that
we select for our study is the minimax approximation strategy that relaxes the original problem by
introducing and updating a small discrete set of points in the continuous space of the environmental
variables Shimizu and Aiyoshi (36). For a discussion with respect to the optimality conditions of
the minimax problem, we refer to Shimizu and Aiyoshi, Polak, Ye and Zhu (36, 37, 38).

The minimax problem P searches for the minibus assignment x,u that minimizes the worst-
case performance mgxz(x,u,B). With the minimax approximation strategy this problem is re-

laxed by performing the maximization over a finite set ¥, instead of all possible B € Z, =

(B B ] )s.y-

For any dlscretization 9, C Z., we introduce the following robust optimization problem that
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replaces problem P

P(%Y,) :minmax Z(x,u,B)

xu B
s.t. (x,a,u) satisfy Egs. (5) — (8),(12) — (15)
ar € {0,1} (Vre %) (19)
Xy € Z> (Vre %)
ursy €40,1} (‘v’feﬂ,‘v’(s,y)eﬁ)
BedY9,

Given ¥,, program P(%,) has favorable mathematical properties compared to P. To solve this
numerically, Marzat et al. (39) proposed to start with a set ¢, of just one randomly chosen point
B? € 2,. Then, x° £ {Solves P(¥,) for 4, = {B°}} is the best solution in the domain of our design
variables. Given x°, the next step searches for B! € .2, that disturbs the overall performance as
much as possible. To this end, we solve:

BIY' < Byy < BYY!
T(x,u) maxz(x°,u’) s.t. YsyeoBsy <¥ (20)
5 Eq.(15)

If the maximum possible demand disturbance B' does not worsen the performance too much,
thatis, Z(x°,u%, B") —7(x%,u®, B®) < ¢ for some threshold € € R, then x° is an acceptable solution
approximation of the minimax problem P and the search terminates. If not, the point B! is added
to the set ¢, and the procedure is repeated (see alg.1) Shimizu and Aiyoshi (36).

Algorithm 1 Minimax approximation via relaxation of the environmental variables

0: Sete € R>p;

1: Choose randomly BY € % and set &, <— (B®). Then, set k = 0.
2: Solve P(%,) and obtain x*;

3: Solve T (x*,u*) and obtain (B**1);

4: Tf 7(xK, uk, B — 7(xF uk, B¥) < e, STOP. Else, extend %, «+ &, U{B*"'}, k «+ k+1
and go to Step 2.

Note that when Algorithm 1 stops with a solution (x*,4*) and a scenario B**!, we have that

7k, uf B < minmax z(x,k,B) + € (1)

X,u Be9
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because for an optimal solution (x*,u*) to (P) we have that

max Z(x*,u*,B) > max Z(x*,u*,B) > max z(x*,u*,B) =z(x*,u¥ BY
Bew Beg}! Beg}™!

> 7k i B — & = max z(xF, uk B) — €. (22)
Bew

NUMERICAL EXPERIMENTS

Simulation setup

We create our simulation environment based on data from a pilot of an autonomous electric minibus
project in Frankfurt, Germany. Autonomous minibusses operate in many European cities (e.g.,
Luxembourg, Lyon, Paris, Berlin) in the form of pilot projects that serve typically up to 4 bus stops
covering a distance from 0.5km to 2km. The autonomous minibus line in Frankfurt is operated
by 6-seat buses that drive completely independently at a maximum speed of 15 km per hour. The
vehicles have a 700-meter long test track at their disposal, thus avoiding mixed traffic environments
and maintaining stable inter-station travel times. Services are operated from lpm to 7pm on a
daily basis. The bus line is bi-directional, and we consider two control stops resulting in three
potential sublines when considering the originally planned line as one of them (see Fig.2). In
our simulation setup, our originally planned bi-directional line serves . = (1,2,...,8) stops. The
minimum number of minibusses that need to be assigned to the original line that serves all stops is
K = 2 and the total number of available minibusses is N = 6.

Subline 1: main line

main direction Q

Subline 2 Subline 3

FIGURE 2 : Topology of the autonomous electric minibus line in Frankfurt, Germany

From Fig.2, the set of all lines where we can assign vehicles is # = (1,2,3). The time period
of our planning is 7 = 6 h because the service operates daily from Ipm until 7pm. A subline
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is deemed operational if it has a frequency of at least F = 1 minibus per hour. The minimum
allowed frequency to ensure a minimum level of service between any OD-pair (s,y) € 0 is @ =2
trips/h. Reckon that the minimum allowed frequency requirement does not hold for OD-pairs with
no passenger demand, e.g., (s,y) ¢ ¢. The average round-trip travel times of the lines in set %
are (T1,T»,T3) = (12,6, 10) expressed in minutes. The cost of operating an extra minibus is set to
W) = 3, and the cost of a marginal increase in the total running times W, = 1.5.

The number of passengers willing to travel between any OD-pair s,y can vary significantly
from day to day. For this purpose, we present the passenger demand patterns among OD-pairs in
Fig.3. In this figure, the lowest observed passenger demand, B"", the median, Bg;edia", and the

sy
highest observed passenger demand, Bg™, are reported for each OD-pair (s,y). Reckon that pairs
(s,y) ¢ O if there is no passenger demand associated with them.
The varying passenger demand presented in Fig.3 is used as input in our stochastic and robust

optimization models (sections 5.2-5.3).

s Yy B;ryun B;rzzedian B;I;{L:L‘ 400 T max —

1 2 62 208 304 o .

1 3 73 319 421§ 3004 ¢ modian

14 2 T 36§ !

2 3 51 250 397 o]

2 4 2 6 31

3 4 0 1 17 %

5 6 0 2 16 D‘f 100 A 1 in

5 7 1 9 52 -

5 8 0 2 14 0- Py T T s 1 s

6 7 41 140 203 T T T T T T T T T T T T
7 8 31 110 279 LLLIICL;LLTQ.L«T:«T;[I

Origin-destination pairs

FIGURE 3 : Total number of passengers willing to travel from origin stop s to destination stop y
in our homogeneous planning period 7 = 6 h.

Before proceeding to the stochastic and robust solutions, we calculate the solution of the
baseline model that does not consider sublines and passenger demand variations. That is, the
considered demand in the baseline model is the B’S’;Edi“" in Fig.3. Solving this baseline model
returns solution:

(Xl,)Cz,)Cg) = (57070)

with a frequency of 20 trips per hour for the original line. Note that x,,x3 = 0 since the
baseline ‘no sublines’ model assigns vehicles only to the originally planned line.

Stochastic solution

To compute the stochastic solution, we first fit normal probability distributions to the passenger
demand data expressed in Fig.3 with a mean value B’S’;Edi“", V(s,y) € O and standard deviation
Oy, V(s,y) € O derived from a distribution fitting process. Then, we apply the SAA method by

generating i = 1,2,...,1000 Monte Carlo simulation scenarios via sampling from the respective
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normal distributions:

Bi, = A (Bp¥" 62), V(s,y) € 0, Vie{1,2,...,1000} (23)

The sampled vay, i=1,2,...,1000 values are used to solve the stochastic optimization problem
(P) in the optimization solver LINDO 10.0 resulting in the following vehicle assignment:

<x17x27x3) = (27072)

Note that this stochastic optimization solution assigns four vehicles in total (two to the orig-
inally planned line and two to the 3rd subline presented in Fig.2). This differs from the baseline
‘no sublines’ solution that assigned five vehicles to the originally planned line.

Robust solution

To compute a robust solution that performs well at worst-case demand scenarios, we use the lower
and upper boundary values (Bg’;i”,Bg';“x) from Fig.3 to solve the min(i)max problem P(%,) ex-
pressed in Eq.(19). To find a robust design, we apply Alg.1 with € = 0.05. We initialize our set
¢, by selecting a random noise B?y € Z. and setting B?y Yoo Weset ' =1.3Y )¢ ﬁBg’;edi“”
as an upper bound of the overall passenger demand because the highest observed daily demand in
the actual service is approximately 30% higher than the daily median. We initially let the random

choice BY, be equal to By, V/(s,y) € 0.

The solution of P(%,) can be easily obtained by solving the minimization program Q for Bgy.
That is, x £ {Solves Q for By, < B(S)y}. The resulting solution in LINDO 10.0 is:

' =(3,0,1)

with an objective function score 7(x°,u%, BY) = 101.53.
To obtain the worst-case passenger demand noise ley for x°, u

problem T (x°,u°). This yields

0. we solve the maximization

B! = (304,421,2,386,2,1,1,1,1,203,18, 115) passengers per respective OD-pair

with Z(x°,4%, B') = 533.51. Given that 7(x°,u®, B'") — 7(x°,u®, B®) £ &, we add B! to &, and
solve the updated P(%,). The updated P(%,) is solved by solving P(%,) for all B € ¥, and return
x* that minimizes the worst-case performance for the environmental variables in %,. For B!, the
solution of O(B') is:

x' =1(2,0,3)

and the performance of designs x°,x! for the environmental variables yields the solution of
P(%,) with the lowest worst-case performance in %,: x* = (2,0,3). The corresponding perfor-
mance of solution x* = (2,0,3) is 111.66.

After solving T(xl , ul) we receive the same worst-case passenger demand noise:

B> = B! = (304,421,2,386,2,1,1,1,1,203,18,115)
and the algorithm is terminated with solution
(x17x27x3) = (27073>

that performs best in the worst-case scenario of passenger demand noise.
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Performance evaluation of the proposed solutions

To evaluate the performance of the proposed solutions of (a) the baseline ‘no sublines’, (b) the
stochastic, and (c) the robust optimization models, we sample passenger demand data from Fig.3
generating a dataset of 1000 demand values for each OD-pair (s,y) € &. This sampled data gen-
erates 1000 daily scenarios and at each one of those scenarios we apply the solutions of the three
models (baseline ‘no sublines’, stochastic, and robust). The purpose of this evaluation is to in-
vestigate which solution yields the best on-average performance and is more resilient to demand
changes from day to day.

To implement the aforementioned solutions, we need to assign different numbers of vehicles
to the three sublines resulting in deviating operational costs. Fig.6 presents the average daily
running times when implementing the solutions of the no sublines, stochastic, and robust models
indicating that the stochastic model yields a 20% improvement in terms of running times. This
improvement was partly expected because the stochastic solution (x1,x2,x3) = (2,0,2) requires
one less vehicle than the ‘no sublines’ (x1,x2,x3) = (5,0,0) and the ‘robust’ solution (x},x3,x3) =
(2,0,3). Additionally, the ‘robust’ solution results in less running times compared to the ‘no
sublines’ solution because it assigns 3 vehicles to the third subline that does not serve stops 4 and
5.

32.5
o = 30.0 30.00 29.50
T s
s Y 27.5 1
2
=
< = 2 .
£ 250 93.70
-
no sublines stochastic robust

FIGURE 4 : Average vehicle running times on a daily basis when applying the ‘no sublines’
solution, the stochastic solution, and the robust solution

At each one of the 1000 days sampled from Fig.3 we apply the no sublines, the stochastic, and
the robust solutions and we evaluate the performance of the respective objective functions at the
end of the day for that passenger demand scenario. The performance of the stochastic against the
no sublines solution is presented in the left sub-figure of Fig.5 and the performance of the robust
against the no sublines solution is presented in the right sub-figure of the same graph. In Fig.5
one can observe whether the objective function improves or deteriorates when substituting the no
sublines solution by the stochastic or the robust solutions that consider sublines.
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8 stochastic vs no sublines 8 robust vs no sublines
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FIGURE 5 : Objective function performance improvement (or deterioration) of the stochastic and
the robust solutions compared to the baseline ‘no sublines’ solution in each one of the 1000-day
passenger demand scenarios

From Fig.5 one can note that the stochastic solution has clearly a better performance compared
to the no sublines solution until day 750 since it improves the performance of the objective function
by O to 7 points. After that, the no sublines solution performs better in several days. At this
point, we should note that the days are ordered according to the performance of the no sublines
solution presenting the days where the performance of the no sublines solution is deteriorating
in an ascending order. Continuing with the interpretation of the results, interestingly, the robust
solution has a more consistent patterns. However, it does not perform considerably better in any
of the cases, and this can be probably explained by the fact that this solution tries to perform best
at worst-case scenarios without trying to overperform in every scenario. The results from Fig.5
are summarized in the boxplot of Fig.6 which indicates the median performance, the interquartile
ranges, the minimum and maximum performances according to the boxplot convention of Tukey,
and the outlier performances for some days where the performances of our solutions lied outside
of the minimum-maximum performance range.

130 1 ¢ outliers
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g 120_
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g 110 -
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g - - .
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.E 90 A
_8 - —4— min
= )
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[ )
T T T

no sublines stochastic  robust

FIGURE 6 : Boxplot of the performances of the ‘no sublines’, ‘stochastic’, and ‘robust’ solutions
in the 1000 demand scenarios
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The quantitative values from Fig.6 demonstrate that:

* the stochastic solution has the best performance on most of the 1000 days resulting in an
improved median value;

* the robust solution has the most stable performance with an interquartile range of only
9.1 indicating that its performance is very stable across different passenger demand sce-
narios;

* even though the stochastic solution has the best median performance, its interquartile
range is very high and fluctuates significantly between good and bad performing days.

All in all, both the robust and the stochastic solutions have advantages and disadvantages. The
robust solution appears to be the selection of choice for more conservative transport operators who
want a minimum level of service under different demand fluctuations. In reverse, the stochastic so-
lution is the selection of choice for transport operators who are willing to have the biggest benefits
without being sensitive to the severe performance deterioration observed at particular days.

CONCLUDING REMARKS
In this work, we introduced a novel frequency setting model that assigns autonomous buses to sub-
lines which serve the entire originally planned line or parts of it. This model, originally formulated
as a MINLP, is reformulated as a MILP that can be easily solved to global optimality. Based on
that model, we explicitly consider the uncertainty of passenger demand in the optimization process
by formulating a stochastic and a robust optimization model, respectively. Notably, the stochastic
model is based on the sample average approximation method and maintains an MILP formulation.

The performance of the stochastic and robust optimization models that assign vehicles to sub-
lines to improve the trade-off between operational costs and passenger waiting time costs was
compared against the baseline model that does not consider sublines. When evaluating the per-
formance of those models in the autonomous minibus line operating in Frankfurt, we developed
scenarios with different demand patterns to study the optimal distribution of vehicles among sub-
lines under various demand conditions. When the demand levels among different OD-pairs differ
significantly, the proposed stochastic and robust models return improved solutions. Namely, the
vehicle assignment proposed by the stochastic model yields the best on-average performance with
a 2.6% improvement, whereas the robust solution yields the most stable design with an interquartile
range of 9.1.

In this work, the generated sublines serve segments of the originally planned lines and are
a product of short-turning. In future research, this can be expanded by considering interlining
lines where the same vehicle can be used by more than one line as an additional option. Finally,
experiments can be expanded beyond autonomous minibusses. This will be of interest since regular
bus services serve significantly more stops and have higher vehicle capacity which might lead to
higher uncertainty in terms of passenger demand and vehicle loads.
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