Springer Tracts in Advanced Robotics

Volume 140

Series Editors

Bruno Siciliano, Dipartimento di Ingegneria Elettrica e Tecnologie dell'Informazione, Università degli Studi di Napoli Federico II, Napoli, Italy

Oussama Khatib, Artificial Intelligence Laboratory, Department of Computer Science, Stanford University, Stanford, CA, USA

Advisory Editors

Nancy Amato, Computer Science & Engineering, Texas A&M University, College Station, TX, USA

Oliver Brock, Fakultät IV, TU Berlin, Berlin, Germany

Herman Bruyninckx, KU Leuven, Heverlee, Belgium

Wolfram Burgard, Institute of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg, Germany

Raja Chatila, ISIR, Paris cedex 05, France

Francois Chaumette, IRISA/INRIA, Rennes, Ardennes, France

Wan Kyun Chung, Robotics Laboratory, Mechanical Engineering, POSTECH, Pohang, Korea (Republic of)

Peter Corke, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia

Paolo Dario, LEM, Scuola Superiore Sant'Anna, Pisa, Italy

Alessandro De Luca, DIAGAR, Sapienza Università di Roma, Roma, Italy

Rüdiger Dillmann, Humanoids and Intelligence Systems Lab, KIT - Karlsruher Institut für Technologie, Karlsruhe, Germany

Ken Goldberg, University of California, Berkeley, CA, USA

John Hollerbach, School of Computing, University of Utah, Salt Lake, UT, USA

Lydia E. Kavraki, Department of Computer Science, Rice University, Houston, TX, USA

Vijay Kumar, School of Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA

Bradley J. Nelson, Institute of Robotics and Intelligent Systems, ETH Zurich, Zürich, Switzerland

Frank Chongwoo Park, Mechanical Engineering Department, Seoul National University, Seoul, Korea (Republic of)

S. E. Salcudean, The University of British Columbia, Vancouver, BC, Canada

Roland Siegwart, LEE J205, ETH Zürich, Institute of Robotics & Autonomous Systems Lab, Zürich, Switzerland

Gaurav S. Sukhatme, Department of Computer Science, University of Southern California, Los Angeles, CA, USA

The Springer Tracts in Advanced Robotics (STAR) publish new developments and advances in the fields of robotics research, rapidly and informally but with a high quality. The intent is to cover all the technical contents, applications, and multidisciplinary aspects of robotics, embedded in the fields of Mechanical Engineering, Computer Science, Electrical Engineering, Mechatronics, Control, and Life Sciences, as well as the methodologies behind them. Within the scope of the series are monographs, lecture notes, selected contributions from specialized conferences and workshops, as well as selected PhD theses.

Special offer: For all clients with a print standing order we offer free access to the electronic volumes of the Series published in the current year.

Indexed by DBLP, Compendex, EI-Compendex, SCOPUS, Zentralblatt Math, Ulrich's, MathSciNet, Current Mathematical Publications, Mathematical Reviews, MetaPress, and Springerlink.

More information about this series at http://www.springer.com/series/5208

Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers

Marco Tognon LAAS-CNRS Toulouse, France Antonio Franchi University of Twente Enschede, The Netherlands

ISSN 1610-7438 ISSN 1610-742X (electronic) Springer Tracts in Advanced Robotics ISBN 978-3-030-48658-7 ISBN 978-3-030-48659-4 (eBook) https://doi.org/10.1007/978-3-030-48659-4

 ${\ensuremath{\mathbb C}}$ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Series Editor's Foreword

At the dawn of the century's third decade, robotics is reaching an elevated level of maturity and continues to benefit from the advances and innovations in its enabling technologies. These all are contributing to an unprecedented effort to bringing robots to human environment in hospitals and homes, factories and schools; in the field for robots fighting fires, making goods and products, picking fruits and watering the farmland, saving time and lives. Robots today hold the promise for making a considerable impact in a wide range of real-world applications from industrial manufacturing to healthcare, transportation, and exploration of the deep space and sea. Tomorrow, robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical research developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and contribute to further advancements in this rapidly growing field.

The monograph by Marco Tognon and Antonio Franchi is the outcome of the first author's Ph.D. thesis on tethered aerial vehicles. The work comes at the intersection of two hot research areas, namely aerial robotics and robot physical interaction, and constitutes a valuable reference in the new field of aerial physical interaction. A number of controllers and observers are proposed to fully exploit aerial robots' capabilities to interact with the environment, and even a multi-tethered system composed of two aerial robots is considered.

The techniques are effectively implemented in a large number of simulated and experimental tests, including a significant use case, and the various results are keenly discussed. A very fine addition to the STAR series!

Naples, Italy April 2020 Bruno Siciliano STAR Editor To beloved family and friends.

Preface

This book focuses on the study of autonomous aerial robots interacting with the surrounding environment, and in particular on the design of new *control* and *motion* planning methods for such systems. Nowadays, autonomous aerial vehicles are extensively employed in many fields of application but mostly as autonomously moving sensors used only to sense the environment. On the other hand, in the recent field of *aerial physical interaction*, the goal is to go beyond sensing-only applications and to fully exploit aerial robots capabilities in order to interact with the environment, exchanging forces for pushing/pulling/sliding, and manipulating objects. However, due to the different nature of the problems, new control methods are needed. These methods have to preserve the system stability during the interaction and to be robust against external disturbances, finally enabling the robot to perform a given task. Moreover, researchers and engineers need to face other challenges generated by the high complexity of aerial manipulators, e.g., a large number of degrees of freedom, strong nonlinearities, and actuation limits. Furthermore, trajectories of the aerial robots have to be carefully computed using motion planning techniques. To perform the sough task in a safe way, the planned trajectory must avoid obstacles and has to be suitable for the dynamics of the system and its actuation limits.

With the aim of achieving the previously mentioned general goals, this book considers the analysis of a particular class of aerial robots interacting with the environment: *tethered aerial vehicles*. The study of particular systems, still encapsulating all the challenges of the general problem, helps on acquiring the knowledge and the expertise for a subsequent development of more general methods applicable to aerial physical interaction. This work focuses on the thorough formal analysis of tethered aerial vehicles ranging from control and state estimation to motion planning. In particular, the differential flatness property of the system is investigated, finding two possible sets of flat outputs that reveal new capabilities of such a system. One contains the position of the vehicle and the link internal force (equivalently the interaction force with the environment), while the second contains the position and a variable linked to the attitude of the vehicle. This shows new control and physical interaction capabilities different from standard

aerial robots in contact-free flight. In particular, the first set of flat outputs allows realizing one of the first "free-floating" versions of the classical hybrid force-motion control for standard grounded manipulators.

Based on these results we designed two types of controllers. The first is an easy-to-implement controller based on a hierarchical approach. Although it shows good performance in quasi-static conditions, actually the tracking error increases when tracking a dynamic trajectory. Thus, a second controller more suited for tracking problems has been designed based on the dynamic feedback linearization technique. Two observers, for the 3D and 2D environments, respectively, have been designed in order to close the control loop using a minimal sensorial setup. We showed that the tether makes possible to retrieve an estimation of the full state from only an IMU plus three encoders for the 3D case, while from just an IMU for the 2D case. Parts of those results were extended to a novel and original multi-robots case as well. We considered a multi-tethered system composed of two aerial robots linked to the ground and to each other by two links. The theoretical results on generic tethered aerial vehicles were finally employed to solve the practical and challenging problem of *landing and takeoff on/from a sloped surface*, enhancing the robustness and reliability of the maneuvers with respect to the contact-free flight solution.

This work has been supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 644271 AEROARMS.

We would like to express our deep gratitude to Dr. Anthony Mallet for the excellent and continuous maintenance of the software and hardware framework. Without his precious work, the several experiments conducted during this work would not have been possible.

A sincere gratitude go to all the colleagues that contributed to this work: Sanket Dash, Andrea Testa, and Enrica Rossi.

Toulouse, France February 2020 Marco Tognon Antonio Franchi

Contents

1	Introduction	1
	1.1 Aerial Physical Interaction	1
	1.2 Tethered Aerial Vehicles	6
	1.3 Organization of the Book	9
	References	10
2	Theoretical Background	15
	2.1 Modeling	15
	2.1.1 Lagrange Formalism.	15
	2.1.2 Newton-Euler Formalism	16
	2.1.3 Rigid Body Dynamics	17
	2.2 Differential Flatness	19
	2.3 Dynamic Feedback Linearizing Control	20
	2.4 High Gain Observer	22
	References	23
3	Model of the Robotic Elements	25
3	Model of the Robotic Elements 3.1 Tethering Link	25 25
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles	25 25 27
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators	25 25 27 28
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters	25 25 25 27 28 28
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters 3.3.2 Link Actuator	25 25 27 28 28 30
3	Model of the Robotic Elements3.1Tethering Link3.2Unidirectional Thrust Vehicles3.3Actuators3.3.1Thrusters3.3.2Link Actuator3.4Sensory Setup	25 25 27 28 28 30 30
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters 3.3.2 Link Actuator 3.4 Sensory Setup References	25 25 27 28 28 30 30 30
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters 3.3.2 Link Actuator 3.4 Sensory Setup References The detected of the d	25 25 27 28 28 30 30 32
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters 3.3.2 Link Actuator 3.4 Sensory Setup References Theory of Tethered Aerial Vehicles	25 25 27 28 28 30 30 32 35
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters 3.3.2 Link Actuator 3.4 Sensory Setup References Theory of Tethered Aerial Vehicles 4.1 Related Works and Problem Statement	25 25 27 28 28 30 30 32 35 35
3	Model of the Robotic Elements 3.1 Tethering Link 3.2 Unidirectional Thrust Vehicles 3.3 Actuators 3.3.1 Thrusters 3.3.2 Link Actuator 3.4 Sensory Setup References Theory of Tethered Aerial Vehicles 4.1 Related Works and Problem Statement 4.2 Contribution	25 25 27 28 28 30 30 32 35 35 35

	4.4	Differen	ntial Flatness	47
		4.4.1	Stress-Related Flat Output	48
		4.4.2	Attitude-Related Flat Output	49
		4.4.3	Differential Flatness for Passive Link Actuator	51
	4.5	Hierarc	chical Control	52
		4.5.1	Force-Related Hierarchical Control	52
		4.5.2	Attitude-Related Hierarchical Control	54
	4.6	Dynam	ic Feedback Linearization	55
		4.6.1	Force-Related Feedback Linearizing Output	55
		4.6.2	Attitude-Related Feedback Linearizing Output	59
		4.6.3	Dynamic Feedback Linearization for Passive Link	
			Actuator	62
		4.6.4	Dynamic Feedback Linearization for the Reduced	
			Model	63
	4.7	State E	stimation	64
		4.7.1	Closed Loop Stability	66
		4.7.2	Discussion on Platform State Measurement	67
	4.8	State E	stimation for the Reduced Model	67
		4.8.1	State/Output Transformations and HGO Design	69
		4.8.2	Observation of the Original State	71
		4.8.3	Closed-Loop System Stability with State Observation	72
		4.8.4	Disambiguation of η and Observability Discussion	72
	4.9	Discuss	sion on the Proposed Observers	73
		4.9.1	Applicability	74
		4.9.2	Robustness	74
	Refe	erences .		75
5	Sim	ulation a	and Experimental Results	77
	5.1	Testbec	1	77
		5.1.1	Simulation Setup	77
		5.1.2	Hardware Setup	77
	5.2	Hierarc	hical Controllers: Experimental Validation	79
		5.2.1	Hierarchical Controller for y ^a	79
		5.2.2	Hierarchical Controller for y ^b	81
	5.3	DFL-C	ontroller for y ^a with Observer	83
		5.3.1	Initial Errors	87
		5.3.2	Parametric Variations	88
		5.3.3	Limited Knowledge of $\mathbf{p}_{C}^{W}(t)$	89
		5.3.4	Noise on the Measurements	89
		5.3.5	Tethered Offset	90
		5.3.6	Nondiagonal Inertia Matrix	93
		5.3.7	Input Saturation	95
		5.3.8	Motor Time Constant	95

Contents

		5.3.9	Hierarchical Control Versus DFL Control for y ^a	96
		5.3.10	DFL-Controller for y ^e in Case of Passive Link	00
	5 4	01		99
	5.4	Observe	er Based DFL-Controllers for Reduced Model	100
		5.4.1	Controlling f_L for Both Tension and Compression Definition Line Line Line 1	102
		5.4.2	Robustness Investigation Against Non Ideal	100
	Refe	erences .	Conditions	102 114
6	The	ory and	Experiments for a Practical Usecase	115
	6.1	The Pro	oblem of Landing and Takeoff On/from	
		a Slope	d Surface	115
	6.2	Modeli	ng	116
		6.2.1	Model in Free (Non-tethered) Flight	117
		6.2.2	Model in Tethered Flight	118
	6.3	Conditi	ons for Robust Landing and Takeoff	119
	6.4	Analysi	is and Comparison for Landing and Takeoff	120
		6.4.1	Contact-Free Flight Method	120
		6.4.2	Tethered Method	121
	6.5	Optima	1 Trajectory Planning	124
		6.5.1	Final Desired Output	124
		6.5.2	Optimal Planner	125
	6.6	Experin	nental Landing and Takeoff	127
		6.6.1	Anchoring Tools and Mechanisms	128
		6.6.2	Experimental Phases	128
		6.6.3	Controller Switch	129
		6.6.4	Software Architecture	130
		6.6.5	Offset Nonideality	130
		6.6.6	Experimental Results	131
	Refe	erences .		133
7	Tow	ards Mu	ultiple Tethered Aerial Vehicles	135
	7.1	Modeli	ng	135
	7.2	Differen	ntial Flatness	138
	7.3	Dynam	ic Feedback Linearization	139
	7.4	State E	stimation	142
		7.4.1	Output Transformations	142
		7.4.2	Observability	145
		7.4.3	High Gain Observer	146
		7.4.4	Disambiguation of η	147
		7.4.5	Discussion on the Proposed Method	148
	7.5	Numeri	cal Validation	149
	Refe	erences .		152

8	Conclusions				
	8.1	Summary of the Book.	153		
	8.2	Future Works	155		

Acronyms

ACADO	Automatic Control and Dynamic Optimization
AM	Aerial Manipulation
APhI	Aerial Physical Interaction
AR	Aerial Robot
AV	Aerial Vehicle
BLDC	Brushless DC
CoG	Center of Gravity
CoM	Center of Mass
DFL	Dynamic Feedback Linearization
DoF	Degree of Freedom
EE	End-Effector
ESC	Electronic Speed Controller
GPS	Global Positioning System
HC	Hierarchical Control
HGO	High Gain Observer
IMU	Inertial Measurement Unit
MoCap	Motion Capture System
SFL	Static Feedback Linearization
SLS	Standard Linear Solid
UAV	Unmanned Aerial Vehicle
VTOL	Vertical Takeoff and Landing Vehicle

List of Figures

Fig. 1.1	Examples of companies proposing tethered aerial robots	6
E- 10	For long lingin time operations	0
Fig. 1.2	Examples of techered aerial robots for cleaning applications	/
Fig. 1.5	Examples of applications of tethered aerial venicles when	
	the cable is taut. In particular, starting from the top-left image,	
	indon successful on/from a moving platform, inspection in	
	line on the right [52, 55]	0
$\mathbf{E}_{\mathbf{z}} \ge 1$	Three time of considered link. The red errors indicate	0
FIg. 5.1	the external formers (or meetion formers) that stratch	
	ar compress the link according to the estadory	26
Eig 22	Schematic representation of a general link and its main	20
Fig. 5.2	veriebles	26
	Schematic representation of a collinear multirator and its main	20
rig. 5.5	guantitites. Although the vehicle is represented as a guadrotor	
	actually it can be any collinear multirator, such as an	
	hexarctor, actorator, etc.	27
Fig = 4.1	Left representation of the system and its main variables	21
11g. 4.1	Ton right comparementization of the unit vector $\mathbf{d}^{\mathbf{C}}$.	
	Top fight corner: parametrization of the non-metrization, such dalla in	
	the planning phase @ 2020 IFFF. Deprinted with permission	
	from [10]	42
E_{in} 4.2	Visual description of the angle of	42
Fig. 4.2	Visual description of the angle v_A	55
Fig. 4.5 Eig. 4.4	Plack diagram representation of the control strategy	55
F1g. 4.4	\bigcirc 2020 IEEE Deprinted with permission from [10]	59
Fig. 4.5	Observer © 2020 IEEE Reprinted with permission	50
11g. 4.J	from [12]	72
		12

Fig. 4.6	Global observer with disambiguation of η . © 2020 IEEE.	72
Fig 5.1	Test bed used for testing the bigrarchical controller	15
11g. J.1	for a tathered parial vahiale. On the left the robot is	
	compressing the bar with a force equal to -12 [N] being	
	in an inclined hovering with $\vartheta_1 = -80^\circ$. On the right the robot	
	is pulling the cable with a force equal to 7 [N] being	
	is putting the cable with a force equal to 7 [14], being in an inclined hovering with $\vartheta_{1} = 30^{\circ}$	78
Fig 5.2	Results of the the experiment 1 with the hierarchical	70
1 Ig. <i>3.2</i>	controller for v^a	80
Fig 53	Results of the the experiment 2 with the hierarchical	00
1 15. 5.5	controller for \mathbf{v}^a	81
Fig 54	Experimental results: tracking of a sinusoidal input	01
115. 5.1	on elevation with varying period with fixed attitude f_{i}^{n}	
	is the nominal internal force computed by the flatness from y^d	
	(f_1, f_4) are the forces produced by each thruster	83
Fig 55	Tracking of a desired sinusoidal trajectory of ϑ_{\star}	05
1 15. 5.5	with varying frequency and fixed ω	84
Fig. 5.6	Experimental results: tracking of a desired sinusoidal	0.
1.8.010	trajectory on both φ and ϑ_A with fixed period	84
Fig. 5.7	Simulation results: plausible task trajectory. The performance	
0	for each non-ideal case are compared. © 2020 IEEE.	
	Reprinted, with permission, from [4]	85
Fig. 5.8	Simulation: initial errors	87
Fig. 5.9	Simulation: parametric variations	88
Fig. 5.10	Simulation: limited measurements of the moving platform	
-	trajectory	90
Fig. 5.11	Plot of \mathbf{x}_{C}^{i} , for $i = 1, 2, 3, 4$. In Simulation (c) all the variables	
-	in the last five plots are considered zero by the controller	
	and the observer	91
Fig. 5.12	Simulation: noisy measurements	92
Fig. 5.13	Simulation: non zero offset between tether attachment	
	and center of gravity of the aerial vehicle	93
Fig. 5.14	Simulation: non-diagonal inertia matrix \mathbf{J}_R	94
Fig. 5.15	Simulation: saturation of the input	96
Fig. 5.16	Simulation: system with motors dynamics	97
Fig. 5.17	Simulation results: hierarchical control in ideal conditions	
	with initial tracking error	98
Fig. 5.18	Simulation results: hierarchical control in the noisy case.	
	To preserve stability lower gains have to be used with noise,	
	therefore the performance is significantly degraded. The	
	hierarchical controller presents a strictly penalizing trade	
	off between tracking performance and robustness to noise	- 99

List of Figures

Fig. 5.19	Simulation results: plausible task trajectory for the case of a passive link actuator. The performance for each non-ideal	
	case are shown	101
Fig. 5.20	Simulation results: controlling φ and the tension (on the left) or the compression (on the right)	103
Fig. 5.21	Simulation results: controlling φ and f_L going from tension	103
F : 5 3 3	to compression. In figure (b)	104
Fig. 5.22	Simulation results: nonzero initial tracking error.	105
F1g. 5.23	Simulation results: parametric variation—Controller 1 _{DFL}	
	(elevation and link force). The subscript 1, 2, and 3 correspond to the three different trajectory times. Outside of the displayed	
	range of parametric variation the performance is unacceptable	
	or the closed loop system results to be even unstable.	
	© 2020 IEEE. Reprinted, with permission, from [8]	107
Fig. 5.24	Simulation results: parametric variation—Controller	
U	$\Gamma_{\rm DEI}^{b}$ (elevation and attitude). © 2020 IEEE. Reprinted,	
	with permission, from [8]	108
Fig. 5.25	Representation of the more general system and its variables,	
	still constrained in the 2D vertical plane. © 2020 IEEE.	
	Reprinted, with permission, from [8]	109
Fig. 5.26	Simulation results: controller Γ_{DFL}^a . Mean tracking error when	
	changing the parameters of the general model. © 2020 IEEE.	
	Reprinted, with permission, from [8]	111
Fig. 5.27	Simulation results: noisy measurements. © 2020 IEEE.	
F : 5 0 0	Reprinted, with permission, from [8]	112
Fig. 5.28	Simulation results: non ideal motors. Mean tracking error	112
E. (1	when changing the motor time constant	113
Fig. 0.1	© 2020 IEEE Deprinted with permission from [5]	117
Fig 62	Zoom of the book and the anchoring mechanism	117
Fig. 6.2	Schematic representation of the software architecture Pink	120
1 ig. 0.5	blocks represent the sensors. Green blocks represent the	
	controllers and light vellow blocks represent the observers.	
	Starting from the left, $\tilde{\mathbf{p}}$ and $\tilde{\mathbf{R}}$ represent the measured robot	
	position and orientation respectively: $\hat{\mathbf{x}}$ and \hat{f}_t represent the	
	estimated state and link internal force, respectively, \mathbf{a} and f_L represent the	
	represents the desired output trajectory: f_P and τ_P represents	
	the input of the robot, i.e., thrust intensity and torque vector: \tilde{w}	
	represents the desired spinning velocity of the propellers.	
	Finally $\tilde{\mathbf{a}}$ and $\tilde{\boldsymbol{\omega}}$ represent the readings of the IMU, i.e., specific	
	acceleration and angular velocity	130

Fig. 6.4	Sequence of images of a real experiment with a sloped surface tilted by 50° . The first new of images are represented the	
	the by 50. The first row of images represents the	
	experimental part in which the quadrotor is in a contact-free	
	flight condition. In this case a standard position controller is	
	used to track the desired position trajectory marked with a	
	dashed red line. The second row of images represents the	
	experimental part in which the quadrotor is tethered to the	
	surface. In this case the controller proposed in Sect. 4.5.2	
	is used to track the desired position and attitude trajectories	
	marked with a dashed yellow line and a solid blue line,	
	respectively	131
Fig. 6.5	Experimental results: plots of the state, outputs and inputs	
	of the system during the tethered landing and takeoff. In	
	particular φ and δ describe the attitude of the cable and, given	
	the link constraint, the position of the vehicle with respect to	
	the anchoring point. ϕ and ψ are the angles that together with	
	ϑ_A describe the orientation of the robot. f_1, f_2, f_3, f_4 are the	
	forces produced by each propeller. Finally, f_L is the intensity	
	of the internal force along the link. The super-script d and n	
	represent the desired and the nominal values of a variable,	
	respectively	132
Fig. 6.6	Execution of a tethered landing on an inclined pipe tilted	
	by 60°	133
Fig. 7.1	Representation of the system and its main variables. The	
	system is depicted in a scenario of example where the grey box	
	represents a surface of manipulation for, e.g., a pick and place	
	task. © 2020 IEEE. Reprinted, with permission, from [1]	136
Fig. 7.2	Graphic representation of the controller. © 2020 IEEE.	
	Reprinted, with permission, from [2]	141
Fig. 7.3	Graphic representation of the observer. © 2020 IEEE.	
	Reprinted, with permission, from [1]	145
Fig. 7.4	Simulation results: point to point motion. © 2020 IEEE.	
	Reprinted, with permission, from [1]	150
Fig. 7.5	Simulation results: example of a search and rescue task.	
	© 2020 IEEE. Reprinted, with permission, from [1]	151

List of Tables

37
41
47
64
65
74
79
91
123
143