
Chapter 7
Towards Multiple Tethered Aerial
Vehicles

7.1 Modeling

In order to refer to the quantities of one component of the chain, we use the subscript·i with i = 1 for the first link and i = 2 for the second. Similarly to Chap.4 we
assume: (i) negligible link masses and rotational inertias with respect to the ones
of the vehicles, (ii) fixed link lengths li ∈ R>0 where i ∈ {1, 2}, and (iii) negligible
deformations and elasticities.

We define ϕi ∈ R the elevation angle of the i th link. With fL i ∈ R we denote
the internal force that is exerted on the i th link. Also in this case the link is generic
and both compressions and tensions are allowed. The first link is connected at one
end to the CoM of the first vehicle, and the other end to a fixed point. The two
ends of the second link are attached to the first and second vehicle center of masses,
respectively. No rotational constraints are present in the connections, e.g., by using
passive rotational joints. Finally, mRi ∈ R>0 and JRi ∈ R>0, with i = 1, 2, denote
the mass and inertial, respectively, of the i th vehicle.

It is convenient to define the frames of the system in 3D, even if we consider a 2D
problem, in order to, e.g., have a well defined angular velocity vector for the aerial
vehicles. Thus we define a world frame, FW , described by the unit vector along its
axes {xW , yW , zW } and origin set on a fixed pointOW . Then, for every robot,we define
a body frame, FBi , rigidly attached to the i th vehicle, described by the unit vector
along its axes {xBi , yBi , zBi } and origin OBi set on the vehicle CoM, represented

in FW by the coordinates pBi = [
xBi yB i zB i

]�
, where yBi = 0. The axes yW , yB1

and yB2 are perpendicular to the vertical plane {xW , zW } where motion occurs, as
depicted in Fig. 7.1. The system evolves on this vertical plane on the effect of the
four control inputs (two for each robot), i.e., the intensities fRi ∈ R and τRi ∈ R

of the thrust force − fRizBi ∈ R
3 and the torque −τRiyBi ∈ R

3, respectively, with
i = 1, 2.
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Fig. 7.1 Representation of the system and its main variables. The system is depicted in a scenario
of example where the grey box represents a surface of manipulation for, e.g., a pick and place task.
c© 2020 IEEE. Reprinted, with permission, from [1]

Given the constraints, the system is completely described by the generalized coor-
dinates q = [ϕ1 ϕ2 θ1 θ2]� = [ϕ� θ�]� ∈ R

4, where ϕi and θi are the elevation of
the i th link (defined before) and the attitude of the i th vehicle, respectively.

To derive the dynamic model of the system, as done in Sect. 4.3, we employ the
Newton–Euler methods, because also in this case we are interest in controlling the
internal force along the link and an analytical expression is thus needed. Since the
rotational dynamics of the generic i th vehicle is decoupled by the translational one,
we have that

θ̈ = J−1τR, (7.1)

where J = diag(JR1, JR2) ∈ R
2×2
>0 and τR = [τR1 τR2]� ∈ R

2. Since we are consid-
ering the 2D problem, in the following, we will omit the lines full of zeros relative
to the yB1 and yB2 axes. Balancing the forces acting on the vehicle CoMs we obtain

[
m1p̈B1

m2p̈B2

]

︸ ︷︷ ︸
a

= −
[
d1 fL1 − d2 fL 2

d2 fL 2

]

︸ ︷︷ ︸
afL

−
[
fR1zB1

fR2zB2

]

︸ ︷︷ ︸
afR

−
[
mR1gzW
mR2gzW

]

︸ ︷︷ ︸
ag

, (7.2)
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where di = [cosϕi sin ϕi ]� and d⊥
i = [− sin ϕi cosϕi ]� are unit vectors in the ver-

tical plane parallel and perpendicular to the i th link, respectively. The accelerations
of the vehicle CoMs expressed in FW are

p̈B1 = −l1d1ϕ̇2
1 + l1d⊥

1 ϕ̈1

p̈B2 = p̈B1 − l2d2ϕ̇2
2 + l2d⊥

2 ϕ̈2.
(7.3)

Using (7.3) and (7.2) we have that

a =
[ −mR1l1d1ϕ̇2

1−mR2(l1d1ϕ̇2
1 + l2d2ϕ̇2

2)

]

︸ ︷︷ ︸
aϕ̇

+
[
mR1l1d

⊥
1 0

mR2l1d
⊥
1 mR2l2d

⊥
2

]

︸ ︷︷ ︸
Aϕ̈

ϕ̈

afL =
[
d1 −d2
0 d2

]

︸ ︷︷ ︸
D

fL ,

where aϕ̇ ∈ R
4, Aϕ̈ ∈ R

4×2, D ∈ R
4×2 and fL = [ fL1 fL2]� ∈ R

2. Therefore (7.2)
can be rewritten as:

[
Aϕ̈ D

]

︸ ︷︷ ︸
W

[
ϕ̈

fL

]
= −afR − ag − aϕ̇ . (7.4)

The matrix W ∈ R
4×4, that can be explicitly written as

W =
⎡

⎢
⎣

−l1mR1 sin ϕ1 0 cosϕ1 − cosϕ2
l1mR1 cosϕ1 0 sin ϕ1 − sin ϕ2
−l1mR2 sin ϕ1 −l2mR2 sin ϕ2 0 cosϕ2
l1mR2 cosϕ1 l2mR2 cosϕ2 0 sin ϕ2

⎤

⎥
⎦ ,

is full rank, in fact its determinant is det (W) = −l1l2mR2[mR1 + mR2(1 − cos2(ϕ1 −
ϕ2))], which is always nonzero.

The dynamics of the system is then described by the following equations:

ϕ̈ = [
I2 0

]
W−1(−afR − ag − aϕ̇). (7.5a)

θ̈ = J−1τR (7.5b)

For the design of a state observer in Sect. 7.4 it is useful to rewrite (7.5) in a
Lagrangian format:
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M(ϕ)ϕ̈ = −c(ϕ, ϕ̇) + Q̄ϕ(ϕ, θ)fR (7.6a)

J θ̈ = τR, (7.6b)

where fR = [ fR1 fR2]� and

M(ϕ) =
[

(mR1 + mR2)l
2
1 mR2l1l2 cos (ϕ1 − ϕ2)

mR2l1l2 cos (ϕ1 − ϕ2) mR2l
2
2

]

c(ϕ, ϕ̇) =
[
mR2l1l2 sin (ϕ1 − ϕ2) ϕ̇2

2 + (mR1 + mR2)gl1 cosϕ1

−mR2l1l2 sin (ϕ1 − ϕ2) ϕ̇2
1 + mR2gl2 cosϕ2

]

Q̄ϕ(ϕ, θ) =
[
l1 cos (ϕ1 + θ1) l1 cos (ϕ1 + θ2)

0 l2 cos (ϕ2 + θ2)

]

7.2 Differential Flatness

For the single tethered aerial vehicle we showed that it is differentially flat with
respect to ya containing the position of the vehicle and the internal force along
the link. In this section we shall show that analogously, the multi-robot extension
here considered is differentially flat with respect to the output ya2 = [ya21� ya22

�]� =
[ϕ� f�

L ]�, containing the position of the vehicles (parametrized by the elevation
angles) and the internal force along the links.

We recall that to prove the differential flatness of the system, state, x = [x1 x2 x3
x4 x5 x6 x7 x8]� = [ϕ1 ϕ̇1 ϕ2 ϕ̇2 θ1 θ̇1 θ2 θ̇2]� ∈ R

8 and input, u = [ fR1 fR2
τR1 τR2]� = [fR� τR

�]� = [u�
1 u�

2 ]� ∈ R
4, have to be expressed as an algebraic

function of the output and its derivatives. We have that ϕ is already part of the out-
put, thus ϕ = ya21 and ϕ̇ = ẏa21. To find the rest we firstly compute the nominal thrust
vectors from the output and its derivatives using (7.2):

[
fR1zB1

fR2zB2

]
= a(ya21, ẏ

a
21, ÿ

a
21) + afL (y

a
2) + ag. (7.7)

Similarly to Sect. 4.4.1, from the thrust vectors we can easily compute the inputs and
the missing part of the state as function of the output and its derivatives up to the
fourth derivative.

Proposition The model (7.5), is differentially flat with respect to the flat output
ya2 = [ϕ� f�

L ]�. In other words, the state and the inputs can be written as algebraic
function of ya2 and a finite number of its derivatives. �
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7.3 Dynamic Feedback Linearization

As usual, to compute the feedback linearizing control law, we need to differentiate
the outputs until the input u appears. Inverting (7.4), and recalling that ya21

(2) = ϕ̈

and ya22 = fL , we directly obtain

[
ya21

(2)

ya22

]
= W−1(−ag − aϕ̇)

︸ ︷︷ ︸
b(x)

+ (−W−1
[
ZR 0

])

︸ ︷︷ ︸
E(x)

u, (7.8)

where b(x) gathers all the terms that do not depend on u and ZR ∈ R
4×2 is:

afR =
[
zB1 0 0 0
0 zB2 0 0

]
u = [

ZR 0
]
u. (7.9)

From (7.8) we can see that the input appears directly in ya22 without need for differ-
entiation while ya21 has to be differentiated twice. Furthermore, we can immediately
notice that the decoupling matrix E(x) is always singular which means that it is not
possible to determine a static feedback that linearizes the system using ya2 .

As we saw in Sect. 4.6, the common technique is to delay the appearance of the
input in ya22 (i.e., increasing the relative degree of ya22) introducing a dynamic com-
pensator composed by one or more integrators in the input channel u1. To this aim,
we redefine the input as ū = [ü�

1 u�
2 ]� = [ū�

1 ū�
2 ]�, considering the acceleration of

the thrust intensity as new controllable input, ü1 = f̈R . The system is now described

by the extended state x̄ =
[
ϕ� ϕ̇� θ� θ̇

�
u�
1 u̇�

1

]� ∈ R
12, that contains also the

thrusts and their derivatives. Considering the extended system and the new input, ya21
and ya22 have to be differentiated four and two times, respectively, in order to see the
new input ū appear:

[
ya21

(4)

ya22
(2)

]
= ¨(W−1)(−afR − ag − aϕ̇) + 2 ˙(W−1)(−ȧfR − ȧϕ̇)+

+ (W−1)(−äfR − äϕ̇).

(7.10)

In the previous equation the inputs appear only in the term äfR that can be rewritten
as:

äfR = ä′
fR (x̄) + Ä′′

fR (x̄)ū, (7.11)

where
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Ä′′
fR (x̄) =

⎡

⎢⎢⎢
⎣

− sin θ1 0 − fR1 cos θ1
JR1

0

cos θ1 0 − fR1 sin θ1
JR1

0

0 − sin θ2 0 − fR2 cos θ2
JR2

0 cos θ2 0 − fR2 sin θ2
JR2

⎤

⎥⎥⎥
⎦

. (7.12)

We can compactly rewrite (7.10) as:

[
ya21

(4)

ya22
(2)

]
= b(x̄) + (−W−1Ä′′

fR (x̄)
)

︸ ︷︷ ︸
Ē(x̄)

ū, (7.13)

where b(x̄), whose expression is omitted here for the sake of brevity, collects all the
terms in (7.10) that do not depend on the input. After some algebra, it is possible to
analytically compute the determinant of the new decoupling matrix Ē(x̄):

det
(
Ē(x̄)

) = − fR1 fR2
JR1 JR2l1l2mR2

(
mR1 + mR2 sin

2(ϕ1 − ϕ2)
) ,

which is zero iff fR1 = 0 or fR2 = 0 (same singularity of the single tether case).
Therefore Ē(x̄) is always invertible except for the cases in which one of the two
thrusts vanishes. Furthermore the total relative degree r = 8 + 4 = 12 is equal to
the dimension of the extended state x̄. This means that the system does not have
an internal dynamics, i.e., it is fully linearizable through dynamic feedback. In fact,
designing the control input as

ū = Ē−1(x̄) [−b(x̄) + v] , (7.14)

where v = [v�
1 v�

2 ]� ∈ R
4 is a virtual input, we obtain

ya21
(4) = v1 ya22

(2) = v2,

i.e., through the state feedback transformation (7.14) we transform the original non
linear system (7.5) in a fully-equivalent linear and decoupled dynamical system.

Proposition Consider the system composed by two aerial vehicles connected in
series to the ground by two links with passive joints, whose dynamic model is
described by (7.5). Consider as outputs the elevation and the internal force of the two
links, ya2 = [ϕ� f�

L ]�. Then the system is fully linearizable via dynamic feedback for
every state configuration, iff both thrusts fR1 and fR2 are nonzero. �

As a consequence of the previous Proposition 8, as done in Sect. 4.6 we can design
a standard linear controller to obtain the tracking of a desired trajectory. The overall
controller design is depicted in Fig. 7.2.
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Fig. 7.2 Graphic representation of the controller. c© 2020 IEEE. Reprinted, with permission,
from [2]

Corollary Let be given any desired trajectory ya21
d(t) of class C3 for the two links

elevation ya21, and any desired trajectory y
a
22

d(t) of class C1 for the two links internal
force ya22. Consider as input the second derivative of the two thrusts and the torques
provided by the aerial vehicles, ū = [f̈�

R τR
�]�. Consider the control law described

by (7.14) and set the virtual inputs as:

v1 = ya21
d (4) + K11e1 + K12e

(1)
1 + K13e

(2)
1 + K14e

(3)
1

v2 = ya22
d (2) + K21e2 + K22e

(1)
2 ,

(7.15)

where Ki j ∈ R
2×2
>0 , with i = 1 . . . 4 and j = 1, 2, are diagonal matrices.

That control law exponentially steers ya2 along any desired trajectory ya2
d =

[ϕd
1 ϕd

2 fL d1 fL d2 ]�. The behavior of the convergence can be arbitrarily assigned
by suitably choosing the gain matrixes. �

Let us define the errors as e1 = ya21
d − ya21 and e2 = ya22

d − ya22. The controller
yields to the following error dynamics:

e(4)
1 + K11e1 + K12e

(1)
1 + K13e

(2)
1 + K14e

(3)
1 = 0

e(2)
2 + K21e2 + K22e

(1)
2 = 0.

Therefore, from basic linear system theory, one can arbitrarily assign the poles of
the dynamics of the error in order to guaranties an arbitrarily fast exponential track-
ing of (ya21

d(t), ya22
d(t)) for (ya21(t), y

a
22(t)) by suitably choosing the gains: K̄1 =

[K11 K12 K13 K14] ∈ R
2×8
>0 and K̄2 = [K21 K22] ∈ R

2×4
>0 . Since (ya21

d(4)(t), ya22
d(2)(t))

have to be well defined, the elevation and internal force trajectories have to be of
class C3 and C1 respectively.

Due to Proposition 8, if the links are bars, it is feasible to pass from compression
to tension and viceversa. Instead, in the case of a cable, it is possible to maintain a
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sufficient value of tension under a maximum breaking value and above the minimum
tautness value.

We remark that, since the total relative degree is equal to the dimension of the
extended state, there is no internal dynamics. This implies that the dynamics of the
pitch of each vehicles is stable during the tracking of the desired output.

Remark (Case of zero thrust) If a particular desired trajectory of the outputs requires
zero thrust on one of the two vehicles the controller cannot be applied, indeed in this
case it has a singularity. Thus, this fact has to be considered in the planning phase in
order to design desired trajectories that ensure strictly positive, or negative, thrusts.
Although this is a planning problem that does not concern this work, we believe
that the problem of zero thrust does not imply a strong limitation on the set of the
feasible trajectories. Indeed, as it is shown inSect. 7.5,we can still generate non-trivial
trajectories, e.g., inversion of the internal link force from tension to compression,
ensuring non zero thrusts. An extended study on the planning of feasible trajectories
is left as future work. �

Looking at the control law described by the Eqs. (7.14) and (7.15), and depicted
in the block diagram of Fig. 7.2, one can notice that its implementation requires the
knowledge of the extended state x̄, the output y and its derivatives (up to the third-
order for ya21 and first-order for ya22). Nevertheless, y and all its needed derivatives
can be calculated as function of x and ū as done, e.g., in (7.8) and (7.13) for some of
the derivatives. Note also that u1 and u̇1 are directly known because they are internal
state of the controller.

7.4 State Estimation

Instead of considering a direct measure of the state to close the control loop, we aim
to find the minimal set of sensors based on which we can obtain an estimation of the
state. Inspired by the results obtained in Chap.4 we consider the possible sensory
setup of Table7.1. In this section, for the case 4 of Table7.1, we present a method to
transform the original measurements into direct measurements of the configuration q
and we show that this implies the observability of the full state, i.e., q and q̇. For this
case we propose a nonlinear estimator, based on the HGO able to retrieve the state
from any dynamic condition. In the end we analyze the applicability of the method
to the other configurations of Table7.1.

7.4.1 Output Transformations

Assume to have an onboard accelerometer for each robot, placed at OBi and attached
to FBi . According to the model in Sect. 3.4, it measures the specific acceleration:
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Table 7.1 Possible sensors configurations. The 1st sensor type corresponds to an accelerometer
mounted on each robot

Case 2nd Sensor type Mounting place Measures ρ1, ρ2 Applicability

1 Absolute Inclinom. FB1 θ1 Yes

Absolute Inclinom. FB2 θ2

2 Absolute Inclinom. FB1 θ1 Yes

Relative Inclinom. FB2 θ1 − θ2

3 Encoder FW − link1 ϕ1 No

Encoder FB1 − link1 ϕ1 + θ1

4 Encoder FW − link1 ϕ1 Yes

Encoder FB1 − link2 ϕ2 + θ1

5 Encoder FW − link1 ϕ1 No

Encoder FB2 − link2 ϕ2 + θ2

6 Encoder FB1 − link1 ϕ1 + θ1 No

Encoder FB1 − link2 ϕ2 + θ1

7 Encoder FB1 − link1 ϕ1 + θ1 No

Encoder FB2 − link2 ϕ2 + θ2

ai = RBi
W (p̈Bi + gzW ) = [

aix 0 aiz
]�

, (7.16)

where RBi
W ∈ R

3 is the rotation matrix from FW to FBi , and p̈Bi is the acceleration
of the CoM of the i th vehicle w.r.t. FW .

Then we assume to be in the case #4 of Table7.1, i.e., the system is equipped with
two encoders, one is rigidly attached to the ground and connected to the first link
and measures its absolute elevation relative to FW , while the second is fixed to FB1

and connected to the second link, and measures its relative elevation with respect to
FB1, i.e.:

ρ1 = ϕ1, ρ2 = ϕ2 + θ1. (7.17)

Now, replacing p̈B2 from (7.2) into (7.16) for i = 2, we obtain

− mR2a2 = RBi
W ( fL2d2 + fR2zB2) = fL2R

Bi
W d2 + [0 0 fR2]�, (7.18)

which allows to define the measurement transformation

[
w1(k)
w2(k)

]
=

⎡

⎢
⎣
sgn

(
k − 1

2

) √
ā22x + ā22z

atan2

(
ā2z

w1(k)
,

ā2x
w1(k)

)

⎤

⎥
⎦ =

[
0

ϕ2 + θ2 + π
2

]
±

[
fL 2
π
2

]
, (7.19)
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where ā2x = mR2a2x , ā2z = mR2a2z + fR2 and k ∈ {0, 1}. Note that [(i)] there are
two solutions for k = 0 and k = 1 because sgn

(
fL2

)
is not retrievable from the

measurements; [(ii)]the transformation is allowed iff fL2 �= 0.
At every time instant t there is only one correct pair of measurements, equal to

( fL2, ϕ2 + θ2), while the other is wrong and equal to (− fL 2, ϕ2 + θ2 + π). We
define k∗ the unique k ∈ {0, 1} such that (w1(k∗), w2(k∗)) = ( fL2, ϕ2 + θ2). Then,
replacing p̈B1 from (7.2) into (7.16) for i = 1, and after some simple algebra, we can
define two additional new measurement transformations:

[
w3(k∗, j)
w4(k∗, j)

]
=

⎡

⎢
⎣

sgn
(
j − 1

2

)√
ā21x + ā21z

atan2

(
ā1z

w3(k∗, j)
,

ā1x
w3(k∗, j)

)

⎤

⎥
⎦ =

[
0

ϕ1 + θ1 + π
2

]
±

[
fL1
−π

2

]
,

(7.20)

where ā1x = mR1a1x − w1(k∗) cos ρ2, ā1z = mR2a1z − w1(k∗) sin ρ2 + fR2 and j ∈
{0, 1}. As in (7.19), the transformation is not possible when fL 1 = 0. A practical
solution for the instantaneous zero internal force case is provided in Sect. 7.4.5.

Since the sign of fL1 is not retrievable from the measurements, we obtain two
solutions parametrized by j , i.e., (w3(k∗, j), w4(k∗, j)). At every time instant t there
is only one correct pair of measurements equal to ( fL1, ϕ1 + θ1), while the other
is wrong and equal to (− fL 1, ϕ1 + θ1 + π). Actually, recalling that also k ∈ {0, 1},
we obtain four groups of different measurements, i.e., (w1(k), w2(k), w3(k, j),
w4(k, j)) with k, j ∈ {0, 1}. We know that at each time t there is only one cou-
ple k∗, j∗ ∈ {0, 1} such that the corresponding measurements are correct, i.e.,
(w1(k∗), w2(k∗), w3(k∗, j∗), w4(k∗, j∗)) = ( fL 2, ϕ2 + θ2, fL 1, ϕ1 + θ1), while all
the others are wrong.

Finally, exploiting the readings of the encoders, we can define the last measure-
ment transformation

η1 = ρ1

η2(k, j) = ρ1 + ρ2 − w4(k, j)

η3(k, j) = w4(k, j) − ρ1

η4(k, j) = w2(k) + w4(k, j) − ρ1 − ρ2.

(7.21)

The transformation method is represented in Fig. 7.3a. From (7.21) one can notice
that for the pair (k∗, j∗) defined before, we obtain a direct measure of the generalized
coordinates, i.e. η(k∗, j∗) = [η1 η2(k∗, j∗) η3(k∗, j∗) η4(k∗, j∗)]� = [η�

1 (k∗, j∗)
η�
2 (k∗, j∗)]� = [ϕ1 ϕ2 θ1 θ2]�. While, for the pairs (k, j) �= (k∗, j∗), η(k, j) is a

wrong measurement of the configuration. From a single set of measures it is not
possible to discriminate which is the correct pair (k∗, j∗) corresponding to the cor-
rect η, nevertheless, in Sect. 7.4.4 we show a discriminating method exploiting the
dynamics, similar to the one proposed in Sect. 4.8.

For the purpose of proving the observability of the system and for designing the
observer we consider η = η(k∗, j∗).
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Fig. 7.3 Graphic representation of the observer. c© 2020 IEEE. Reprinted, with permission,
from [1]

7.4.2 Observability

In order to study the observability of the system and to design an observer of the
state, we first rewrite the system in a state space form. We can rewrite (7.6) and the
measurements function (7.21) as:

ẋ = Ax + B
[
�(x,u1)
J−1u2

]
(7.22a)

η = Cx, (7.22b)

where A = diag(A1,A2,A3,A4), B = diag(B1,B2,B3,B4), C = diag(C1,C2,

C3,C4) and

Ai =
[
0 1
0 0

]
, Bi =

[
0
1

]
, Ci = [

1 0
] ∀i = 1, . . . , 4

�(x,u1) = −M(x)−1c(x) + M(x)−1Q̄ϕ(x)u1. (7.23)

Notice that M(x) is always invertible. Writing (7.22) as ẋ = f(x,u), and η =
h(x). the system results observable if the nonlinear observability matrix O(x,u) =



146 7 Towards Multiple Tethered Aerial Vehicles

[
∂h(x)
∂x

,
∂ḣ(x)
∂x

, . . . ,
∂h(7)(x)

∂x

]�
∈ R

4·8×8 is full rank [3]. We can notice that

O(x,u)1 =
[
∂h(x)
∂x

,
∂ḣ(x)
∂x

]�
= [

C� (CA)�
]�

.

Changing the order of the rows we obtain O(x,u)′1 = I8, that is full rank for every
x ∈ R

8 and u ∈ R
4. This implies that also O(x,u) is always full rank, i.e.,

Proposition Consider the system described by (7.6) with two on-board accelerom-
eters, mounted on each vehicles, and two encoders. One is attached to the ground
and connected to the first link, and one is mounted on the first vehicle and connected
to the second link. Then, the system is observable except for the zero internal force
cases, i.e., fL 1 = 0 or fL2 = 0. �

Although we proved Proposition7.4.2 only for the fourth case of Table7.1, actu-
ally, the result shows a more general sufficient observability condition. Indeed, inde-
pendently from the available sensors,whenever there are someoutput transformations
that translate the original measurements into direct measures of q, then the system
is observable, i.e.,

Proposition Consider the system described by (7.22a) and a set of measurements
w = h(x,u) ∈ R

p, where p ∈ R≥1. DefineX the state space andU the control inputs
space. If there exists a subspace D ⊆ X × U and a measurement transformation
function� : Rp → R

4 valid inD, such that [ϕ1 ϕ2 θ1 θ2]� = �(w), then the system
is observable for every x and u inD, and can be written in the form of (7.22). �

7.4.3 High Gain Observer

For the sets of measurements that fulfill the condition of Proposition7.4.2, and in
particular for the case 4 of Table7.1 we show in this section the design of an observer
based on HGO (see Sect. 2.4).

Considering the system (7.22) we define ζ = [ζ�
1 ζ�

2 ]� = [ζ1 ζ2 ζ3 ζ4]� =
[x1 x2 x3 x4]� and z = [z�

1 z�
2 ]� = [z1 z2 z3 z4]� = [x5 x6 x7 x8]�. The sys-

tem (7.22) can be then written as

{
ζ̇ = Aζ ζ + Bζ�(ζ , η2,u1)
η1 = Cζ ζ

{
ż = Azz + Bzu2
η2 = Czz,

(7.24)

where Aζ = diag(A1,A2), Bζ = diag(B1,B2), Cζ = diag(C1,C2), Az = diag(A3,

A4), Bz = diag(B3,B4)J−1, Cz = diag(C3,C4). Having replaced θ1 and θ2 with
their measures η2 in the dynamics of ζ , the two systems become completely inde-
pendent, moreover, the second one is linear, therefore we can design for it a classical
Luenberger observer
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˙̂z = Azẑ + Bzu2 + Hz(η2 − Czẑ), (7.25)

where Hz = diag(Hz1 ,Hz1) and Hzi = [β i
1 β i

2]�, whose elements, β i
j ∈ R>0 can be

set to place the poles of the error dynamics, ezi = zi − ẑi . Instead, for the first system,
thanks to its particular triangular form, it is possible to use the following HGO

˙̂
ζ = Aζ ζ̂ + Bζ�(ζ̂ , η2,u1) + Hζ (η1 − Cζ ζ̂ ), (7.26)

whereHζ = diag(Hζ 1
,Hζ 1

) andHζ i
= [α

i
1

ε

αi
2

ε2
]�, with ε ∈ R>0, and the gains αi

j ∈
R>0 are set such that the roots of s2 + αi

1s + αi
2 have negative real part. The gains

(αi
1, α

i
2) influence the convergence rate of the estimation of the i th elevation angle

and its derivative, i.e., ϕi and ϕ̇i . A schematic representation of the observer is given
in Fig. 7.3b.

7.4.4 Disambiguation of η

The output transformations described in Sect. 7.4.1 generates four different set of
measurements, η(k, j) with k, j ∈ {0, 1}, of which only one is correct.

As represented in Fig. 7.3a, for each k, j ∈ {0, 1}, we implement an observer of
the state,
k j , using (7.25) and (7.26), based on the measurements η(k, j). Therefore
we obtain four estimates of the state, one for each measurement pair, x̂0,0, x̂0,1, x̂1,0,
x̂1,1, and the correct one has to be recognized.

Define ŵ = [â�
1 â�

2 ρ̂1 ρ̂2]� as the vector that contains the measurements com-
puted with the estimated state, i.e.,

ρ̂1 = x̂1, ρ̂2 = x̂3 + x̂5, âi = R̂Bi
W ( ˆ̈pBi − gzW ),

where R̂Bi
W = RBi

W (x̂), and ˆ̈pBi is calculated considering the system model (i.e., no
numerical differentiation is needed)

ˆ̈pB1 = −l1d1(x̂1)x̂22 + l1d⊥
1 (x̂1) ˆ̇x2

ˆ̈pB2 = ˆ̈pB1 − l2d2(x̂3)x̂24 + l2d⊥
2 (x̂3) ˆ̇x4.

In the previous equations ˆ̇x2 and ˆ̇x4 are the estimation of the angular acceleration of
the elevations calculated replacing the estimated state into (7.23), i.e., [ ˆ̇x2 ˆ̇x4]� =
�(x̂,u1) (no numerical differentiation needed in this case either).

In order to choose the correct estimation among the four, we propose a method
based on the minimal prediction error, similar to the one used in Sect. 4.8. For each
observer we compute a prediction error ẽk, j smoothed with an exponential discount
factor:
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˙̃ek, j = λ(
∥∥w − ŵk, j

∥∥ − ẽk, j ),

where λ ∈ R>0 sets the discount rate and w = [a�
1 a�

2 ρ1 ρ2]�. Then, the estima-
tion of the observer with minimum prediction error is chosen, i.e., x̂ = x̂k∗, j∗ s.t.
{k∗, j∗} = argmink,j∈{0,1}(ẽk, j ). Figure7.3 shows the estimator structure.

7.4.5 Discussion on the Proposed Method

7.4.5.1 Zero Internal Force Case

Aswe previously noticed, if one of the link internal forces is zero thenw2 orw4 cannot
be determined.We noticed an analogous singularity in Sects. 4.7 and 4.8 for the single
tethered system as well. Nevertheless, we showed that if the desired internal force is
passing through zero for a sufficiently short (ideally zero) time interval, one can still
use the proposed observes in practice by updating the filter without the correction
term in that time instants. For the multi-tethered system this implies to impose

˙̂z = Azẑ + Bzu2˙̂
ζ = Aζ ζ̂ + Bζ �(ζ̂ , ẑ,u1)

if w1 = 0 or w3 = 0.

During this instant the observation is done in ‘open loop’ only using the model
dynamics, thus the error dynamics becomes non strictly stable for a short moment.
However, the dynamics returns asymptotically stable as soon as the internal force
becomes non-zero again, as it is shown in Sect. 7.5 by simulations.

7.4.5.2 Applicability

The transformation method showed for the case 4 in Table7.1 can be applied also to
other sets of sensors. Last column of Table7.1 specifies for which cases the method
is able to transform the original measurements into direct measures of the system
configuration. For cases 1 and 2, the measurements transformations are very similar
to those derived for case 4. For the remaining cases it is not possible to apply the
proposed method. In particular for the cases 3, 5, 7 we cannot compute the transfor-
mation (7.20).While, for the case 6, the problem lies in the last transformation (7.21).

7.4.5.3 Loop Stability

For the control law described in Sect. 7.3, the knowledge of the state is sufficient in
order to close the loop. Thus we can use as feedback the state estimation provided
by the proposed observer. Then a similar reasoning to the one in Sects. 4.7 and 4.8
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can be done to prove that there exist a ε∗ such that, for every 0 < ε ≤ ε∗ in (7.26),
the closed loop system with the observer is exponentially stable, except for the zero
thrust and zero internal force cases.

7.5 Numerical Validation

We tested the closed loop system (observer + controller) in simulation using two
aerial robots with mRi = 1 kg and JRi = 0.15 kg m2, and two links with li = 2m
(i = 1, 2). In order to obtain a reasonable fast tracking of the desired trajectories we
set the gains such as the error dynamics relative to ϕ1, ϕ2 and fL1, fL 2 has poles in
(−3,−6,−9,−12) and (−5,−10), respectively.

Regarding the convergence of the state estimation, we set ε = 0.1 and the gains
(αi

1, α
i
2) such as the roots of s2 + αi

1s + αi
2 are (−2,−3). We set Hzi such that the

error dynamics of the estimation of θ1 and θ2 has poles in (−15,−25). Finally, the
discount rate of the prediction error dynamics is set to λ = 20. These gains values,
replicated identically for each of the four observers, guarantee the stability of the
closed-loop system.

To show the ability of the proposed observer to exponentially converge to the real
state, we initialize it with an error of 5◦ relatively to the elevation and pitch angles.
We propose two different simulations:

(i) the first, whose results are plotted in Fig. 7.4, shows the performances of the
global closed loop system in the particular case of inversion of the internal force.
In particular, the trajectory of the end-effector is a trajectory of class C3 from
the initial position pB2(0) = [2.5 0 2]T to the final pB2(t f ) = [−0.7 0 0.7]T .
While the desired internal force along the links is a trajectory of class C1 from
the initial tension of 10N to the final compression of −10N.

(ii) In the second simulation, reported in Fig. 7.5, we replicate a plausible real sce-
nario where the system is controlled as a two-link robot. The desired trajectory
of the end-effector is planned in the Cartesian space as a sequence of three arcs
of ellipse in order to enter, stop on each room of a plausible building, and then
return to the initial position. By inverse kinematics the desired trajectories of
the two elevations are derived. In the meanwhile a constant tension of 5N is
required on the two links for the hole duration of the task.

To better represent the behavior of the system, Figs. 7.4c and 7.5c show the stro-
boscopic evolution of the system where the flow of time is provided by the change
of color. To graphically represent the internal force variation, the link is drawn as a
dashed line with a thinner width when the tension is higher, and as a solid line with
a wider width when the compression is higher.

From Figs. 7.4 and 7.5 one can notice that the estimation of the state converges to
the real one in less than one second, in any dynamic condition. Moreover, for the first
simulation, the prediction error does not increase evenwhen the desired internal force
passes through zero. Although during the transient of the estimation the controller
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Fig. 7.4 Simulation results: point to point motion. c© 2020 IEEE. Reprinted, with permission,
from [1]
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Fig. 7.5 Simulation results: example of a search and rescue task. c© 2020 IEEE. Reprinted, with
permission, from [1]
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shows a non zero tracking error, actually, as soon as the estimation error goes to zero,
the outputs follow the desired trajectory with high fidelity during the remaining time
of the simulation. An animation of the simulations is also available at [4].
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