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A numerical-analytical approach to determining the real contact area of rough
surface contact
Can Wang and Dik J. Schipper

Department of Engineering Technology, Laboratory for Surface Technology and Tribology, University of Twente, Enschede, Netherlands

ABSTRACT
The objective of this study is to improve the accuracy of the real contact area calculated by the
semi-analytical method (SAM). Two types of surface pairs are investigated: an analytically
generated sinusoidal wavy surface against a rigid flat, and a pair of real rough surfaces. The
results suggest that the real contact area calculated by the SAM is extremely sensitive to the
resolution of input, i.e. the grid size. The SAM results of the real contact areas show poor
convergence, especially in the case of the real rough surfaces. The main reason for this
difference is the ‘over-covering’ effect when SAM calculates the real contact area. An
exponential extrapolation technique is proposed to predict the real contact area values when
further refinement of the grid resolution is unfeasible.
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1. Introduction

Contact between rough surfaces has long been a matter
of concern in tribology. Accurate characterization of
the contact pressure and the real contact area in
rough surface contacts are desired because of their link-
age to the tribological performances. Both contact
pressures and real contact areas are considered essen-
tial factors of dry friction mechanisms [1]. Further,
stresses generated by contact pressures are crucial for
common wear mechanisms including abrasive and fati-
gue wear [2]. Therefore, obtaining information of real
contact areas and contact pressures will contribute to
the theoretical estimates of friction and wear. While
‘in-situ’ measurements of contact pressure and real
contact area by experiments are still difficult [3],
numerical simulations are extensively employed to per-
form a rough surface contact analysis, thanks to their
flexibility and versatility.

The semi-analytical method (SAM) provides an
effective approach in numerically solving contacts of
rough surfaces. With the acceleration techniques of
fast Fourier transform (DC-FFT) and the conjugate
gradient method [4], SAM is applied to solve various
rough surface contact problems efficiently by feeding
in different analytical solutions. With Love’s equation
[5], the simple homogeneous elastic contacts were
solved by Bjorklund and Andersson [6]. By applying
O’Sullivan and King’s solution of layered structure
[7], Nogi and Kato [8] solved the elastic single-layered
contact, Cai and Bhushan [9] solved the elastic bi-
layered contact, and Yu et Al. [10] further solved the

elastic contact of materials with arbitrary number of
layers. Jacq et al. [11] extended the SAM to solving
elasto-plastic contact with the help of Chiu’s analytical
solution of eigenstrains [12,13]. With the same analyti-
cal solutions, a series of contact between materials with
inclusions were also considered [14,15,16]. Despite the
versatility in dealing with variety of contact types, SAM
is also efficient in computational time. As opposed to
the finite element method, which needs a very fine
mesh and a large calculating domain, SAM requires
the computation to be made only on the contact
domain involved [4]. Due to these advantages, SAM
is extensively employed in a variety of cases to under-
stand the complicated tribological phenomena includ-
ing running-in [17–19], fretting [20–22] and partial-
slip [23–25] based on the rough surface contact
calculation.

As a numerical method, SAM requires discretized
surface geometry data as input. However, a dilemma
is encountered when choosing the resolution of input
data to model rough surface contacts. On one hand,
the resolution of the surface inputs should be high
enough to accurately model the real rough surface
contact. It has long been known that material sur-
faces consist of molecular and super-molecular struc-
tures. Sizes of asperities can be as small as nanoscale
(∼10 nm). Under certain circumstances, the local real
contact area can be extremely small when single
asperity contacts are formed. In such cases, high res-
olution of the surface inputs should be applied so
that these small asperities can be accurately depicted.
However, very high resolution of input is not always
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feasible due to the computational costs of SAM algor-
ithms. For a simple elastic contact calculation, the
complexity of the SAM algorithm is O(N(logN)2)
and the memory consumption is O(N2) [4],
suggesting that doubling the input resolutions in
both x and y directions means eight times more cal-
culating time and four times more memory demands.
For some elasto-plastic contact cases, the complexity
will be even dramatically higher because the calcu-
lation domains are 3D instead of 2D for the simple
elastic contact cases. Wang et al. reported an
864MNL*ln(8MNL) +432MNL*ln(4MN) complexity
for an algorithm solving an arbitrarily shaped
inclusion in an elasto-plastic contact [26]. Therefore,
compromises on input resolutions sometimes have to
be made in order that calculations can be completed
within a reasonable time duration.

Owing to this conflict, the effects of input surface
resolution on the accuracy of SAM results need to
be examined carefully. A sensitivity study is there-
fore necessary. In this article, the sensitivity on the
maximum contact pressure and real contact area
results with respect to the resolution of surface
inputs are studied. First, the contact between an
analytically generated wavy surface and a rigid flat
are studied and compared with the analytical sol-
ution. The investigation is then extended to a real
surface contact by studying the contacts of a
steel ball and a grinded flat before and after
running in.

2. Theory and methods

In this section, a SAMmodel for the rough surface con-
tact with normal load is presented, allowing the
pressure distribution and real contact area to be
calculated.

First, a reference coordinate system is introduced, as
shown in Figure 1. For simplicity but without loss of
generality, a contact of an elastic object loading on a
rigid flat is considered,

where: F is the normal load applied; p is the contact
pressure distribution due to the load; u is the surface
displacement due to contact pressure; h is the initial

surface separation relative to the initial undeformed
geometry; δz is the rigid body movement.

In the whole domain in which contact and noncon-
tact areas both exist the following Kuhn–Tucker comp-
lementary conditions hold:

u+ h = dz where p . 0 (1)

and

u+ h . dz where p = 0 (2)

Formula (1) indicates that in the contact area surface
separation must be zero (no penetration). In the non-
contact areas, however, surface separation should be
greater than zero, which is shown in formula (2).

To solve this problem numerically by the semi-
analytical method, the whole domain, including both
the contact and non-contact area, is firstly discretized
into m*n grids, where each grid has a size of 2a*2b
(Figure 2).

The equation can be further re-written in discretized
manner:

∀ (i, j) [ I,

uij + hij = dz (i, j) [ Ic (3)

and

uij + hij . dz (i, j) � Ic (4)

Where represents the whole calculating domain and Ic
represents the real contact area where pij . 0.

In order to solve the pressure distribution pij, it is
necessary to link uij to pij. Here the analytical solution
of Love for normal deflections under a uniform normal
pressure [5] is introduced:

uij, kl = Ki−j, k−l∗pkl (5)

where uij,kl is the deflection in grid (i, j) caused by the
contact pressure in grid (k, l), and the coefficient

Figure 1. Schematic of the contact. Figure 2. Schematic of domain discretization.
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Ki−j, k−l written as:The total deflection uij is the sum of
all the contact pressure contributions in the calculating
domain. Now the Equations (3) and (4) can be written
as follows

∑
(i,j)[Ic

Ki−j, k−lpkl + hij = dz (7)

∑
(i,j)�Ic

Ki−j, k−lpkl + hij . dz (8)

This is a set of linear equations with the pressure distri-
bution being explicitly included as unknowns, which
can be efficiently solved by the conjugate gradient
method proposed in the literature [4].

First, a guess pressure distribution is made, and then
the following iteration steps from (1) to (5) will be
performed:

(1) update the gap

gij = − ∑
(i,j)[I

Ki−j, k−lpk,l − hij (9)

�g = 1
Nc

∑
(k,l)[Ic

gkl (10)

gij = gij − �g (i, j) [ I (11)

(2) calculate the new conjugate direction

G = ∑
(k,l)[Ic

g2ij (12)

tij = gij + d
G
Gold

( )
tij (i, j) [ Ic (13)

tij = 0 (i, j) � Ic (14)

(3) calculate the new descending step length

rij =
∑

(k,l)[G

Ki−j, k−ltkl (i, j) [ I (15)

�r = 1
Nc

∑
(k,l)[Ic

rkl (16)

rij = rij − �r (i, j) [ I (17)

t =
∑

(k,l)[Ic gijtij∑
(k,l)[Ic rijtij

(18)

(4) update the pressure distribution, enforce the
inequalities and force balance

pij = pij − t∗tij (i, j) [ Ic (19)

Iol = {(i, j) [ I: pij = 0, gij , 0} (20)

pij = pij − t∗gij (i, j) [ Iol (21)

F′ = a∗b∗ ∑
(k,l)[I

pij (22)

pij = F′

F

( )
∗pij (23)

(5) check the relative error

1 = a∗b∗ ∑
(i,j)[I

| pij − poldij | (24)

If 1 . 10, where 10 is the preset tolerance, another
iteration will be performed starting from step (1).
Otherwise, the iteration stops and the current pij results
are the pressure distribution desired. The real
contact area can also be acquired by counting the
area where pij . 0.

(x, y are the horizontal and vertical distance from (k, l) to (i, j), see Fig.2 )

Ki−j, k−l = 1− n

2pG
∗

(x + a)∗ln
y + b+

���������������������
(y + b)2 + (x + a)2

√

y − b+
���������������������
(y − b)2 + (x + a)2

√ + (y + b)∗n
x + a+

���������������������
(y + b)2 + (x + a)2

√

x − a+
���������������������
(y + b)2 + (x − a)2

√

+(x − a)∗ln
y − b+

���������������������
(y − b)2 + (x − a)2

√

y + b+
���������������������
(y + b)2 + (x − a)2

√ )+ (y − b)∗ln
x − a+

���������������������
(y − b)2 + (x − a)2

√

x + a+
���������������������
(y − b)2 + (x + a)2

√ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)
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3. Results and discussions

3.1. Wavy surfaces

In this part, the analysis is conducted on the contact
between an elastic sinusoidal wavy surface and a rigid
flat, with different nominal contact pressures. The
maximum contact pressure and real contact area are
calculated both analytically and by the SAM model
with different resolutions of input. The results are
compared and the errors of the SAM results as a func-
tion of the resolutions of input are investigated and
discussed.

An elastic sinusoidal waviness was considered, see
Figure 3. The geometric shape of the sinusoidal wave
is defined by Equation (25), which is also illustrated
in the literature [27].

z(x, y) = D1 cos
2px
l1

( )
+ D2 cos

2py
l2

( )
(25)

where D1, D2 and l1, l2 are amplitudes and wave
lengths in x and y directions,

D1 = D2 = 0.5 mm, l1 = l2 = 12.5 mm

The size of the wavy surface is 250 μm*250 μm,
while there are 20 waves in both x and y directions.

The elastic modulus of this wavy surface is set to 210
GPa, the same as steel. Elastic contacts between this
surface and a rigid flat are considered. The three nom-
inal contact pressures (�p) used are 50, 100 and 200
MPa.

The analytical solutions of maximum contact
pressure and real contact area are given in [27]:

pmax = 3�p

2p
3
8p

�p
p∗

( )2/3 (26)

and

Areal

Anominal
= p

3
8p

�p
p∗

( )2/3

(27)

while �p is the average nominal pressure, and p∗ is
defined as:

p∗ = 2pE∗D/l

and E∗ is the reduced elastic modulus:

1
E∗ =

1
E1

+ 1
E2

For the SAM calculations, the wavy surface is
meshed into six different grid sizes: 64*64, 128*128,
256*256, 512*512, 1024*1024 and 2048*2048 as
input. Then the contacts are solved by the method
described in Section 2. The results of real contact
area ratios and maximum contact pressures are pre-
sented in Tables 1 and 2 and Figure 4.

Figure 3. The sinusoidal wavy surface: (a) 3D view; (b) cross-section view.

Table 1. Analytical and SAM results of the maximum contact
pressures under different nominal load.

Nominal
pressure (MPa)

Analytical
solution (GPa)

SAM solution

Error
(%)Grid size

Result
(GPa)

50 10.52 64*64 3.719 64.7
128*128 5.637 46.4
256*256 8.645 17.9
512*512 11.42 8.5
1024*1024 10.57 0.5
2048*2048 10.54 0.22

100 13.26 64*64 5.056 61.8
128*128 7.888 40.5
256*256 13.42 1.3
512*512 13.81 4.2
1024*1024 13.34 0.6
2048*2048 13.25 0.07

200 16.71 64*64 6.872 58.9
128*128 11.74 29.7
256*256 18.34 9.8
512*512 17.04 2.0
1024*1024 16.73 0.2
2048*2048 16.67 0.2
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Clearly, the accuracy of the SAM results is sensitive
to the resolutions of input: the higher the input resol-
ution is, the smaller the relative error will be. Both
maximum contact pressures and real contact areas
converge to the analytical solution when the input

resolutions go high. However, it is worth noting that
the converging rate of the contact pressures and real
contact areas are significantly different. Take the 100
MPa case for example: both starting from very large
errors for the 64*64 case, the maximum contact
pressure can be predicted by SAM with rather satisfac-
tory accuracy under the resolution of 256*256 (1.26%
relative error in comparison with the analytical sol-
ution), while the real contact area result under the
same resolution is rather poor (48.4% relative error).
Even with the highest input resolution of 2048*2048,
the relative error of the real contact area remains
4.61%, in contrast to the 0.07% for the maximum con-
tact pressure. Similar trends are also observed in the
cases with other nominal contact pressures.

This phenomenon is caused by the different ways
SAM calculates the contact pressure and real contact
area. The contact pressures are calculated directly by
SAM, as described in Section 2, while the errors
come mainly from the inadequate input information.
This issue can be resolved by increasing the resolution
of input. The calculation of the real contact area is,
however, indirect: the algorithm first determines the
contact pressures on each grid, and the grids with

Figure 4. Relative errors of the SAM results compared with the analytical solutions with different nominal loads: (a) 50 MPa; (b) 100
MPa; (c) 200 MPa.

Table 2. Analytical and SAM results of the real contact area
ratio under different nominal load.

Nominal pressure
(MPa)

Analytical
solution (%)

SAM solution

Error
(%)Grid size

Result
(%)

50 0.713 64*64 2.734 283.7
128*128 1.733 143.2
256*256 1.221 71.3
512*512 0.868 21.8
1024*1024 0.787 8.5
2048*2048 0.750 5.3

100 1.131 64*64 3.809 236.6
128*128 2.441 115.8
256*256 1.678 48.4
512*512 1.326 17.2
1024*1024 1.228 7.9
2048*2048 1.184 4.6

200 1.796 64*64 5.469 204.5
128*128 3.222 79.4
256*256 2.289 27.4
512*512 2.055 14.5
1024*1024 1.932 7.5
2048*2048 1.875 4.4
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non-zero contact pressures will be marked as ‘in con-
tact’. Then the contact area will be calculated by the
total area of the grids in contact. However, using rec-
tangle grid size, the grids will usually overly cover the
contact boundaries. This ‘over covering’ effect leads
to larger errors in calculating the real contact area
values.

An elaborated demonstration is presented in
Figure 5, which gives a close look at the calculated
results of local contact on a single summit of the
wavy surface, under 100 MPa nominal contact
pressure. The resolutions of input being used are
256*256, 512*512, 1024*1024, 2048*2048 respectively.
It appears that with low input resolution (256*256)
while the grid sizes are large, the over-covering effect
is quite severe (Figure 5(a)). In this case, a rectangle
shape is considered by SAM as the real contact in
this spot, while the actual contact area shape is a circle.
Consequently, a large error occurs here. With higher
input resolutions, the sizes of grids become smaller,
the over-covering effect become less severe, and more
accurate coverages are achieved (Figure 5(b–d)). This
provides a greater accuracy of the numerical results.
Note that this over-covering effect only exists in calcu-
lating the real contact area, while the calculation of the
contact pressures is hardly affected by this. The effect of
this is that SAM shows much higher sensitivity to input
grid size when calculating the real contact area than the
contact pressure.

It should be noted that a resolution of 2048*2048 is
quite high, thus may not be feasible in some situations.
Usually, much lower resolutions are applied in contact

analyses [14–26]. Therefore, it is possible that the cal-
culated real contact areas by SAM are not reliable in
many cases due to the inadequate resolutions of input.

An extrapolation method is proposed to acquire
more accurate contact areas when further improving
the input resolution is impossible or inconvenient. A
three-parameter decayed exponential formula is used
to fit the data points:

A = ke
−
x
t + A0

(28)

In this formula, A is the real contact area calculated by
SAM, x is the number of grids in x or y direction, and k,
t and A0 are the three fitting parameters. The term

ke
−
x
t can be regarded as the error term caused by

the over-covering effect. When the resolution term x
goes larger, the value of this term will decrease, and
eventually converge to zero when the grid size goes
to infinite. Then the term A0 will be the predicted
real contact area.

This technique is applied to the real contact area
results of the wavy surface, see Figure 6. The exponen-
tial functions achieve satisfactory fitting accuracies for
all three contact cases. For each data set, the six data
points fall fairly close to the fitting curve. In addition,
the fitting curves converge accurately to the analytical
solution. See Table 3.

Based on the former discussion, it can be concluded
that real contact area results are more sensitive to the
resolutions of input surface, and therefore deserve
extra attention. Exponential extrapolation can be
employed to predict the real contact area value based
on a series of results from different input resolutions.
This technique can be further applied to the real

Figure 6. Exponential extrapolation of real contact area of the
wavy surfaces.

Table 3. Comparison of extrapolation results and analytical
results.
Nominal pressure
(MPa)

Analytical
solution

Extrapolation
results

Error
(%)

50 0.713 0.714 0.14
100 1.131 1.137 0.45
200 1.796 1.838 2.33

Figure 5. SAM results of real contact areas with different res-
olutions of input (yellow grids are in contact and blue grids
are not in contact): (a) 256*256; (b) 512*512; (c) 1024*1024;
(d) 2048*2048.
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rough surface contact calculation, which is elaborated
in the following subsection.

3.2. Real rough surfaces

In this subsection, the elasto-plastic contact between a
5 mm radius ball and a grinded ring (Figure 7) is
studied to investigate the sensitivity of the SAM results
with respect to the resolutions of input. Both the ball
and the ring are made of 52100 bearing steel. The
mechanical properties are shown in Table 4.

Two surface conditions are considered: before and
after running in. The running in process was carried
out by a pin on disk testing machine. The surface
data were acquired by a confocal microscope SENSO-
FAR S Neox. The measuring domains are originally
264.2 μm*264.2 μm, with 2048*2048 grid size, as pre-
sented in Figures 8 and 9.

In order to investigate the effect of resolution, the
surface data are scaled into five different lower resol-
utions 64*64, 128*128, 256*256, 512*512, 1024*1024

Figure 7. Ball and flat surfaces samples.

Table 4. Mechanical properties of 52100 steel.
Parameter Value

Elastic modulus (GPa) 210
Poisson’s ratio 0.3
Hardness (GPa) 6

Figure 8. Surface profiles of samples before running in: (a) the ball; (b) the ring.

Figure 9. Surface profiles of samples after running in: (a) the ball; (b) the ring.
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by the bilinear scaling algorithm. Together with the
original 2048*2048 data, six different resolutions of
input are acquired. Three different normal loads are
applied, which are 2.5, 5 and 10 N, respectively. Con-
sidering the elasto-plastic property of the material,
the maximum contact pressure is set to 6 GPa, the
same as the hardness. A single elastic-perfect-plastic
curve is employed in the calculation.

The calculated real contact areas with different sur-
face input grid sizes are shown in Figure 10. The results
indicate that, for the samples before running in, the real
contact areas converge relatively well while, for the
samples after running in, the results show substantial
differences even with high input resolutions. Therefore,
the accuracies of the calculated real contact area values
remain questionable.

The real contact areas are predicted by the fitting
technique proposed in subsection 3.1, see Figure 11.
The results show that, for both cases, the results from
the different input resolutions fall on the exponential

curves nicely. The predicted results are compared
with the SAM results with the highest resolution
(2048*2048) in Table 5.

The extrapolation results confirm the concerns: for
the case after the running in, the SAM results do not
converge well even with the highest input resolution.
This issue is particularly severe for the contact with
10 N normal load: the data point is obviously deviated
from the converging line. A 20.8% of difference is
observed between the SAM result and the predicted
result of extrapolation.

Figure 10. Real contact areas calculated by SAM with different resolutions of input: (a) before running in; (b) after running in.

Figure 11. Exponential extrapolation of real contact areas of the samples: (a) before running in; (b) after running in.

Table 5. Comparison of real contact areas: SAM results and
extrpolation results of samples.

Samples
Normal
load (N)

SAM results
(2048*2048)

Extrapolation
results

Error
(%)

Before
running
in

2.5 540.1 509.9 5.9
5 1126.2 1063.1 5.9
10 2301.2 2159.6 6.6

After
running
in

2.5 613.9 538.3 14.1
5 1262.4 1086.9 16.2
10 2597.1 2149.2 20.8
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This phenomenon can also be explained by the
over-covering effect. The contact pressure distributions
of both cases with 10 N normal load are plotted in

Figure 12 (2048*2048 in resolution). For the contact
of samples after running in, the contact pressure distri-
bution is more dispersed. This leads to more local

Figure 12. Contact pressure distribution of the samples: (a) before running in; (b) after running in.

Figure 13. Local contact results calculated with different input resolutions: (a) 256*256; (b) 512*512; (c) 1024*1024; (d) 2048*2048.
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contacts with very small contact areas. For these small
local contact areas, the grid sizes being used are not
small enough to precisely cover the boundary and
therefore lead to a severe over-covering effect.

A close look at one of the local contacts is taken in
Figure 13. The calculated results with different input
resolutions (256*256, 512*512, 1024*1024,
2048*2048) are shown. These two adjacent contact
areas are small in area (∼1 μm*1 μm). For the
256*256 case (Figure 13(a)), only two grids are
included, which leads to a very coarse covering. A
severe over-covering effect occurs and a very large
error will occur. With an increase of input grid size, a
finer and finer covering is achieved (Figure 13(b–d)).
As can be easily seen, the calculated contact areas are
decreasing. However, even in the highest resolution
(2048*2048) case, there is still only a very limited num-
ber of grids included in the contact area, and the
boundaries of contact are still relatively coarse. There-
fore, the over-covering effect is probably still substan-
tial. This causes the 20.8% difference between the
SAM result and predicted result of extrapolation.

4. Conclusions

We have demonstrated, for the first time, the sensitivity
of SAM results of rough surface contact to the resol-
utions of input. The primary conclusions are summar-
ized below.

(1) Compared to the maximum contact pressure, the
real contact area results calculated by SAM are
particularly sensitive to the input grid size of the
surfaces. The converging rates of the real contact
area results are significantly lower than the maxi-
mum contact pressure results.

(2) An over-covering effect occurs when SAM calcu-
lates the real contact area. This is the main reason
for the high sensitivity of the real contact area
results to the resolutions of input. The rectangle-
shaped grids usually overly cover the boundaries
of the contact area. The larger the size of the grid
is, the more severe this effect will be.

(3) In real rough surface contacts, the ‘over-covering’
effect of SAM can be severe, especially in the
cases where the contact pressures are distributed
dispersedly. In these cases, local contact areas are
quite small: similar or even smaller than the size
of the grids. As a consequence, the calculated
real contact area may significantly deviate from
the real values.

(4) The exponential extrapolation can be employed to
predict the real contact area, when further
improvement the grid size of input is difficult.
This method depends solely on the inputs, i.e.
the calculation results from coarser meshes.

Therefore, it is suggested that feasibly finer meshes
should be used.
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