
Chapter 2
Theoretical Background

2.1 Modeling

The major two methodologies normally employed to compute the dynamic model of
a mechanical system are the Lagrangian and the Newton-Euler formalisms. The two
methods are equivalent and obviously lead to the same outcome, but the practical
procedure is quite different. Furthermore, they could give different insights about the
system and its properties.

The first, the Lagrangian formalism, is a systematic and elegant approach to derive
the analytical dynamic equations describing the model of the system, independently
from the reference frame. In particular, choosing a proper set of generalized coordi-
nates and simply computing the kinematics and potential energies, the Lagrangian
formalism allows to compute the dynamic equations, naturally including system
constraints and reaction forces. Nevertheless, notice that it becomes unpractical for
complex system with many degrees of freedom.

On the other hand, the Newton-Euler method is an efficient and recursive method,
especially suited for manipulators with an open kinematic chain and complex sys-
tems. It treats each joint of a robot as an independent part, and then computes the
coupling between them using the so called forward-backward recursive algorithm.
However, a particular attention has to be taken for constrained systems. Indeed one
has to explicitly consider reaction forces related to system constraints.

In the following we recall the basis of the two methods, mostly from a practical
point of view, and the particular remarks and considerations made during this thesis.
Fore more details we refer the interested reader to [2–5].

2.1.1 Lagrange Formalism

The fist step consists on choosing a set of independent coordinates q = [q1 . . . qn]�
∈ R

n , called generalized coordinates. Those fully describe the configuration of the

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2021
M. Tognon and A. Franchi, Theory and Applications for Control of Aerial Robots
in Physical Interaction Through Tethers, Springer Tracts in Advanced Robotics 140,
https://doi.org/10.1007/978-3-030-48659-4_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48659-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-48659-4_2


16 2 Theoretical Background

system and its n ∈ N>0 degrees of freedom. Accordingly to the chosen general-
ized coordinates, we can then compute the generalized forces acting on the system.
Consider a set of forces f = [f�

1 . . . f�
m ]� ∈ R

3m , where the generic force fi ∈ R
3

is applied on the system at point ri ∈ R
3, with i = 1, . . . ,m and m ∈ N≥0. We can

then compute the generalized force ξ j (f,q) ∈ R w.r.t. the j th generalized coordinate
q j as:

ξ j (f,q) =
m∑

i=1

f�
i

∂ri
∂q j

, j = 1, . . . , n. (2.1)

We can now define the Lagrangian function,L(q, q̇), equal to the difference of total
kinetic energy, K(q, q̇), and potential energy, U(q, q̇), i.e., L(q, q̇) = K(q, q̇) −
U(q, q̇). Finally, the equation of motions of the system are given by the following
Lagrange equations:

d

dt

∂L(q, q̇)

∂q̇ j
− ∂L(q, q̇)

∂q j
= ξ j (f,q), j = 1, . . . , n. (2.2)

For the type of mechanical systems under exam, the potential energy usually
corresponds to the sole gravitational potential energy, and the kinematic energy can
be computed as a quadratic form,K(q, q̇) = 1

2 q̇
�M(q)q̇, whereM(q) ∈ R

n×n is the
inertia matrix of the system. The equations of motion in (2.2) can be then rewritten
in the more usual form:

M(q)q̈ + C(q, q̇)q̇ + g(q) = ξ(f,q), (2.3)

where C(q, q̇)q̇ contains the centrifugal and Coriolis terms, while g(q) contains the
gravitational terms, and ξ(f,q) = [ξ1(f,q) . . . ξn(f,q)]� ∈ R

n .

Remark The inverse dynamics problem consists into computing the generalized
forces ξ(f,q) given a certain motion expressed in terms of q̈, q̇ and q. Considering
the generalized forces as inputs and the motion as output, this problem is equiv-
alent to the control problem, i.e., compute certain inputs to obtain certain desired
outputs. Given the analytic expression of the dynamic model (2.3), the Lagrangian
formalism is often used to solve the inverse dynamics problem, and thus the control
problem. �

2.1.2 Newton-Euler Formalism

The Newton-Euler formalism is based on two recursive steps: (i) forward recursion,
and (ii) backward recursion.

The first forward recursion is done to propagate the links velocities and accelera-
tions from the first link to the final one. The translational and rotational velocities and
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acceleration of the i th link are computed based on the one of the previous (i − 1)th
link and on the i th joint, according to its type (either prismatic or revolute). The
method is repeated for all the links starting from the base link, of which we know
velocities and accelerations, up to the last one.

The second backward recursion propagates forces and moments from the last
link to the first one. Knowing the force and moment applied to the (i + 1)th link,
we compute the one applied to the i th link resolving the Newton-Euler equations.
Defining fi ∈ R

3 and τ i ∈ R
3 the force and moment acting on the i th link at position

ri ∈ R
3 (analogously for the (i + 1)th link), we have to solve the balance equations

of forces and moments at the i-link w.r.t. the i th link frame:

fi = fi+1 + miai + migi (2.4a)

τ i = τ i − fi × ri + fi+1 × ri+1 + Ji ω̇i + ωi × Jiωi , (2.4b)

wheremi ∈ R>0 and Ji ∈ R
3×3
>0 are the mass and inertia1 of the i th link, ai ∈ R

3 is its
linear acceleration, ωi ∈ R

3 and ω̇i ∈ R
3 are its angular velocity and acceleration,

respectively, and gi ∈ R
3 is the gravity vector. Notice that all the previous quantities

are defined w.r.t. the i th link frame. The method is repeated for all the links starting
from the final one, whose external forces and moments are known, back to the first
one.

Finally one could retrieve a closed form dynamic model, like the one in (2.3),
resolving all together the forward and backward equations. However, doing it ana-
lytically might not be an easy task. We skip the detailed equations because of their
complexity. Nevertheless, we refer the interested reader to the well known books [2–
5].

2.1.3 Rigid Body Dynamics

In view of the fact that an aerial vehicle is often modeled as a rigid body, it is conve-
nient here to review the dynamicmodel of such a basic element. A free rigid body, i.e.,
not subjected to constraints, has six degrees of freedom: three translational and three
rotational. Let us assign an inertialword frame,FW with arbitrary center OW and axes
{xW , yW , zW }, and a body frame, FB , rigidly attached to the object, with center OB

centeredon thebody center ofmass (CoM), and axes {xB , yB, zB}. It is useful to notice
here that xWW = e1 = [1 0 0]�, yWW = e2 = [0 1 0]� and2 zWW = e3 = [0 0 1]�. The
three translational degrees of freedomaredescribedby thepositionofOB with respect
to FW , in turn described by the vector3 pW

B ∈ R
3. The description of the remaining

1The notation R
n×n
>0 denotes the set of positive-definite real matrices, i.e., R

n×n
>0 = {A ∈

R
n×n | x�Ax > 0 ∀ x ∈ R

n}.
2More in general, ei ∈ R

3 is the canonical vector with 1 in position i th and zero otherwise.
3In this thesis, the superscript is used to indicate the frame of references. When not present, FW
has to be intended as the reference frame, if not otherwise specified.
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three orientation degrees of freedom is a bit more delicate because there are several
possible representations [3, 4, 6]. The most popular and used are:

• The exponential coordinates are a minimal three-parameter representation of rota-
tions which define an axis of rotation and the corresponding angle of rotation.
However, combinations of rotations is not straightforward and the axis of rotation
is undetermined when the angle of rotation goes to zero.

• The Euler-angles is another minimal three-parameter representation of rotations.
It is also very intuitive, since it is based on three successive rotations about the
main axes of the body frame. One of the most popular convention in the aeronautic
field consists in successive rotations along the moving axes zB , yB and xB (in this
order) about the angles ψ , θ and φ (Yaw-Pitch-Roll) respectively.4 However, this
representation has a singularity. To avoid singularities at the control level, we will
use this convention only to represent rotations in plots.

• The rotation matrix,5 RW
B ∈ SO(3), unequivocally describes the rotation of FB

w.r.t.FW . Although this representation has no singularities, it is actually redundant
since nine elements describe only three degrees of freedom. Nevertheless, it eases
the operations to rotate vectors and to combine rotations. These facts together
with the absence of singularities make this representation the preferable for the
design of controllers for aerial vehicles. This is why, in this thesis, we will always
describes rotations by rotation matrices.

• The quaternions represent rotations by a normalized four-dimensional vector, i.e.,
four variables subjected to one constraint. In this way, the quaternion parametriza-
tion does not have singularities. This parametrization is also very popular for it
efficiency in terms of computational cost. However, in this thesis we still prefer
rotation matrices for their simplicity. This will clearly appear in Chap. 4.

Choosing pW
B and RW

B to describe the rigid body configuration, we can write the
dynamics as in (2.4), using the Newton-Euler approach:

mp̈W
B = −mge3 + f (2.5a)

Jω̇B
B = −ωB

B × JωB
B + τ , (2.5b)

where m ∈ R>0 and J ∈ R
3×3
>0 are the mass and inertia of the rigid body w.r.t. FB ,

p̈W
B ∈ R

3 is its linear acceleration, ωB
B ∈ R

3 and ω̇B
B ∈ R

3 are its angular velocity and
acceleration w.r.t. FW expressed in FB , respectively, g ≈ 9.81 is the gravitational
constant, f ∈ R

3 and τ ∈ R
3 are the sum of forces and moments applied to the

body CoM, respectively. Furthermore we recall the differential kinematic relation
ṘW

B = RW
B �B

B , where �� is the skew symmetric matrix associated to ω�.

4Notice that this representation is equivalent to the classical Roll-Pitch-Yaw representation. The
latter consists in successive rotations along the fixed axes xB , yB and zB (in this order) about the
angles φ, θ and ψ respectively.
5SO(3) = {R ∈ R

3×3 | R�R = I3} where In is the identity matrix of dimension n. SO(3) is also
called special orthogonal group.
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As seen before, when it comes to model a floating vehicle, the use of rotation
matrix representation and Newton-Euler method is really convenient. The Lagrange
method would have instead required the use of minimal representation for the orien-
tation. Nevertheless, as previously said, Newton-Euler method is not favorable in the
presence of constraints and reaction forces. Therefore, the approach employed in this
thesis tries to exploit the good features of both Lagrangian and Newton-Euler meth-
ods. In particular, in order tomodel a tethered aerial vehicle, in Sect. 4.3 we firstly use
the Lagrangian formalism to identify the most convenient generalized coordinates
describing the translational dynamics of the vehicle subjected to the constraint given
by the link. We instead used a rotation matrix for the description of the attitude.
Afterwards, we applied the Newton-Euler method to retrieve the dynamics of the
system and the analytical expression of the internal force. Since one of the control
objectives is the precise control of the internal force, the analytical expression will
be useful to design a tracking controller based on dynamic feedback linearization.

2.2 Differential Flatness

For the analysis of nonlinear dynamic systems, one important property to verify
is the differential flatness. This property was firstly introduced by Michel Fliess in
the late 1980s, and then exploited in many other works for the control of nonlinear
systems [7–9]. The formal definition of a differentially flat systems follows:

Definition A system ẋ = f(x,u) with state vector x ∈ R
n and input vector u ∈ R

m ,
where f is a smooth vector field, is differentially flat if it exists an output vector
y ∈ R

m , called flat output, in the form:

y = h(x,u, u̇, . . . ,u(q)) (2.6)

such that

x = gx(y, ẏ, . . . , y(r)) (2.7)

u = gu(y, ẏ, . . . , y(r)) (2.8)

where6 h, gx and gu are smooth functions, for some finite r ∈ N≥0. �

The previous definition means that for a differentially flat system, we can express
the state and the input vectors as an algebraic function of the flat output vector and
its derivatives, up to a finite order.

The implications of differential flatness are favorable for both motion planning
and control. Thanks to differential flatness, one can simplify trajectory planning
problems both from a theoretical and practical point of view [10–12]. The capacity to

6The notation x(r) represents the r th time derivative of x, i.e., x(r) = drx/dtr .
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obtain the nominal state and input from the output (and its derivatives) allows to plan
directly for the flat output, using simple algebraic methods and efficient algorithm.
Indeed, the flat output equations of motion are simpler, and in the case of bounds
and constraints on the state or input, those can be transformed into constraints on
the flat outputs and its derivatives. Although this might produce complex nonlinear
constraints on the flat output, one can approximate them with simpler functions with
the cost of obtaining a sub-optimal solution, but solving the planning problem in a
more efficient way. For example, this method has been successfully employed for the
design of a kinodynamic motion planner for an unidirectional-thrust aerial vehicle
in a cluttered environment [13].

Furthermore, the knowledge of the nominal state and control input required to
follow a certain desired flat output trajectory, can be exploited to design robust
controllers [9, 14]. For example, this approachwas also used to design a decentralized
controller for an aerial manipulator [15].

2.3 Dynamic Feedback Linearizing Control

One very common control method for nonlinear systems to solve tracking control
problem is the feedback linearization [16–18]. The concept of thismethod consists on
finding a particular output, called linearizing output and a control law that linearizes
the input-output relation, providing a linear system equivalent to the original one. A
standard linear controller can be then applied to the latter equivalent linear system
in order to track the desired output trajectory. In the following we shall briefly recall
how to practically apply this control method. For more details we refer the reader to
more specific books on nonlinear systems as [19–21].

Let us consider the nonlinear system

ẋ = f(x) + g(x)u (2.9a)

y = h(x), (2.9b)

with state vector x ∈ R
n , input vector u ∈ R

m , output vector y = [y1 . . . ym]� ∈
R

m , where f , g and h are smooth functions. From a practical point of view, in order
to feedback linearize the system, one has to differentiate every entry of the output
until the input appears, i.e., until we can write

[
y(r1)
1 . . . y(rm )

m

]� = b(x) + E(x)u, (2.10)

whereb(x) ∈ R
m collects all the terms that do not depend on the input, andE ∈ R

m×m

is calleddecouplingmatrix. If the decouplingmatrix is invertible over a certain region,
the control law

u = E(x)−1(−b(x) + v), (2.11)
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where v ∈ R
m is a new virtual input, yields to the simpler linear system

[
y(r1)
1 . . . y(rm )

m

]� = v. (2.12)

ri is called the relative degree of the i th output entry, and we define r = ∑m
i=1 ri as

the total relative degree. If the total relative degree is equal to the dimension of the
system, i.e., r = n, then the system is exactly feedback linearizable, i.e., (2.12) is
equivalent to the original nonlinear system (2.9) and there is no internal dynamics.

Without loss of generality, let us assume that E is always not invertible because
some of its columns are zero.7 In particular, let the j th column of E equal to zero. In
other words, this means that the input u j appears in none output entry. In these cases,
in order to make u j appear, one can apply a dynamic extension to the other inputs
to delay their appearance in the output derivatives. In details, one can consider the
new control input ū ∈ R

m such that ūi = u̇i if i �= j , and ūi = u j for i = j . Now
the output has to be differentiated one more time to see the input appear:

[
y(r1+1)
1 . . . y(rm+1)

m

]� = b̄(x) + Ē(x)ū. (2.13)

If the new decoupling matrix is invertible and the total relative degree is equal to the
systemdimension plus the new controller states, then the system is said dynamic feed-
back linearizable. If so, ū can be designed similarly to (2.11) to obtain an equivalent
linear dynamics as in (2.12). The original inputs ui can be obtained by integra-
tion of ūi , for i �= j . Notice that the presence of the integrals makes the controller
“dynamic”.

The tracking of any given desired trajectory, ydi (t) for i = 1, . . . ,m can be
achieved applying any linear control technique to the equivalent linear system (2.12).
E.g., it is sufficient to use as outer loop a simple controller based on the pole placing
technique. Setting the virtual control inputs as

vi = yd(ri )
i +

ri−1∑

j=0

ki jξi j , (2.14)

where ξi j = yd( j)
i − y( j)

i . One can set the poles of the error dynamics through the
gains ki j ∈ R>0 and for j = 0, . . . , ri and i = 1, . . . ,m to obtain a sufficiently fast
exponentially tracking of the desired trajectories.Notice that an explicitmeasurement
of the output and its derivatives is not needed at all, since they are algebraic functions
of the state and input.

We remark that this method is strongly model based. For this reason, according to
the specific system, it might result not robust to model uncertainties. Nevertheless,

7If E is not invertible one can always apply an invertible, state-dependent, input transformation that
zeroes the maximum number of columns in E.
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the additional linear controller helps in reducing those negative effects. Furthermore,
for some complex systems, the control law (2.11) might result very complicate to
implement due to the inversion of Ē and the possible presence of dynamic extensions.

2.4 High Gain Observer

As shown in the previous section, in order to implement the control action, the
knowledge of the state of the system is needed. However, measuring the whole state
x usingmany sensors is often practically unfeasible due to, e.g., the costs and payload
limitations, in particular for aerial robots. Furthermore, possible sensor failures call
for the ability to still control the platform with a forcedly limited number of sensors.

In order to solve nonlinear observation problems there are mainly two classes of
methods: approximate nonlinear observers and exact nonlinear observers. The first
class relies on approximating the nonlinearities with linear or almost-linear maps
around the current estimate, the main disadvantage being the local approximative
nature of the methods. The second class of methods consists in nonlinear systems
whose state is analytically proven to converge to the real state of the original system.
Designing such observers is in general much more difficult since it is often hard
to prove the asymptotic stability of a nonlinear system. However the observers of
this class may guarantee (almost) global convergence. This is why in this thesis we
decided to search for an observer in the second class.

In the literature of exact nonlinear observers an important role is played by a
particular class of systems known as in the canonical form. This is the class of
nonlinear systems (2.9) that can be transformed in a triangular form, as:

ẋ =

⎡

⎢⎢⎢⎢⎢⎣

0 1 · · · · · · 0
0 0 1 · · · 0
...

...

0 · · · · · · 0 1
0 · · · · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x +

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤

⎥⎥⎥⎥⎥⎦

︸︷︷︸
B

φ(x,u) + λ(u) (2.15a)

w = [
1 0 · · · · · · 0]

︸ ︷︷ ︸
C

x, (2.15b)

where w ∈ R is the measurement and φ : Rn × R
m → R, λ : Rm → R

n are any
nonlinear map. For this class of nonlinear systems, in order to estimate the state one
can use the nonlinear High Gain Observer (HGO) [20]:

˙̂x = Ax̂ + Bφ(x̂,u) + λ(u) + H(w − Cx̂), (2.16)
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with H = [ α1
ε

α2
ε2

. . . αn
εn

]� and ε ∈ R>0. If αi ∈ R>0 are set such that the roots of
pn + α1 pn−1 + · · · + αn−1 p + αn have negative real part, then (2.16) ensures almost
global convergence of the estimated state to the real one.

Furthermore, let us assume that an output feedback controller u = �(x, v)
(as (2.11) or its dynamic version) is applied to the system. Then one can show
that there exists ε� > 0 such that, for every 0 < ε < ε�, the closed loop system with
controller u = �(x̂, v) and observer (2.16) is exponentially convergent.

However, we recall that, due to the possibly high values of the gains, this observer
might suffer from peaking phenomenon during the transient and noise sensitivity. To
mitigate those problems, many common practical solutions have been presented in
the literature, see e.g., [20, 22]. For example, to overcome the peaking phenomenon,
it is sufficient to saturate the estimated state on a bounded region that defines the
operative state space bounds for the system in exam. In the presence of measurement
noise, the use of a switching-gain approach can guarantee a quick convergence to
the real state during the first phase while reducing the noise effects at steady state.
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