
Reuse-oriented SLAM Framework using Software
Product Lines

Mohamed A. Abdelhady∗, Douwe Dresscher∗, and Jan F. Broenink∗
∗Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, 7500 AE Enschede, The Netherlands

Emails: m.adel.abdelhady@gmail.com, {d.dresscher, r.cobosmendez, j.f.broenink}@utwente.nl

Abstract—Simultaneous Localization and Mapping (SLAM) is
a widely investigated problem in robotics. It depicts the process
of a robot creating a map of an unknown environment while
concurrently estimating its location within the self-created map.
In recent years, many solutions have been proposed to the SLAM
problem based on numerous approaches such as probabilistic
filters or graph optimization. This work recognizes that, with
the growing complexity and the active development in the field
of SLAM, reuse is becoming an essential quality as researchers
often have to solve architectural issues that are secondary to the
core of the problem, which leads to sub-optimal realizations in the
final SLAM product from the software point of view. Therefore, a
component-based framework is introduced that regards reusabil-
ity as a primary requirement of SLAM software, which highlights
the core separable modules and implements them as encapsulated
interchangeable components forming a software product line. The
reusability of the framework is evaluated according to the reuse-
readiness levels criteria and the results show improved modularity
and reduction in the development and deployment time and
effort.

I. INTRODUCTION

SLAM is a well-defined problem in robotics and pho-

togrammetry, which describes a mobile robot or even a single

camera system that navigates into an unknown environment,

and builds a map of the surrounding while simultaneously

estimating its location and orientation within the created map.

This process is essential for autonomous and semi-autonomous

mobile systems in order to be able to perceive the environment

and act accordingly. Hence, many approaches have been

proposed and successfully implemented to solve SLAM under

a certain set of limited conditions, such as small indoor static

environments [1]. However, it is still an active research area

as there are multiple unaddressed challenges such as dynamic

environments, large scale mapping, and scene understanding.

As a final product, SLAM can be regarded as a complex

software artifact, which is often developed in a research

context to showcase the feasibility of a novel algorithm or

to improve upon an existing one with no attention to long

term reuse and support. The outcome is a monolithic piece

of software that is tailored towards a specific application

with high dependency on a certain platform or a class of

sensors. Consequently, variations of SLAM, being a different

algorithm, different sensors, or a different platform, need to be

developed with little or no reuse of previous effort. This is in

contrast to more established domains that adopt systematic

software reuse in order to improve quality, efficiency, and

provide customizability with little overhead.

To address the aforementioned points and to be able to com-

ply with such non-functional industry standards, we propose a

reuse-oriented framework that decouples the main functional

elements of SLAM, and introduces unification to its design

and development processes. The proposed framework aims at

enhancing the quality of the software, in terms of reusability,

by introducing a structured development process and creating

a SLAM infrastructure. As well as providing a methodology

to assess reusability of SLAM instances. It should be noted

that the framework does not consider additional requirements

other than SLAM functionality. Therefore, components with

real-time constraints or other performance conditions will have

limited reusability and will need to be separately addressed.

This paper is organized as follows: in Section II an overview

of related work is provided. In Section III the main concepts

of the applied reuse-oriented framework and the reusability

criteria are introduced. In Section IV the domain analysis

of SLAM, which is essential for software product lines, is

detailed. In Section V, several building blocks of SLAM

are developed and assembled into different instances. Finally,

the experiments, discussion, and conclusion, are presented in

Sections VI, VII and VIII.

II. RELATED WORK

A common theme in relevant work is the utilization of reuse-

oriented software-development principles in robotics. This

growing area of research is driven by the need for standardized

development methodologies that enable the reuse of large-

grained software components, which is demonstrated by the

popularity of component-based middlewares such as ROS [2]

and OROCOS [3] [4]. These frameworks are used to deal with

the increasing complexity in robotic tasks.

Brugali et al. [5] propose a reuse-oriented motion planning

library for robotics applications that utilizes the component-

based framework provided by the Robotic Operating System

(ROS). Their work shows the added value of utilizing software

product lines (SPL) in designing the framework and having

a more balanced implementation of the different components

with reduced coupling. The proposed development process is

based on refactoring open source implementations. Similar

work is presented in [6], demonstrating refactoring techniques

for perception libraries for robotics. The refactoring proce-

dure includes a domain analysis in order to encompass the

187

2020 Fourth IEEE International Conference on Robotic Computing (IRC)

978-1-7281-5237-0/20/$31.00 ©2020 IEEE
DOI 10.1109/IRC.2020.00037

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on February 08,2021 at 07:17:19 UTC from IEEE Xplore. Restrictions apply.

commonly used perception algorithms and data structures. The

results yield a perception framework with standalone atomic

software components and harmonized interfaces that can easily

be used to interchange algorithms and benchmark them. Thus,

allowing the developers to decide in an early stage which is the

most suitable algorithm for the application and showcasing the

significance of variability modeling. In addition, [7] combines

the two previously mentioned contributions into a perception

software product line for robotics applications. Another SLAM

related standardization is also introduced by [8], which pro-

poses a standard map representation that can enable different

systems to be able to utilize shared map data.

III. METHODOLOGY

In order to create a reuse-oriented SLAM framework, a

number of well-established reuse methodologies are utilized

from software engineering.

A. Software product lines

The software product line (SPL) paradigm [9] aims at

identifying a family of applications in which common parts are

distinguished from variable parts. Where, the former is avail-

able in every instance of the product family, while the latter

can be regarded as add-ons that change with every instance.

Hence, allowing for a software stack to be assembled from

these common and variable parts in a product-line manner as

long as the parts have unified interfaces. In order to apply

SPL within the SLAM domain, three main procedures are

followed in the workflow, namely, domain analysis, product

line development, and product derivation.

B. Reuse-readiness levels

Evaluation metrics are proposed as an integral part of the

framework in order to provide a quantitative feedback to judge

the reusability aspect. The adopted criteria for reusability

are primarily developed by the software working group at

NASA [10]. They devised Reuse-Readiness Levels (RRLs) that

describe 9 essential factors, which influence the reusability

aspect of any software product. Within the scope of the work

described in this paper, only 3 RRLs are considered during

the design, development, and evaluation, namely, Modularity,

Extensibility, and Standard compliance.

The chosen reusability criteria are considered to be of higher

priority as their impact would be more significant compared

to the rest of the RRLs.

IV. DOMAIN ANALYSIS

Domain analysis of SLAM is performed in order to capture

the commonly used functionalities and algorithms. The result

of the domain analysis is encoded in the form of a feature

model, which is a graphical representation that shows the

different decision points in the design of a SLAM software.

The HyperFlex toolchain [11] is used in order to create the

feature model for the SLAM framework.

A number of different approaches to SLAM can be

found, such as the commonly used implementations presented

in [12], [13], [14], [15], [16], which can be seen as products

belonging to the same SLAM product line family. Through

closer inspection, a number of major concepts can be rec-

ognized with respect to the software implementation. The

details of each major concept are presented hereafter and the

generated feature model used in this work is presented in

Figure 1.

A. Idiothetic Information Handler

Idiothetic information handler is the class of software com-

ponents concerned with processing interoceptive sensors to

estimate incremental pose measurements, which is also known

as dead-reckoning [17]. It is used in combination with internal

state sensors such as wheel encoders, gyroscopes, compasses,

etc. However, this class of components can also be used with

cameras or other exteroceptive sensors in order to perform

visual odometry by estimating the transformation between

two consecutive measurements. Although the raw data of the

sensors is processed differently according to the type of the

sensor, the provided interface can be standardized as a vector

of incremental pose measurements.

B. Allothetic Information Handler

Allothetic information handler is the class of software

components responsible for processing the measurements of

exteroceptive sensors such as cameras, laser scanners, stereo

cameras, sonar sensors, etc. The information provided by the

allothetic sensors are complementary to the dead-reckoning

approach as they are used to update the map and the pose

given an observation of the environment. The interface of the

allothetic handler can provide aggregated information or the

actual raw sensor measurements to the inference back-end.

C. Inference Back-end

Inference back-end is the software component that incorpo-

rates the idiothetic and allothetic information and maintains

an estimate of the pose and the map. As the core of SLAM,

there are different approaches to achieve the estimation, such

as probabilistic filters (EKF, UKF, PF, etc.) [17] that perform

recursive prediction and correction steps, optimization and

graph based techniques [18], and artificial neural networks

[15]. The back-end estimates the posterior probability distribu-

tion p(xt,m|zt, ut, xt−1), where xt and xt−1 are the current

and previous pose estimates respectively and m is the created

map [17].

The inference of the pose and the map can be considered as

a standalone problem, therefore, it can be tackled in a sensor-

agnostic fashion. Furthermore, different map representations

(feature maps, volumetric maps, topological maps, etc.) are

directly linked to the choice of the back-end, which can be

encoded as constraints in the feature model.

D. Platform-Specific Parts

Platform parts are models that represent platform-specific

information as they describe motion models, sensor models,

observation models, and noise models, which differ according

188

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on February 08,2021 at 07:17:19 UTC from IEEE Xplore. Restrictions apply.

to the system configuration, sensor characteristics, etc. These

models are often implicitly included into each of the previ-

ously mentioned concepts. However, the platform parts can

be made to be interchangeable and shared among different

approaches. For example, the odometry motion model can be

used in combination with and EKF or a particle filter inference

back-end [17].

V. PRODUCT LINE DEVELOPMENT & DERIVATION

In this section, the process of developing the components

forming the SLAM product line is described, as well as the

derivation of multiple instances by assembling these compo-

nents together.

A. Product Line Development

Following the domain analysis, a number of components

are implemented as software components as highlighted in the

feature model in Figure 1. Components belonging to the same

type (allothetic handler, idiothetic handler, inference back-end,

platform-specific parts) are developed such that they provide

and depend on the same interfaces.

B. Product Derivation

The derivation of the SLAM products is achieved by as-

sembling different variations of the 4 essential components

as shown in Table I. The different combinations are chosen

based on the most commonly used SLAM realizations, namely,

feature-based EKF and particle filter.

Idiothetic Allothetic Inference Platform Parts

1 Wheel encoders
Kinect -

Fiducial detection
EKF

Odometry -
Intrinsic camera

2 Visual odometry
Kinect - Camera -
Fiducial detection

EKF
Velocity -

Intrinsic camera

3 Visual odometry
Lidar - Feature

extraction & matching
Particle filter

Odometry -
Likelihood field

4 Wheel encoders
Kinect -

Fiducial detection
Particle filter

Odometry -
Intrinsic camera

5 Visual odometry
Kinect - Camera -
Fiducial detection

Particle filter
Odometry -

Intrinsic camera

TABLE I: A list of the assembled SLAM instances showing

the selection for each of the essential components.

VI. EVALUATION

The derived instances are deployed onto an actual mobile

platform in an indoor environment to consolidate the entire

development life cycle, where, each component is executed as

a standalone ROS node and the different instances are con-

figured through launch files. The output map and trajectories

generated by each of the instances described in Table I are

consistent with the actual trajectory traversed by the robot,

without the need for an explicit loop closure component.

The changes needed to create a different SLAM instance

based on another instance are shown in Figure 2. For example,

in one of the transitions the inference back-end is switched

from an EKF to a particle filter, and the result is an operational

SLAM with no modifications required to the rest of the com-

ponents. Similarly, only a single component is impacted by

the replacement of the wheel encoders with visual odometry,

or the addition of a laser scanner. A summary of the required

changes for all transitions is summarized in Table II.

1 2 3 4 5
1 - {1,0,1} {3,1,3} {0,0,1} {1,0,2}
2 - {1,0,2} {0,0,2} {0,0,1}
3 - {0,0,2} {0,0,2}
4 - {0,0,1}

TABLE II: The required changes in order to transition

from one instance to another. The numbers encode {Addition,

Modification, Replacement} of the different components.

VII. DISCUSSION

Observing the results of the evaluation, it is shown that

the different realizations of SLAM exhibits locality of change.

This is reflected in Figure 2 and Table II, where, the transition

from one instance to another only affects the components that

are changed. Additionally, the derived products in Table I

can be easily extended to include graph-based instances that

work with the same allothetic and idiothetic interfaces as

they can be interpreted as measurement constraints needed

for optimization-based SLAM. Thus, the framework allows

for modifications with a minimal impact on the software as it

does not need to be re-designed and developed from scratch

for every new instance. Such locality of change in the software

indicates enhanced modularity and extensibility, which are

identified as target RRLs.

Furthermore, the number of different realizations created

shows that combining different components into a working

SLAM instance is simplified by the standardization of the

interfaces and the separation of concerns.

VIII. CONCLUSIONS

This work presents a software product line, which is de-

signed in order to improve the reusability of SLAM. Ac-

cordingly, the domain variations that characterize SLAM are

analyzed and a feature model is created that highlights the

different implementations and algorithms used in the domain

of SLAM. The developed feature model provides a structured

way to make design choices and validate them early in the

development life cycle.

Furthermore, the clear segregation among different func-

tionalities enables various components to be developed and

tested in separation, in contrast with monolithic architectures.

In addition, standardization allowed for a minimal integration

efforts as well as improved interoperability of arbitrary infor-

mation sources be it, idiothetic sensors, or allothetic sensors,

as well as the algorithms used as the back-end of SLAM.

Finally, the presented framework can be further extended

with additional features for each of the main components to

generate higher resolution maps, more accurate trajectories,

and generalize to larger environments. And refactoring tech-

niques can also be used to adapt widely used implementations

into the framework for better standardization.

189

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on February 08,2021 at 07:17:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A feature model for a SLAM software product line. The model has 4 essential components, where variations for each

of the functionalities are listed with their corresponding cardinality. A number of highlighted components indicate the ones

implemented within the scope of this work.

Fig. 2: Superimposed component diagrams of the deployed

SLAM instances showing instance 1 as the base configuration,

as well as the subsequent modification and addition of different

components.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Towards the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, p. 1309–1332, 2016.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[3] H. Bruyninckx, “Open robot control software: the OROCOS project,” in
Robotics and Automation (ICRA), 2001. IEEE International Conference
on, vol. 3. IEEE, 2001, pp. 2523 – 2528.

[4] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar,
L. Gherardi, and D. Brugali, “The BRICS component model: a model-
based development paradigm for complex robotics software systems,”

Proceedings of the 28th Annual ACM Symposium on Applied Computing,
pp. 1758–1764, 2013.

[5] D. Brugali, L. Gherardi, A. Biziak, A. Luzzana, and A. Zakharov, “A
reuse-oriented development process for component-based robotic sys-
tems,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7628 LNAI, pp. 361–374, 2012.

[6] W. Nowak, S. Blumenthal, and E. Prassler, “Framework for identification
and re-factoring of best practice algorithms in robotics,” 2013.

[7] D. Brugali and N. Hochgeschwender, “Software product line engineering
for robotic perception systems,” International Journal of Semantic
Computing, vol. 12, no. 01, pp. 89–107, 2018.

[8] F. Amigoni, W. Yu, and D. Holz, “Ieee 1873-2015: A standard for map
data representation,” 2018.

[9] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line Engi-
neering: Foundations, Principles and Techniques. Berlin, Heidelberg:
Springer-Verlag, 2005.

[10] J. Marshall, S. Berrick, and a. Bertolli, “Reuse Readiness Levels
(RRLs),” Science Data Systems, 2010.

[11] J. Badger, D. Gooding, K. Ensley, K. Hambuchen, and A. Thackston,
HyperFlex: A Model Driven Toolchain for Designing and Configuring
Software Control Systems for Autonomous Robots, ser. Studies in Com-
putational Intelligence, A. Koubaa, Ed. Cham: Springer International
Publishing, 2016, vol. 625, no. January.

[12] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[13] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi, “Fast
and accurate slam with rao-blackwellized particle filters,” Robot. Auton.
Syst., vol. 55, no. 1, pp. 30–38, Jan. 2007.

[14] M. J. M. M. Mur-Artal, Raúl and J. D. Tardós, “ORB-SLAM: a versatile
and accurate monocular SLAM system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[15] D. Ball, S. Heath, J. Wiles, G. Wyeth, P. Corke, and M. Milford, “Open-
RatSLAM: An open source brain-based SLAM system,” Autonomous
Robots, vol. 34, no. 3, pp. 149–176, 2013.

[16] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1271–1278.

[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[18] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007.

190

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on February 08,2021 at 07:17:19 UTC from IEEE Xplore. Restrictions apply.

