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Abstract

Given a sample of a Poisson point process with intensity λf (x, y) = n1(f(x) ≤ y),

we study recovery of the boundary function f from a nonparametric Bayes perspective.

Because of the irregularity of this model, the analysis is non-standard. We establish a

general result for the posterior contraction rate with respect to the L1-norm based on

entropy and one-sided small probability bounds. From this, specific posterior contrac-

tion results are derived for Gaussian process priors and priors based on random wavelet

series.
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1 Introduction

We consider a support boundary detection model, where a Poisson point process (PPP) N

on [0, 1]× R is observed with intensity

λ(x, y) = λf (x, y) = n1(f(x) ≤ y).
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Figure 1: Simulated dataset (blue) and true boundary function (black).

The statistical task is to recover the unobserved lower boundary f : [0, 1]→ R of the support

of λ, see the simulated data set in Figure 1. This boundary detection model can be seen

as a continuous analogue of the nonparametric regression model with discrete equidistant

design and exponential errors, that is, we observe Yi,n = f(i/n) + εi,n, i = 1, . . . , n, and

(εi,n)i are i.i.d. exponential random variables, cf. [18, 11]. As with the Gaussian white noise

model for regular regression, we expect that our posterior contraction rates will transfer to

this or even more general boundary regression models. The main structural point is that

due to the one-sided error distribution, these models are not Hellinger differentiable and

therefore irregular.

For classification problems, one often faces unbalanced designs and almost no uncertainty

about the label classification. The most extreme case of correctly labeled training data and

unbalanced design is if we only observe data from one class. In this case, we can still do

binary classification if we additionally make assumptions on the distribution of the design.

The support boundary model is an instance of such a scenario under the assumptions that

the design in the observed class has been generated from a PPP and that the decision

boundary is a function x 7→ f(x).

Most of the nonparametric models that have been analysed from a frequentist Bayes point of

view are asymptotically equivalent to a Gaussian shift experiment. Yet Poisson experiments

form another important class of limit experiments [14], whose statistical structure is very

different. The laws are not mutually absolutely continuous leading to a peculiar version of

the Bayes formula and one-sided entropy conditions, subsequently. Moreover, the Hellinger

distance is governed by the L1-distance between the boundary functions in contrast to the

L2-theory in Gaussian shift models.

The goal of this article is to study posterior contraction for the support boundary detection

model. We consider the L1-distance as loss function, which is linked to the information
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geometry of the model. Posterior contraction for the Hellinger loss is well-studied and can be

reduced to conditions on the entropy of the parameter space and the small ball probability

of the prior, cf. [5, 6]. We derive a modification of this result which is applicable for the

support boundary detection model. Related to that, we show the following surprising result:

If the posterior is restricted to functions that lie below the true function, then posterior

contraction follows already from the behaviour of the one-sided small ball prior probability.

In this case no bound on the entropy is necessary. On the contrary, for functions which lie

above the true function, we essentially only require the entropy bound.

Given the general contraction result, we apply this to concrete classes of priors. In a first

step, we study Gaussian priors and derive an analogue of the result in [22] for the sup-

port boundary detection model. We then study posterior contraction for random wavelet

series priors with independent but not necessarily Gaussian random coefficients. For these

priors we derive a result on small ball probabilities, which is of independent interest. The

corresponding contraction rates only match with the minimax estimation rates for one

smoothness index. Below this critical smoothness the contraction rates can be improved

if more heavy-tailed distributions on the wavelet coefficients are used. We also prove that

truncated random wavelet series priors achieve the adaptive rates up to logarithmic factors.

The companion paper [20] studies compound Poisson process priors for support boundary

recovery. The focus of that article is on Bernstein-von Mises type theorems for function

classes with increasing parameter dimension and frequentist coverage of credible sets.

Bayesian methods for irregular or boundary detection problems have attracted considerable

attention especially because the MLE approach is often inefficient. [2] compares Bayes

estimators with the MLE in a parametric model that is irregular. In [1] a Bernstein-von

Mises theorem is derived for parameters which are on the boundary of the parameter

space. The limit distribution consists in this case of Gaussian and exponentially distributed

components. [12] considers posterior contraction around ϑ given i.i.d. observations from

a class of nonparametric densities of the form η(x − ϑ) with η(y) = 0 for y < 0 and

η(y) > 0 for y ≥ 0. This can be viewed as a semiparametric, irregular model, where the

nuisance parameter is the unknown distribution of the noise. For nonparametric models,

[16] considers Bayesian methods for Poisson point processes, but does not cover boundary

detection. In [15] a nonparametric Bayes approach is studied for detecting the boundary

of an object in an image, assuming different distributions of the response variable inside

and outside the object. This boundary detection model is regular and the likelihood ratios

are always well-defined. The underlying information geometry is induced by the L1-norm,

similar to our PPP model, but there is no different treatment necessary for the posterior

on functions below or above the true function.
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The paper is structured as follows. In Section 2, we derive a general result relating posterior

contraction to entropy and small ball estimates. This result is then used in Section 3 to

derive a criterion for posterior contraction under Gaussian priors. Section 4 studies wavelet

expansion priors. Technicalities and proofs are deferred to an appendix.

Notation. We write (x)+ = max(x, 0) and denote the indicator function of a set A by 1A =

1(· ∈ A). For p ∈ [1,∞], ‖ · ‖p denotes the Lp[0, 1]-norm. Inequalities for L1-functions are

assumed to hold almost everywhere. Let bβc denote the largest integer strictly smaller than

β > 0. The β-Hölder norm is ‖f‖Cβ :=
∑bβc

j=1 ‖f (j)‖∞ + supx 6=y |f (bβc)(x) − f (bβc)(y)|/|x −
y|β−bβc. We denote by Cβ(R) the class of functions f on [0, 1] with ‖f‖Cβ ≤ R. We further

write N =
∑

i δ(Xi,Yi) for a random point measure on [0, 1]×R and often identify N with its

support points (Xi, Yi)i. For two positive sequences (an)n, (bn)n we write an . bn if there is

a constant C such that an ≤ Cbn for all n. If an . bn and bn . an then we write an � bn.

2 General results on posterior contraction rates

2.1 Likelihood and Bayes formula

Before stating the main result on posterior contraction, we study the likelihood in the

support boundary detection model. From that we derive expressions for the information

distances and a specific form of the Bayes formula.

Denote by Pf = Pnf the distribution of a PPP with intensity measure Λf (B) =
∫
B λf for

Borel sets B in [0, 1]× R with Lebesgue density λf (x, y) = n1(f(x) ≤ y), where f is some

function in L1([0, 1]). The likelihood ratio dPf/dPg is only defined for g ≤ f, otherwise

Pg does not dominate Pf . The fact that the observation laws are not necessarily mutually

absolutely continuous is a distinctive feature of support estimation problems and will play

a major role in the analysis. Recall that for the Poisson point process N its support points

in [0, 1]× R are denoted by (Xi, Yi)i≥1.

2.1 Lemma. For g ≤ f and f, g ∈ L1([0, 1]), the likelihood ratio has the explicit form

dPf
dPg

= exp
(
n

∫ 1

0
(f − g)(x) dx

)
· 1(∀i : f(Xi) ≤ Yi). (2.1)

The information geometry of the model is driven by the L1([0, 1])-norm. Indeed, the

Hellinger affinity is ρ(Pf , Pg) =
∫ √

dPfdPg = exp(−n
2 ‖f − g‖1). This implies for the

squared Hellinger distance

H2(Pf , Pg) = 2− 2ρ(Pf , Pg) = 2− 2 exp
(
− n

2 ‖f − g‖1
)
≤ n‖f − g‖1, ∀f, g ∈ L1([0, 1]).
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Similarly, the Kullback-Leibler divergence satisfies KL(Pf , Pg) = n‖f − g‖1 if g ≤ f and

KL(Pf , Pg) =∞ otherwise.

Since the likelihood requires the support boundaries to be in L1([0, 1]), we consider as priors

distributions Π of stochastic processes (Xt)t∈[0,1] on a Polish space (Θ, d) equipped with its

Borel σ-algebra, which embeds continuously into L1([0, 1]). We aim for a Bayes formula of

the form

Π(B|N) =

∫
B

dPf
dPf0

(N) dΠ(f)∫
Θ

dPf
dPf0

(N) dΠ(f)
. (2.2)

Since in the boundary detection model the likelihood ratio does not exist in general, the

formula has to be modified. The next result provides a Bayes formula under the frequentist

assumption that the data are generated under Pf0 .

2.2 Lemma. For f0 ∈ L1([0, 1]), a prior Π on the Polish space Θ with Π({f ∈ Θ : f ≥
f0}) > 0 and a Borel set B ⊂ Θ we have an explicit Bayes formula under the law Pf0:

Π(B|N) =

∫
B e

n
∫
f1(∀i : f(Xi) ≤ Yi) dΠ(f)∫

Θ e
n
∫
f1(∀i : f(Xi) ≤ Yi) dΠ(f)

=

∫
B e
−n

∫
(f0−f)+ dPf∨f0

dPf0
(N) dΠ(f)∫

Θ e
−n

∫
(f0−f)+

dPf∨f0
dPf0

(N) dΠ(f)
Pf0-a.s.

The right-hand side is well-defined since dPf∨f0/dPf0 exists and Π({f ∈ Θ : f ≥ f0}) > 0

implies that Pf0-almost surely the denominator does not vanish. Compared to (2.2), the

likelihood ratios are reweighted in the Bayes formula by a factor e−n
∫

(f0−f)+ . In particular,

for f ≤ f0 the integrands are equal to the deterministic values e−n
∫

(f0−f).

2.2 Main results

We start by stating the main theorem, which reduces posterior contraction to conditions on

the entropy and small ball probabilities. The result is an analogue of the general contraction

theorems in [5, 6]. Denote by N(ε,F , d) the ε-covering number of a metric space F with

respect to the metric d.

2.3 Theorem. If for some Θn ⊂ Θ, some rate εn → 0 and constants C,C ′, C ′′ ≥ 1, A > 0

(i) N(εn,Θn, ‖ · ‖∞) ≤ C ′′eC′nεn ;

(ii) Π(f : ‖f − f0‖1 ≤ Aεn, f ≤ f0) ≥ e−Cnεn ;

(iii) Π(Θc
n) ≤ C ′′e−(C+A+1)nεn ,

then there exists a positive constant M such that

Ef0
[
Π
(
f : ‖f − f0‖1 ≥Mεn|N

)]
≤ 3C ′′e−nεn .
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Condition (i) can be relaxed to any of the conditions of Proposition 2.6.

In condition (ii) we need a lower bound on the one-sided small ball probabilities. Applying

triangle inequality and ‖ · ‖1 ≤ ‖ · ‖∞, a stronger version of (ii), which is often easier to

verify, is given by

(ii)’: Π(f : ‖f +Aεn/2− f0‖∞ ≤ Aεn/2) ≥ e−Cnεn . (2.3)

The proof of the theorem is deferred to the appendix, yet main intermediate results are

presented here. It will be convenient to establish posterior contraction for
∫

(f0 − f)+ and∫
(f − f0)+ separately. Surprisingly, for posterior contraction with respect to

∫
(f0− f)+ we

only need the small ball estimate of the prior probability, but no bound on the entropy. In

contrast, posterior contraction for
∫

(f − f0)+ only requires that (i) and (iii) of Theorem

2.3 hold.

2.4 Proposition. If for some constants C,A > 0,

Π(f : ‖f0 − f‖1 ≤ Aεn, f ≤ f0) ≥ e−Cnεn ,

then

Ef0

[
Π
(
f :

∫
(f0 − f)+ ≥ (1 +A+ C)εn

∣∣∣N)] ≤ e−nεn .
The one-sided small ball probability can be viewed as a prior mass condition on a Kullback-

Leibler ball in view of {f : KL(Pf0 , Pf ) ≤ Aεnn} = {f :
∫

(f0 − f) ≤ Aεn, f ≤ f0}. To

establish posterior contraction with respect to the loss
∫

(f − f0)+, we need to understand

the testing theory in the boundary detection model, which is non-standard due to the lack of

absolute continuity in general. The Neyman-Pearson test ϕ = 1(dPg/dPf∧g ≥ dPf/dPf∧g)

behaves well for testing f against g:

Ef [ϕ] + Eg[1− ϕ] =

∫ ( dPf
dPf∧g

∧ dPg
dPf∧g

)
dPf∧g ≤ ρ(Pf , Pg) = e−

n
2
‖f−g‖1 .

Robustness with respect to the L1-distance (i.e., Hellinger-distance), however, in the sense

that for some α, β > 0, and all n

Ef [ϕ] + sup
h:‖h−g‖1≤α‖f−g‖1

Eh[1− ϕ] ≤ e−βn‖f−g‖1

holds, is violated: if f ≤ g, we have ϕ = 1(∀i : g(Xi) ≤ Yi) and thus Eh[1 − ϕ] =

1 − e−n
∫

(g−h)+ , which for general h is much larger than e−βn‖f−g‖1 . Under the additional

assumption h ≥ g, however, the type II error vanishes completely and we find for f ≤ g

Ef [ϕ] ≤ e−
n
2
‖f−g‖1 and sup

h≥g
Eh[1− ϕ] = 0.
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To control the posterior, it is therefore natural to use one-sided bracketing entropy. Consider

a subset F of L1([0, 1]). The one-sided bracketing number N[(δ,F) is the smallest number

M of functions `1, . . . , `M ∈ L1([0, 1]) such that for any f ∈ F there exists j ∈ {1, . . . ,M}
with `j ≤ f and

∫
(f − `j) ≤ δ. For some function f0 and integer n consider the separation

quantity

S[(n,F , f0) = inf
(`j)j∈J

∑
j∈J

e−n
∫

(`j−f0)+ ∈ [0,∞],

where the infimum is taken over (not necessarily finite) subsets J of the integers and func-

tions (`j)j∈J ⊂ L1([0, 1]) such that for any f ∈ F there exists j ∈ J with `j ≤ f . In both

definitions the functions `j are not required to be in F .

In view of the next result, the quantity S[, which can be seen as a weighted covering number,

is the natural complexity measure for Θ.

2.5 Proposition. If Π(f : f ≤ f0) > 0, then for any Borel set B ⊆ Θ

Ef0
[
Π
(
f ∈ B

∣∣N)] ≤ S[

(
n,B, f0

)
.

Notice that the right-hand side does not depend on the prior. Weighted covering num-

bers might be small even for non-compact parameter spaces and have been used before in

nonparametric Bayes theory, cf. [10], Section 4. For many specific problems, covering or

bracketing numbers are sufficient and we can further upper bound the right-hand side in

Proposition 2.5:

2.6 Proposition. Work under the assumption of Proposition 2.5. If C ≥ 1, then

Ef0

[
Π
(
f ∈ Θn :

∫
(f − f0)+ ≥ 4Cεn

∣∣∣N)] ≤ C ′′e−nεn
holds for C ′′ ≥ 1 under any of the following conditions:

(i) S[(n, {f ∈ Θn :
∫

(f − f0)+ ≥ 4Cεn}, f0) ≤ C ′′e−nεn;

(ii) N[

(
2Cεn,Θn

)
≤ C ′′eCnεn;

(iii) N(Cεn,Θn, ‖ · ‖∞) ≤ C ′′eCnεn .

With these propositions at hand we can easily derive Theorem 2.3 in the appendix.

We can avoid the entropy condition if we control instead the risk of an estimator. Indeed,

for a loss function ` the inequality

inf
ϕ

(
Eϑ0 [ϕ] + sup

ϑ∈Θ:`(ϑ,ϑ0)≥2ε
Eϑ[1− ϕ]

)
≤ 2 inf

ϑ̂
sup
ϑ∈Θ

Pϑ(`(ϑ̂, ϑ) ≥ ε)
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follows by studying the test ϕ = 1(`(ϑ̂, ϑ) ≥ ε) given an estimator ϑ̂. If the nonparametric

MLE for f exists, we have a particularly simple relation in the support boundary detection

model between posterior contraction of
∫

(f − f0)+ and the excess probability of the MLE.

The following lemma holds even without any conditions on the prior.

2.7 Lemma. Assume that Θn ⊆ Θ contains f0 and is closed under maxima, that is, if

f, g ∈ Θn, then f ∨ g ∈ Θn. If the maximum likelihood estimator f̂MLE, based on the

parameter space Θn, exists, then

Ef0

[
Π
(
f ∈ Θn :

∫
(f − f0)+ > εn

∣∣∣N)] ≤ Pf0(∫ (f̂MLE − f0)+ > εn

)
. (2.4)

As in the proof of Proposition 2.5 the upper bound is independent of the prior. It is well-

known that posterior contraction with rate εn implies existence of a frequentist estimator

with rate of convergence εn, cf. Theorem 2.5 in [5]. Inequality (2.4) shows that also the other

direction may hold, namely that convergence of an estimator implies posterior contraction

with the same rate. Regarding the assumptions, a sufficient condition for the existence of

the MLE is that Θ is closed under arbitrary maxima: fi ∈ Θ, i ∈ I ⇒
∨
i∈I fi ∈ Θ, see the

discussion in [21]. Examples of function spaces which are closed under the maximum are

Hölder balls, monotone functions and convex functions.

3 Gaussian process priors

A common choice for nonparametric Bayes methods is to pick the distribution of a Gaussian

process as prior probability measure. Given a Gaussian process prior Π, the seminal work

in [22] relates posterior contraction to the small ball prior probability and approximation

properties in the reproducing kernel Hilbert space (RKHS) generated by Π. The following

result adapts Theorem 2.1 in [22] to our setting.

3.1 Theorem. Consider as prior Π the distribution of a Gaussian process X with sample

paths in the space (C[0, 1], ‖·‖∞). Write ‖·‖H for the RKHS-norm induced by the covariance

operator of X. If εn ≥ n−1 and for all n

inf
h:‖h+2εn−f0‖∞≤εn

‖h‖2H − logP(‖X‖∞ ≤ εn) ≤ nεn, (3.1)

then there exists a constant M such that for all n

Ef0
[
Π
(
f : ‖f − f0‖1 ≥Mεn|N

)]
≤ 3e−nεn .

If the infimum in the theorem is taken over the empty set, the left hand side in (3.1) is

defined as +∞. Condition (3.1) is slightly different compared to (1.2) and (1.3) in [22]. As
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a bound we have nεn instead of nε2
n and in the RKHS part there is an extra term 2εn which

accounts for the one-sided prior mass condition in Theorem 2.3.

As the left-hand side of (3.1) has been studied for many classes of Gaussian processes, it

is easy to obtain the corresponding contraction rates as a consequence of Theorem 3.1. For

the main examples in [22] condition (3.1) becomes ε
−1/α
n . nεn and we obtain the optimal

posterior contraction rate n−α/(α+1) for f0 ∈ Cα(R). We give three concrete examples:

3.2 Example.

1. Brownian motion. As prior we consider the law of the process (X0 +Wt)t∈[0,1] with a

Brownian motion W and an independent standard normal random variable X0. Let

f0 ∈ Cβ(R). Arguing as in [22], Section 4.1, we find for the corresponding RKHS norm

‖h‖2H = ‖h′‖22 + h(0)2 and infh:‖h+2εn−f0‖∞≤εn ‖h‖2H . ε
2−2/β
n as well as for the small

ball probabilities P (‖X‖∞ ≤ εn) ≥ P(|X0| ≤ εn/2)P(‖W‖∞ ≤ εn/2) & εne
−C/ε2n. The

closure of H is C[0, 1] and (3.1) becomes

ε2−2/β
n + Cε−2

n + log(ε−1
n ) . nεn. (3.2)

Minimizing in εn yields the L1-contraction raten
− β

2−β , for β ≤ 1/2,

n−
1
3 , for β ≥ 1/2.

(3.3)

This coincides with the minimax rate n−β/(β+1) if β = 1/2. For β > 1/2, we do not

gain anymore in the contraction rate by imposing more smoothness on the signal. For

β < 1/2 the rate is slower than the minimax rate.

It is instructive to compare the contraction rates to the ones obtained for regular

models. The equivalent of (3.2) in regular models is ε
2−2/β
n +Cε−2

n + log(ε−1
n ) . nε2

n,

see again [22], Section 4.1. In this case, we obtain under a Brownian motion prior the

contraction rates n−1/4 for β ≥ 1/2 and n−β/2 for β < 1/2, which are always slower

than in (3.3).

2. Riemann-Liouville process. Similar to Brownian motion, the Riemann-Liouville pro-

cess Rαt with parameter α > 0 starts at zero in zero and also the derivatives (if they

exist) vanish at zero. The Riemann-Liouville process with random derivatives at zero

is given by

Xt =

dαe∑
k=0

Zkt
k +Rαt ,

9



for dαe the smallest integer strictly larger than α and independent Z1, . . . , Zdαe ∼
N (0, 1) which are also independent of (Rαt )t. From Theorem 4.3 in [22], we find that

(3.1) becomes ε
−1/α
n . nεn leading to the posterior contraction rate n−α/(α+1).

3. Fractional Brownian motion. For the Hurst index α ∈ (0, 1) Theorem 4.4 in [22] yields

that condition (3.1) for a fractional Brownian motion prior becomes ε
−1/α
n . nεn

resulting again in the optimal posterior contraction rate n−α/(α+1).

4 Wavelet expansion priors

Series expansions provide another natural way to construct priors on function spaces. We

study process priors (Xt)t∈[0,1] which admit an expansion in a wavelet basis (ψjk):

Xt =
∑
j,k

dj,kξj,kψj,k(t) in L2[0, 1]. (4.1)

Here, dj,k are real numbers and ξj,k are i.i.d. random variables with Lebesgue density fξ. As a

prior on the function f this means that each wavelet coefficient of f is drawn independently

from the distribution of dj,kξj,k. For convenience, we restrict ourselves in this section to

s-regular, boundary corrected and compactly supported wavelet bases (ψjk) in L2([0, 1]) as

constructed in Section 4 of [3].

Wavelet expansion priors have been studied in different nonparametric models with uniform

random variables ξj,k, cf. [8, 19]. Moreover, [23] derives bounds on the small ball probabilities

of Gaussian processes of the form (4.1). Below, we derive posterior contraction rates for

a class of distributions ξj,k. To start with, we prove the following general lower bound on

small ball probabilities, which is of independent interest.

4.1 Lemma. Assume (4.1) with a symmetric and unimodal density fξ and |dj,k| �
2−

j
2

(2α+1) for some α > 0. Suppose further that there exists a constant δ > 0 such that

E
[
|ξj,k|(1+δ)/α

]
<∞.

Then for all β ∈ (0, s], R > 0 there exists a constant D > 0 such that

inf
h∈Cβ(R)

P
(
‖X − h‖∞ ≤ ε

)
≥ fξ

(
Dε−(α−β)+/β

)Dε−1/(α∧β)
for all 0 < ε ≤ 1.

For β ≥ α the lower bound has the form C−ε
−1/α

with C = fξ(D)−D. For β < α the lower

bound depends on the tails of the distribution: heavier tails lead to larger lower bounds

on the small ball probabilities. The fastest contraction rate that can be obtained using the

small ball estimate in Lemma 4.1 and Theorem 2.3 is εn = n−β/(1+β), which is the solution

of the equation ε
−1/β
n = nεn.
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4.2 Theorem. Consider the process in (4.1) as prior with a symmetric and unimodal

density fξ and |dj,k| � 2−
j
2

(2α+1) for some α > 0. Suppose fξ(x) ≤ γ−1e−γ|x|
q

for some

q > α−1, some (sufficiently small) γ > 0 and all x ∈ R. Fix β ∈ (0, s], R > 0. For any

sequence εn → 0, satisfying

− log fξ

(
Dε
− (α−β)+

β
n

)
. nε

1+(α∧β)
α∧β

n , (4.2)

there exist positive constants M and c such that for all n

sup
f0∈Cβ(R)

Ef0
[
Π
(
f : ‖f − f0‖1 ≥Mεn|N

)]
≤ e−cnεn .

In the case q ∈ ((2α)−1, α−1] the result remains true under the additional assumption

εn & n−(2α−1/q)/(2α−1/q+1)+δ for some δ > 0.

The proof is based on verifying the conditions of Theorem 2.3. Since on high resolution levels

more prior mass is assigned to large wavelet coefficients, heavy tails can also lead to a larger

bias. In the proof, this is reflected in the choice of the set Θn which is taken to be a Besov

Bα
p,∞-ball, where the p depends on q and α. The control of uniform entropy of this Besov

space induces then the assumption q > (2α)−1. If the series coefficients are Gaussian, q = 2

and the condition will be α > 1/4. Surprisingly, the van der Vaart-van Zanten approach for

Gaussian process priors does not require such a condition, see Theorem 3.1. In this case,

condition (iii) of Theorem 2.3 is controlled via Borell’s inequality, which allows to choose a

set Θn with a better control of the high-frequencies avoiding any additional assumption. It

is not clear to us whether the condition q > (2α)−1 for non-Gaussian priors can be avoided.

In Remark C.2 below, the conditions for q and the popular choice of uniform priors for the

coefficients (corresponding to q =∞) are discussed further.

One of the consequences of Theorem 4.2 is that the posterior contracts faster in the regime

β < α if heavier-tailed distributions are used. This is illustrated by the following specific

example. Consider the wavelet expansion prior with density fξ(x) � e−γ|x|q for some γ, q > 0

and all x ∈ R. Then condition (4.2) reads ε
−q(α−β)+/β
n . nε

(1+α∧β)/α∧β
n . For β ≥ α > 1/q

we thus obtain the contraction rate εn � n−α/(α+1) which is minimax optimal for β = α.

In the case α > β ∨ 1/q the contraction rate becomes

εn = n−β/(β+q(α−β)+1).

Hence, the contraction rate becomes faster for smaller q, or equivalently, more heavy-tailed

distributions for (ξjk). Notice, however, the constraint q > 1/α for this result. For smaller q,

down to 1/(2α), we still have posterior consistency and for all β ≥ α(1+(αq)−1)(1−(2αq)−1)

we obtain the rate n−(2α−1/q)/(2α+1−1/q), up to an arbitrarily small increase in the exponent.

We give two concrete applications:
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4.3 Example. (a) If ξj,k ∼ N (0, 1), then Lemma 4.1 yields for a sufficiently large con-

stant C

inf
h∈Cβ(R)

P
(
‖X − h‖∞ ≤ ε

)
≥ exp

(
− Cε−( 1+2α−2β

β
∨ 1
α

))
.

For α = 1/2, the bound becomes exp(−Cε−2( 1−β
β
∨1)

), which is the same as for the

Brownian motion prior. Theorem 4.2 with q = 2 yields for α > 1/2 the posterior

contraction rate

εn = n
− β∧α

2α−β∧α+1 .

For β = α this the minimax optimal rate n−α/(α+1). In case α > 1/4 we still have

posterior consistency, but with a slower rate.

(b) If ξj,k follows a Laplace (double-exponential) distribution, we obtain

inf
h∈Cβ(R)

P
(
‖X − h‖∞ ≤ ε

)
≥ exp

(
− Cε−( 1+α−β

β
∨ 1
α

))
.

The posterior contraction rate becomes εn = n−
β∧α
1+α if α > 1 which improves the rate

in (a) for the case β < α, but relies on a stronger constraint on α. For β = α we

achieve the minimax optimal rate n−α/(α+1). Posterior consistency is still guaranteed

whenever α > 1/2.

We can also obtain a fully adaptive result (up to log n factors) using a random truncation

of the wavelet expansion prior. The prior can be realized via a hierarchical construction. In

a first step, we draw the maximal resolution level J from a distribution satisfying

P (J = j) ∝ exp(−Bj2j)

for some constant B > 0. Given J, generate

Xt =
∑
j≤J, k

ξj,kψj,k(t) (4.3)

with ψj,k as in (4.1) and (ξj,k)j,k an i.i.d. sequence of random variables with positive and

continuous Lebesgue density fξ. In this prior the regularization is induced by the truncation

of the wavelet series and compared with (4.1) we can set dj,k = 1.

4.4 Lemma. Consider the random truncation prior (4.3). For β ∈ (0, s], R > 0 there

exists a constant D > 0 such that

inf
h∈Cβ(R)

P
(
‖X − h‖∞ ≤ ε

)
≥ εDε−1/β

for all 0 < ε ≤ 1.

12



4.5 Theorem. Consider the random truncation prior (4.3). Suppose fξ(x) ≤ γ−1e−γ|x|
q

for some q, γ > 0 and all x ∈ R and fix β ∈ (0, s], R > 0. Then there exist constants M

and c such that for all n

sup
f0∈Cβ(R)

Ef0
[
Π
(
f : ‖f − f0‖1 ≥Mεn|N

)]
≤ e−cnεn

with

εn =
( log n

n

) β
β+1

.

A Proofs for Section 2

Proof of Lemma 2.1. The general change of measure formula for two Poisson point pro-

cesses (PPPs) on X with finite intensity measures Λ1 � Λ2 is given by

dQΛ1

dQΛ2

((Xi, Yi)i≥1) = exp
(∑
i≥1

log
(dΛ1

dΛ2
(Xi, Yi)

)
− Λ1(X ) + Λ2(X )

)
(A.1)

where log 0 := −∞, exp(−∞) := 0 and (Xi, Yi) denote the point locations of the PPP,

cf. [13], Theorem 1.3. Notice that Pf and Pg have infinite intensity. We therefore apply

the following decomposition first. For h ∈ L1([0, 1]) split the state space [0, 1] × R into

H− = {(x, y) |x ∈ [0, 1], y ∈ (−∞, h(x))}, H+ = {(x, y) |x ∈ [0, 1], y ∈ [h(x),∞)}. Then by

independence of the PPP on disjoint sets we may write Pf = Pf,H−⊗Pf,H+ where generally

Pf,H denotes the law of the PPP with intensity λf,H(x, y) = n1(f(x) ≤ y) on the set H.

If Λf,H− denotes the intensity measure of Pf,H− , we have Λf,H−(H−) = n
∫ 1

0 (h− f)+. For

h ≥ f ≥ g we obtain

Pf = Pf,H− ⊗ Pf,H+ = Pf,H− ⊗ Ph,H+ , Pg = Pg,H− ⊗ Pg,H+ = Pg,H− ⊗ Ph,H+ ,

remarking that Pf,H+ = Pg,H+ = Ph,H+ are PPPs with intensities equal n on H+. Since on

H− the intensity measures are finite, we derive

dPf
dPg

((Xi, Yi)i≥1) =
dPf,H−

dPg,H−
({(Xi, Yi) | i ≥ 1} ∩H−)

dPh,H+

dPh,H+

({(Xi, Yi) | i ≥ 1} ∩H+)

= exp
( ∑
i:Yi<h(Xi)

log
(n1(Yi ≥ f(Xi))

n1(Yi ≥ g(Xi))

)
− n

∫
(h− f) + n

∫
(h− g)

)
= en

∫
(f−g)1(∀i : Yi ≥ f(Xi)),

where we used that the argument of the logarithm is Pg-a.s. one or zero and the latter

happens if Yi < f(Xi) for some i.
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Proof of Lemma 2.2. We first construct a dominating measure. Let f0 ∈ L1([0, 1]) be fixed.

Consider a PPP on [0, 1] × R with a strictly positive intensity λ∗ : [0, 1] × R → (0,∞)

satisfying

λ∗(x, y) = n for x ∈ [0, 1], y ≥ f0(x) and Λ∗({y < f0(x)}) =

∫ 1

0

∫ f0(x)

−∞
λ∗(x, y)dydx <∞,

and denote by P ∗ its distribution. Let H−, H+ be as in the proof for Lemma 2.1 with

h = f ∨ f0. Observe that Λ∗(H−) = Λ∗({y < f0(x)}) + n
∫ 1

0 (f − f0)+.

As in the proof for Lemma 2.1 we decompose P ∗ = P ∗H− ⊗ P
∗
H+ and Pf = Pf,H− ⊗ Pf,H+ ,

where P ∗H− and P ∗H+ denote the restrictions of P ∗ to H− and H+. Then P ∗H+ = Pf,H+

because both intensities equal n on H+. Using (A.1),

dPf
dP ∗

((Xi, Yi)i≥1) =
dPf,H−

dP ∗
H−

({(Xi, Yi) | i ≥ 1} ∩H−)

= exp
( ∑
i:Yi<f∨f0(Xi)

log
( n

λ∗(Xi, Yi)

)
+ n

∫
(f − f0) + Λ∗({y ≤ f0(x)})

)
1(∀i : f(Xi) ≤ Yi),

arguing as for Lemma 2.1. Now, note Pf0 � P ∗ and Yi ≥ f0(Xi) Pf0-a.s. such that

dPf
dP ∗

((Xi, Yi)i≥1) = exp
(
n

∫
(f − f0) + Λ∗({y ≤ f0(x)})

)
1(∀i : f(Xi) ≤ Yi) Pf0-a.s.

Since Π is defined on a Polish space and Π({f ∈ Θ : f ≥ f0}) > 0, the posterior is

well-defined (cf. [7], Section 1.3) and

Π(B|(Xi, Yi)i≥1) =

∫
B
dPf
dP ∗ ((Xi, Yi)i≥1)dΠ(f)∫ dPf
dP ∗ ((Xi, Yi)i≥1)dΠ(f)

=

∫
B e

n
∫

(f−f0)1(∀i : f(Xi) ≤ Yi)dΠ(f)∫
en

∫
(f−f0)1(∀i : f(Xi) ≤ Yi)dΠ(f)

, Pf0-a.s.

Under Pf0 we have 1(∀i : f(Xi) ≤ Yi) = 1(∀i : f ∨ f0(Xi) ≤ Yi) a.s. and (2.1) yields

H(f) := en
∫

(f−f0)1(∀i : f ∨ f0(Xi) ≤ Yi) = e−n
∫

(f0−f)+
dPf∨f0
dPf0

((Xi, Yi)i≥1), (A.2)

which completes the proof.

Proof of Proposition 2.4. Consider H(f) from (A.2). By Lemma 2.2 and the assumption

on Π we have under Pf0

Π(B|N) =

∫
BH(f) dΠ(f)∫
H(f) dΠ(f)

≤ eAnεn
∫
BH(f) dΠ(f)

Π(f : ‖f − f0‖1 ≤ Aεn, f ≤ f0)

≤ e(A+C)nεn

∫
B
H(f) dΠ(f),

(A.3)
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where we used f(Xi) ≤ Yi Pf0-a.s. for all f ≤ f0. With Ef0 [H(f)] = e−n
∫

(f0−f)+ ≤
e−(1+A+C)nεn for all f with

∫
(f0 − f)+ ≥ (1 +A+ C)εn, we obtain the result.

Proof of Proposition 2.5. For functions (`j)j∈J , eligible in the definition of S[(n,B, f0), con-

sider the test ϕn = 1(∃j∀i : `j(Xi) ≤ Yi). This test satisfies under the hypothesis f0

Pf0(ϕn = 1) ≤
∑
j∈J

Pf0(∀i : `j(Xi) ≤ Yi) =
∑
j∈J

e−n
∫

(`j−f0)+ .

By assumption and σ-continuity of Π, there exist R > 0 and δ > 0 such that Π(f :
∫
f ≥

−R, f ≤ f0) ≥ δ. Thus, we use formula (A.3) and bound the posterior by

Π(B|N) ≤ ϕn +

∫
BH(f)(1− ϕn)dΠ(f)∫

H(f)dΠ(f)
≤ ϕn + δ−1enR+n

∫
f0

∫
B
H(f)(1− ϕn)dΠ(f).

Since for f ∈ B there is an `j ≤ f , we infer

H(f)(1− ϕn) = en
∫

(f−f0)1(∀i : f(Xi) ≤ Yi)1(∀j∃i : `j(Xi) > Yi) = 0.

Therefore,

Ef0
[
Π(B|N)

]
≤ Ef0

[
ϕn
]
≤
∑
j∈J

e−n
∫

(`j−f0)+

and the claim follows by taking the infimum over all possible (`j).

Proof of Proposition 2.6. For any δ > 0, the one-sided bracketing entropy N[(δ,Θn) pro-

vides us with functions (`j)j∈J that can be used to bound S[(n,Θn, f0). Together with the

inequality −
∫

(`j − f0)+ ≤ −
∫

(f − f0)+ +
∫

(f − `j)+, this implies

S[

(
n, {f ∈ Θn :

∫
(f − f0)+ ≥ 4Cεn}, f0

)
≤ e−2CnεnN[

(
2Cεn,Θn

)
≤ e−2CnεnN

(
Cεn,Θn, ‖ · ‖∞

)
.

It remains to apply Proposition 2.5.

Proof of Theorem 2.3. By Proposition 2.4 and Proposition 2.6 it remains to show

Ef0 [Π(Θc
n|N)] ≤ C ′′e−nεn . By (A.3) and Ef0 [H(f)] ≤ 1 we obtain

Ef0
[
Π
(
Θc
n|N

)]
≤ eAnεnΠ(Θc

n)

Π(f : ‖f − f0‖1 ≤ Aεn, f ≤ f0)
.

The claim thus follows from conditions (ii) and (iii).
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Proof of Lemma 2.7. The key observation is that we can restrict the posterior to {f ≤
f̂MLE} because on the complement the likelihood is zero. To see this, note that ∀i : f(Xi) ≤
Yi implies f ≤ f̂MLE because otherwise f ∨ f̂MLE ∈ Θn would have a larger likelihood than

f̂MLE. Then
∫

(f −f0)+ ≤
∫

(f̂MLE−f0)+ holds such that with A := {N :
∫

(f̂MLE−f0)+ >

εn},

Ef0

[
Π
(
f ∈ Θn :

∫
(f − f0)+ > εn

∣∣∣N)] ≤ Ef0[Π(f ∈ Θn : A
∣∣N)]

= Ef0
[
Π
(
f ∈ Θn : A

∣∣N)(1(A) + 1(Ac)
)]

= Ef0 [1(A)] = Pf0

(∫
(f̂MLE − f0)+ > εn

)
,

where the equalities hold because A is independent of f .

B Proofs for Section 3

We state Theorem 2.1 of [22] in a slightly more general form.

B.1 Theorem (Theorem 2.1 of [22]). Let X be a Borel-measurable, zero-mean Gaussian

random element in the Banach space (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and let f be contained

in the closure of H in B. For any C∗ ≥ 1 and all εn > 0, γn ≥ 1, satisfying

inf
h:‖h−f‖≤εn

‖h‖2H − logP (‖X‖ ≤ εn) ≤ γn,

there exists a Borel set Bn ⊂ B such that

logN(3εn, Bn, ‖ · ‖) ≤ 6C∗γn, P
(
X /∈ Bn

)
≤ e−C∗γn , and P

(
‖X − f‖ ≤ 2εn

)
≥ e−γn .

Proof. Replace nε2
n in the proof of Theorem 2.1 of [22] by γn; in particular Mn :=

−2Φ−1(e−C∗γn). For the final argument of the proof observe that e−C∗γn < 1/2 due to

C∗γn ≥ 1.

B.2 Remark. In the previous theorem, the condition that f is contained in the closure of

H in B can be avoided for null sequences εn → 0 if we agree that the infimum over the

empty set is +∞.

Proof of Theorem 3.1. We apply Theorem B.1 with (B, ‖ · ‖) = (C[0, 1], ‖ · ‖∞), γn = nεn,

f = f0−2εn and C∗ = 6. This shows that there exists Θn such that logN(3εn,Θn, ‖·‖∞) ≤
36nεn, P (X /∈ Θn) ≤ e−6nεn and P (‖X+2εn−f0‖∞ ≤ 2εn) ≥ e−nεn . Together with Remark

B.2, the assumptions of Theorem 2.3 are satisfied with A = 4, C = C ′′ = 1, C ′ = 36 in view

of condition (ii’) from (2.3) and condition (iii) in Proposition 2.6.
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C Proofs for Section 4

Proof of Lemma 4.1. Write h =
∑

j,k hj,kψj,k. Since ψ is a compactly supported wavelet,

‖X−h‖∞ ≤ C
∑

j 2j/2 maxk |dj,kξj,k−hj,k| for a sufficiently large constant C. By assumption

ψ is moreover s-regular and h ∈ Cβ(R) with β ≤ s. Using Theorem 4.4 in [3], we can find

constants 0 < q < Q < ∞ such that q2−
j
2

(2α+1) ≤ |dj,k| ≤ Q2−
j
2

(2α+1) and |hj,k| ≤
Q2−

j
2

(2β+1) and obtain for any J,

‖X − h‖∞ ≤ CQ
(∑
j≤J

2−jα max
k
|ξj,k − hj,k/dj,k|+

∑
j>J

2−jα max
k
|ξj,k|+

∑
j>J

2−jβ
)
.

By assumption, there exists a δ > 0, such that L := E[|ξj,k|(1+δ)/α] < ∞. Introduce the

events

G≤ = {|ξj,k − hj,k/dj,k| ≤ 2(j−J∗)2α for j ≤ J∗ and all k},

G> = {|ξj,k| ≤ Lα/(1+δ)2(j−J∗)α/(1+δ/2) for j > J∗ and all k},

where J∗ is the smallest integer such that

CQ
(

2−J∗α
∑
r≥0

2−αr + Lα/(1+δ)2−J∗α
∑
r≥1

2−rαδ/(2+δ) + 2−J∗β
∑
r≥1

2−rβ
)
≤ ε,

which yields 2J∗ � ε−1/(α∧β) as ε → 0. On the event G≤ we have 2−jα maxk |ξj,k −
hj,k/dj,k| ≤ 2−jα2(j−J∗)2α = 2−J∗α2(j−J∗)α and on the event G>, 2−jα maxk |ξj,k| ≤
Lα/(1+δ)2−J

∗α2−(j−J∗)δα/(2+δ). Then on G≤ ∩ G>, thanks to the choice of J∗, we have

‖X − h‖∞ ≤ ε. Thus,

P(‖X − h‖∞ ≤ ε
)

(C.1)

≥
∏

j≤J∗, k
P
(
|ξj,k − hj,k/dj,k| ≤ 2(j−J∗)2α) ∏

j>J∗, k

P
(
|ξj,k| ≤ Lα/(1+δ)2(j−J∗)α/(1+δ/2)

)
.

On the event {|ξj,k − hj,k/dj,k| ≤ 2(j−J∗)2α} we have for j ≤ J∗ and R′ := 1 + q−1Q

|ξj,k| ≤ 2(j−J∗)2α + |hj,k/dj,k| ≤ 2(j−J∗)2α + q−1Q2j(α−β) ≤ R′2J∗(α−β)+ .

Since the random variables ξj,k are symmetric and have a unimodal density, we have fξ(x) ≤
1/2 for x ≥ 1 as well as P

(
|ξj,k − hj,k/dj,k| ≤ 2(j−J∗)2α

)
≥ 2(j−J∗)2αfξ(R

′2J∗(α−β)+). On the

j-th resolution level there are at most A2j wavelet coefficients with some positive constant

A. The first product in (C.1) can therefore be bounded from below by

∏
j≤J∗

(
fξ(R

′2J∗(α−β)+)2(j−J∗)2α
)A2j

≥ fξ(R′2J∗(α−β)+)A2J∗+1
∏
r≤J∗

2−2αr2−rA2J∗
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≥ fξ(R′2J∗(α−β)+)A2J∗+1
K−2J∗ (C.2)

for a sufficiently large constant K. To find a lower bound of the second product in (C.1),

observe that by the moment bound on ξjk

P(|ξj,k| ≤ Lα/(1+δ)2(j−J∗)α/(1+δ/2)) = 1− P(|ξj,k|(1+δ)/α > L2(j−J∗)(1+δ)/(1+δ/2))

≥ 1− 2(J∗−j)(1+δ)/(1+δ/2).

For any fixed j > J∗ we use (1 + δ)/(1 + δ/2) = 1 + δ/(2 + δ) and the elementary inequality

1− y ≥ e−2y, 0 ≤ y ≤ 1/2, and obtain∏
k

P(|ξj,k| ≤ L2(j−J∗)(1+δ)/(1+δ/2)) ≥
(
1− 2(J∗−j)(1+δ)/(1+δ/2)

)A2j

≥ exp
(
−A2J∗+12(J∗−j)δ/(2+δ)

)
.

This implies that the product
∏
j>J∗, k

P(|ξj,k| ≤ Lα/(1+δ)2(j−J∗)α/(1+δ/2)) can be bounded

from below by∏
j>J∗

exp
(
−A2J∗+12(J∗−j)δ/(2+δ)

)
= exp

(
−A2J∗+1

∑
k≥1

2−kδ/(2+δ)
)
≥ exp(−R′′2J∗) (C.3)

for a sufficiently large constant R′′. Recall that 2J∗ � ε−1/(α∧β). Because of fξ(x) ≤ 1/2

for |x| ≥ 1 and ε ≤ 1, we have for K ′ := 1 ∨ (logK + R′′)/ log 2, fξ(K
′ε−(α−β)+/β)K

′ ≤
2−K

′ ≤ K−1 exp(−R′′) and raising both sides to the power 2J∗ , K−2J∗ exp(−R′′2J∗) ≥
fξ(K

′ε−(α−β)+/β)K
′2J∗ . The result follows therefore from (C.1), (C.2), and (C.3).

C.1 Lemma.

1. Let Z1, . . . , Zm be i.i.d. random variables with E[eZ1/K ] ≤ er/K for some K, r > 0.

Then,

P
( 1

m

m∑
j=1

Zj ≥ r + t
)
≤ e−mt/K , t ≥ 0.

2. Let Z1, . . . , Zm be i.i.d. random variables with R := E[|Z1|e|Z1|γ/κ] < ∞ for some

γ ∈ (0, 1], κ > 0. Then for some C > 0 and all m ∈ N

P
( 1

m

m∑
j=1

|Zj | ≥ R+ t
)
≤ Ce−(tm)γ/κ, t ≥ 1.

Proof. The first inequality follows directly from the exponential Markov inequality:

P
( m∑
j=1

Zj ≥ (t+ r)m
)
≤ E[exp(Z1/K)]me−(t+r)m/K ≤ e−tm/K .
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To show the second assertion, consider the truncated random variables Vj,m := |Zj |1(|Zj | ≤
tm). Observe that ex ≤ 1 + xex for positive x and let Km = κ(tm)1−γ . Together with

Vj,m ≤ |Zj | and Vj,m = V γ
j,mV

1−γ
j,m ≤ |Zj |γKm/κ, we find

E
[
eVj,m/Km

]
≤ 1 +K−1

m E
[
Vj,me

Vj,m/Km
]
≤ 1 +

R

Km
≤ exp(R/Km).

From the first part we thus derive

P
( 1

m

m∑
j=1

Vj,m ≥ R+ t
)
≤ e−mt/Km = e−(tm)γ/κ.

On the other hand, we estimate by the union bound and Markov’s inequality

P(∃j = 1, . . . ,m : |Zj | > tm) ≤ mE[|Z1|e|Z1|γ/κ](tm)−1e−(tm)γ/κ = Re−(tm)γ/κ/t.

Taking the two deviations bounds together, we deduce the result for t ≥ 1.

Proof of Theorem 4.2. It is enough to prove the result for all n ≥ n0 with n0 a fixed integer.

We verify the conditions (i)− (iii) of Theorem 2.3, starting with condition (ii).

(ii): Apply Lemma 4.1 to (2.3). Since εn → 0, f0 − εn ∈ Cβ(R + 1) for sufficiently large n

and we deduce by assumption on εn

log
(

Π
(
f : ‖f + εn − f0‖∞ ≤ εn

))
≥ Dε−1/(α∧β)

n log
(
fξ
(
Dε−(α−β)+/β

n

))
& −nεn. (C.4)

(i): We first need to identify a Θn which covers most of the prior mass and has small metric

entropy. Besov spaces provide a natural framework to study wavelet decay. It turns out,

however, that the low resolution levels and the bias part should be embedded into different

Besov balls. For a level J and some constants p > α−1 and K > 0, which will be chosen

later, define

Θn =
{
g =

∑
j,k

ϑj,kψj,k :
∑
j≤J

2jp(α+1/2)
∑
k

|ϑj,k|p ≤ Kp2J ,

max
j>J

2jp(α+1/2−1/p)
∑
k

|ϑj,k|p ≤ Kp
}
.

Denote by

Bs
p,q(M) :=

{
g =

∑
j,k

ϑj,kψj,k :
(∑

j

2qj(s+1/2−1/p)
(∑

k

|ϑj,k|p
)q/p)1/q

≤M
}

the Besov Bs
p,q-ball with radius M and apply the usual modifications for p = ∞ and

q = ∞. For a reference see for instance [9], page 325. To bound the bracketing entropy

19



of Θn, observe that Θn ⊆ B
α+1/p
p,p (K2J/p) + Bα

p,∞(K) where the sum is the elementwise

addition. By the metric entropy bounds of Theorem 4.3.36 in [9], extended to the more

general quasi-Banach space setting p, q > 0 following [4] or [17], there exists a constant C ′

such that logN (δ,Bs
p,q(M), ‖ · ‖∞) ≤ C ′(M/δ)1/s if s > 1/p for any p, q > 0. In view of

α > 1/p the metric entropy bounds give

logN
(
εn,Θn, ‖ · ‖∞

)
≤ logN

(
εn/2, B

α+1/p
p,p (K2J/p), ‖ · ‖∞

)
+ logN

(
εn/2, B

α
p,∞(K), ‖ · ‖∞

)
. 2J/(αp+1)ε−1/(α+1/p)

n + ε−1/α
n .

Property (i) of Theorem 2.3 is therefore satisfied if

2J/(αp+1)ε−1/(α+1/p)
n + ε−1/α

n . nεn, α > 1/p. (C.5)

(iii): We bound Π(Θc
n). Recall that X =

∑
j,k dj,kξj,kψj,k and |dj,k| ≤ Q2−j(α+1/2) for all

j, k. Thus,

Π
(
Θc
n

)
≤ P

(∑
j≤J

2jp(α+1/2)
∑
k

|dj,kξj,k|p > Kp2J
)

+ P
(

max
j>J

2jp(α+1/2−1/p)
∑
k

|dj,kξj,k|p > Kp
)

≤ P
(
Qp2−J

∑
j≤J

∑
k

|ξj,k|p > Kp
)

+
∑
j>J

P
(
Qp2−j

∑
k

|ξj,k|p > Kp
)
.

On the j-th resolution level there are of the order of 2j wavelet coefficients. Since by

assumption fξ(x) ≤ γ−1e−γ|x|
q
, we have that E[|ξj,k| exp(γ|ξj,k|q/2)] < ∞. Thus, the large

deviations bound in Lemma C.1 with γ = q/p and m � 2J shows that for any constant

c > 0 there is some choice of K > 0 such that

Π(Θc
n) . exp(−c2Jq/p).

This means that (iii) of Theorem 2.3 is satisfied if there are constants J and c such that

c2Jq/p ≥ nεn, for some q with α > 1/(2q) for q ≤ p. (C.6)

Both (C.5) and (C.6) hold for some c, C if we choose 2J � (nεn)p/q and if

(nεn)1/q . (nεn)α+1/pεn and εn ≥ n−α/(α+1), (C.7)

provided α > 1/p, q ≤ p. In the case q > 1/α, we choose p = q and (C.7) is satisfied for

εn & n−α/(α+1). For q ∈ ((2α)−1, α−1] we can choose any p > 1/α such that α+1/p−1/q > 0

and (C.7) is satisfied for εn & n−(α+1/p−1/q)/(α+1/p−1/q+1). For a given δ > 0 we take p

sufficiently close to 1/α such that n−(α+1/p−1/q)/(α+1/p−1/q+1) ≤ n−(2α−1/q)/(2α−1/q+1)+δ.

This yields the claim.
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C.2 Remark. Observe that the condition p > 1/α in the proof for (ii) is due to the bias

part. This condition leads to a slower rate in the case q < 1/α as it forbids to choose

p = q. In nonparametric Bayes, wavelet priors with uniform ξj,k have frequently been con-

sidered which allow for a particularly simple analysis of the high-resolution levels. Indeed

for uniform priors on the wavelet coefficients, p > 1/α always holds and one can even ar-

gue directly using the deterministic bound ‖
∑

j>J,k dj,kξj,kψj,k‖∞ .
∑

j>J,k 2−jα . 2−Jα.

Therefore, ‖
∑

j>J,k dj,kξj,kψj,k‖∞ ≤ εn/2 for the standard choice 2−Jα � εn and a correct

adjustment of constants. Thus, to verify the conditions (ii) and (iii) of Theorem 2.3 in this

case, it is enough to cover a subset Θ′n of the space {t 7→
∑

j≤J,k dj,kaj,kψj,k(t) : aj,k ∈ R}
using at most eCnε balls of radius εn/2 and show that Π((Θ′n)c) ≤ e−cnεn for sufficiently

large c.

Proof of Lemma 4.4. Since ψ is s-regular and β ≤ s, we have |hj,k| . 2−j(β+1/2). As ψ has

compact support, there exists a constant C such that

‖X − h‖∞ ≤ C
(∑
j≤J

2j/2 max
k
|ξj,k − hj,k|+ 2−Jβ

)
.

Let J∗ be the smallest integer J such that C(
∑

j≤J ε/(2JC)+2−Jβ) ≤ ε, implying 2−J
∗β .

ε. Then

P(‖X − h‖∞ ≤ ε) ≥ P(J = J∗)
∏

j≤J∗, k
P
(
2j/2|ξj,k − hj,k| ≤ ε/(2J∗C)

)
.

By construction, 2j/2|hjk|+ ε/(2J∗C) is uniformly bounded over all j, k and ε ∈ (0, 1] such

that for the positive continuous density fξ we find a uniform constant c > 0 with

∀j ≤ J∗, k : P
(
2j/2|ξj,k − hj,k| ≤ ε/(2J∗C)

)
≥ c2−J∗/2ε/J∗.

Together with P(J = J∗) ∝ exp(−BJ∗2J∗) and the fact that on the j-th resolution level

the number of wavelet coefficients is bounded by A2j for some A > 0, this shows that

P(‖X − h‖∞ ≤ ε) & exp(−BJ∗2J∗)
(

2−J
∗/2ε/J∗

)A2J
∗+1

and thus with ε � 2−J
∗β also log(P(‖X − h‖∞ ≤ ε)) & −J∗2J∗ � −ε−1/β log(ε−1), which

was to be shown.

Proof of Theorem 4.5. We verify the conditions (i)− (iii) of Theorem 2.3.

(i): To check the first condition, pick the largest Jn such that Jn2Jn ≤ c′nεn for some small

constant c′ > 0 to be chosen later. For a constant K, which will be chosen later to be large
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enough, define

Θn =
{
g =

∑
j≤Jn, k

ϑj,kψj,k :
∑

j≤Jn, k
|ϑj,k|q ≤ KqJn2Jn

}
.

Since there are at most A2Jn many non-zero wavelet coefficients in Θn for some constant A,

we just need a covering in RA2Jn . By a classical entropy bound, see [4] or Theorem 4.3.35

in [9] (whose proof also covers the case q ∈ (0, 1)), we have

logN
(
εn,Θn, ‖ · ‖∞

)
. A2Jn log

(
2/
(
A2Jn(εn/K)qJ−1

n 2−3Jn/2
))

. (Jn + log(ε−1
n ))2Jn .

Since log(ε−1
n ) . log n . Jn we obtain N

(
εn,Θn, ‖·‖∞

)
≤ C ′′eC′nεn for some finite constant

C ′, C ′′.

(ii): Since εn → 0, f0 − εn ∈ Cβ(R + 1) for sufficiently large n. The result follows from

applying Lemma 4.4 to (2.3) and

Π
(
f : ‖f + εn − f0‖∞ ≤ εn

)
≥ εDε

−1/β
n

n ≥ e−Cnεn ,

for sufficiently large C.

(iii): Observe that Π
(
Θc
n

)
≤ P(J > Jn) +P(

∑
j≤Jn, k |ξj,k|

q ≥ KqJn2Jn). The sum
∑

j≤Jn, k
is over A2Jn wavelet coefficients. Recalling Jn2Jn � nεn, Lemma C.1(1) with Z1 ∼ |ξjk|q

shows that we obtain Π(Θc
n) ≤ e−cnεn for a constant c > 0 that can be made as large as

needed by increasing K.

The assertion follows from Theorem 2.3.
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[9] Giné, E., and Nickl, R. Mathematical Foundations of Infinite-Dimensional Statis-

tical Models. Cambridge University Press, Cambridge, 2016.

[10] Hoffmann, M., Rousseau, J., and Schmidt-Hieber, J. On adaptive posterior

concentration rates. Ann. Statist. 43, 5 (2015), 2259–2295.

[11] Jirak, M., Meister, A., and Reiß, M. Adaptive function estimation in nonpara-

metric regression with one-sided errors. Ann. Statist. 42, 5 (2014), 1970–2002.

[12] Kleijn, B., and Knapik, B. Semiparametric posterior limits under local asymptotic

exponentiality. ArXiv e-prints (2012).

[13] Kutoyants, Y. Statistical Inference for Spatial Poisson Processes. Springer, 1998.

[14] Le Cam, L., and Yang, G. L. Asymptotics in statistics. Springer Series in Statistics.

Springer-Verlag, New York, 1990.

[15] Li, M., and Ghosal, S. Bayesian detection of image boundaries. Ann. Statist. 45, 5

(2017), 2190–2217.

[16] Lo, A. Y. Bayesian nonparametric statistical inference for Poisson point processes.

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59, 1 (1982), 55–66.

[17] Mayer, S., and Ullrich, T. Entropy numbers of finite dimensional mixed-norm

balls and function space embeddings with small mixed smoothness. Tech. rep., arXiv

eprint 1904.04619, 2019.

[18] Meister, A., and Reiß, M. Asymptotic equivalence for nonparametric regression

with non-regular errors. Probab. Theory Related Fields 155, 1-2 (2013), 201–229.

[19] Ray, K. Bayesian inverse problems with non-conjugate priors. Electron. J. Stat. 7

(2013), 2516–2549.

[20] Reiß, M., and Schmidt-Hieber, J. Nonparametric Bayesian analysis of the com-

pound Poisson prior for support boundary recovery. Annals of Statistics, to appear

(2019).

23



[21] Reiß, M., and Selk, L. Efficient estimation of functionals in nonparametric bound-

ary models. Bernoulli 23, 2 (2017), 1022–1055.

[22] van der Vaart, A. W., and van Zanten, H. Rates of contraction of posterior

distributions based on Gaussian process priors. Ann. Statist. 36, 3 (2008), 1435–1463.

[23] Wang, Y. Small ball problem via wavelets for Gaussian processes. Statist. Probab.

Lett. 32, 2 (1997), 133 – 139.

24


	1 Introduction
	2 General results on posterior contraction rates
	2.1 Likelihood and Bayes formula
	2.2 Main results

	3 Gaussian process priors
	4 Wavelet expansion priors
	A Proofs for Section ??
	B Proofs for Section ??
	C Proofs for Section ??

