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Abstract. With the advent of dedicated hardware for multicore pro-
gramming, parallel algorithms have become omnipresent. For example,
various algorithms have been proposed for the parallel computation of a
prefix sum in the literature. As the prefix sum is a basic building block
for many other multicore algorithms, such as sorting, its correctness is
of utmost importance. This means, the algorithm should be functionally
correct, and the implementation should be thread and memory safe.

In this paper, we use deductive program verification based on
permission-based separation logic, as supported by VerCors, to show
correctness of the two most frequently used parallel in-place prefix sum
algorithms for an arbitrary array size. Interestingly, the correctness proof
for the second algorithm reuses the auxiliary lemmas that we needed to
create the first proof. To the best of our knowledge, this paper is the
first tool-supported verification of functional correctness of the two paral-
lel in-place prefix sum algorithms which does not make any assumption
about the size of the input array.

Keywords: GPU verification · Deductive verification · Separation
logic

1 Introduction

With many emerging parallel computing paradigms and architectures, inves-
tigating how to parallelize algorithms to optimize performance has become an
active research area. General Purpose Graphics Processing Units (GPGPUs) are
a promising new parallel architecture, where many threads cooperate together,
executing the same instructions, but on different data.

One of the algorithms for which several parallel (GPU-based) implementa-
tions have been proposed is the prefix sum algorithm [4,9,15,20]. It takes an
array of integers and, for each element, it computes the sum of the previous ele-
ments. The prefix sum algorithm is used in many other algorithms, e.g. in radix
sort, quick sort, to solve recurrences, and in tridiagonal linear systems; see Blel-
loch [4]. Blelloch introduced a parallel in-place prefix sum algorithm and Harris
[12] adapted it for GPUs. Kogge-Stone [15] proposed a different parallel in-place
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prefix sum algorithm and Horn [13] adapted it for GPUs. These two parallel
versions [4,15] are the most used in practice and are available as a primitive
operation in many libraries (e.g., AMD APP SDK1, NVIDIA CUDA SDK2).

The GPU-based implementations of these two algorithms are widely used,
even as a building block for other algorithms (e.g., sorting). Therefore, the cor-
rectness of these algorithms is of utmost importance. This means that the algo-
rithms must be memory and thread safe (i.e. free of data races), and that they
must be functionally correct, i.e. it actually produces the result we expect. Con-
cretely, in this case functional correctness means that the result must be the
prefix sum of the input. In general, proving functional correctness of parallel
programs is a difficult task. In particular, proving the functional correctness of
these two parallel prefix sum algorithms is challenging for several reasons. First,
both algorithms are in-place, i.e. we need to reason about values that are unsta-
ble and change during the algorithm. Second, the computational pattern of the
algorithms makes it complex to reason about the final result. Therefore, it is a
challenge to find suitable properties to relate the internal computation steps in
the algorithms to the final result. In particular, in Blelloch’s algorithm, there
are two independent, but closely related phases with different computation pat-
tern in each phase, which makes the verification harder. As a result, establishing
functional correctness of the two algorithms is non-trivial.

For the verification, we use deductive verification, a static approach that
does not require running the programs. Intermediate annotations are added to
capture the intermediate properties of the program. Then, using a proof system,
the annotated code is translated into proof obligations which are discharged to
an automated theorem prover; in our case Z3.

To prove memory safety and functional correctness of two parallel prefix
sum algorithms, we use VerCors [5], which is a verification tool for reasoning
about the correctness of concurrent programs. First, we show how to verify the
correctness of Blelloch’s algorithm. An important feature of our verification is
that it is a non-trivial example of how ghost code3 helps to reason about in-place
algorithms. Second, we show how we can verify a different parallel in-place prefix
sum algorithm, Kogge-Stone, using the same approach as the first verification.
This demonstrates that the verification setup introduced in this paper (approach,
operations and lemma) is not specific to this particular case study and can be
used in other verifications. To the best of our knowledge, this is the only tool-
supported verification of data race-freedom and functional correctness of the two
most used parallel prefix sum algorithms for any arbitrary size of input. Note
that none of the existing other approaches to analyse GPU applications is able to
verify similar properties. Most approaches are dynamic [11,17–19,21], and only
aim to find bugs. Other existing static verification techniques [3,10,14,16] either
require a bound on the input size, or they do not fully model all aspects of GPU

1 http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-para
llel-processing-app-sdk.

2 https://developer.nvidia.com/gpu-computing-sdk.
3 Ghost code is not part of the algorithm and is used purely for verification purposes.

http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk
https://developer.nvidia.com/gpu-computing-sdk
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programming, such as the use of barriers. Furthermore, our work enables the
verification of other complicated parallel algorithms, such as stream compaction
and radix sort, that are built on top of the prefix sum algorithms.
Contributions. The main contributions of this paper are:

1. We show the parallel prefix sum algorithm by Blelloch is data race-free and
functionally correct for any arbitrary size of input, using deductive approach.

2. We show the lemmas used to verify the first algorithm are general enough to
prove data race-freedom and functional correctness of a different algorithm,
Kogge-Stone, for any arbitrary size of input.

Organization. Section 2 explains the necessary background, i.e., it introduces
VerCors, the two prefix sum algorithms verified in this paper, and their encoding
in VerCors. Section 3 and Sect. 4 describe how to specify and verify the correct-
ness of the prefix sum algorithms by Blelloch and Kogge-Stone, respectively.
Section 5 discusses related work and Sect. 6 concludes the paper.

2 Background

This section briefly describes VerCors and explains both parallel prefix sum algo-
rithms. In particular, it briefly discusses the VerCors verifier and its underlying
logic. We describe the prefix sum problem and then we explain the parallel algo-
rithms proposed by Blelloch and Kogge-Stone to solve this problem. In addition,
we discuss the pseudocode of the algorithms as we encoded in VerCors.

2.1 VerCors

VerCors is a verifier to specify and verify (concurrent and parallel) programs
written in a high-level language such as (subsets of) Java, C, OpenCL, OpenMP
and PVL, where PVL is VerCors’ internal language for prototyping new features.
VerCors can be used to verify memory safety (e.g., race freedom) and func-
tional correctness of programs. The program logic behind VerCors is based on
permission-based separation logic [1,7]. Therefore, the programs are annotated
with pre/post-conditions in permission-based separation logic [2,8]. Permissions
are used to capture which memory locations may be accessed by which threads.
Permissions are written as fractional values in the interval (0, 1] (cf. Boyland [8]):
any fraction in the interval (0, 1) indicates a read permission, while 1 indicates a
write permission. A write permission can be split into multiple read permissions
and read permissions can be added up, and transformed into a write permission
if they add up to 1. Blom et al. [6] show how to reason about GPU kernels
including barriers. We illustrate the logic to verify a GPU kernel by an example.
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List. 1. A simple annotated GPU program

1 /*@ context_everywhere array != NULL && array.length == size;

2 requires tid != 0 ==> Perm(array[tid-1], read);

3 requires tid == 0 ==> Perm(array[size-1], read);

4 ensures Perm(array[tid], 1);

5 ensures tid != 0 ==> array[tid] == \old(array[tid-1]);

6 ensures tid == 0 ==> array[tid] == \old(array[size-1]); @*/

7 __kernel void rightRotation(int array[], int size) {

8 int temp;

9 int tid = get_global_id(0); // get the index

10 if (tid != 0) { temp = array[tid-1]; } else { temp = array[size

-1]; }

11
12 /*@ requires (tid != 0 ==> Perm(array[tid-1], read)) **

13 (tid == 0 ==> Perm(array[size-1], read));

14 ensures Perm(array[tid], 1); @*/

15 barrier(CLK_GLOBAL_MEM_FENCE);

16 array[tid] = temp;

Verification Example. List 1 shows a specification of a simple kernel that
rotates the elements of an array to the right4. To specify permissions, we use
predicates Perm(L,π) where L is a heap location and π a fractional value in
the interval (0, 1]5. Preconditions and postconditions, keywords ’requires’ and
’ensures’, respectively (lines 2–6), should hold at the beginning and the end
of the function, respectively. The keyword ’context everywhere’ is used as an
invariant (line 1) that must hold throughout the function. As preconditions,
each thread has read permission to its left neighbor (except thread 0 which
has read permission to the last index) in lines 2–3. The postconditions indicate
each thread has write permission to its location (line 4) and the result of the
function as right rotation of all elements (lines 5–6). Each thread first reads its
left location (lines 10). Then it synchronizes in the barrier (line 15). When a
thread invokes a barrier, it has to fulfill the barrier preconditions, and then it
can assume the barrier postconditions. Additionally, it has to be shown that
the barrier only redistributes the resources that are available by the threads
upon entering the barrier. In this case, each thread gives up read permission on
its left location and obtains write permission on its own location (lines 12–14).
After that, each thread writes the value read before to its own location (line
16). Note that, we use && for logical conjunction (line 1) and ∗∗ as separating
conjunction in separation logic (lines 12–13). Moreover, the keyword \old is
used for an expression to refer to the value of that expression before entering a
function (lines 5–6). The OpenCL example is translated into the PVL language of
VerCors, using two parallel nested blocks. The outer block indicates the number
of workgroups and the inner one shows the number of threads per workgroup
(see [6] for more details). In this case study, we reason at the level of the PVL

4 We assume there is one workgroup and ’size’ threads inside it.
5 The keywords ’read’ and ’write’ can also be used instead of fractions in VerCors.
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Fig. 1. After the up-sweep phase (left) and the down-sweep phase (right) in Blelloch’s
algorithm (two arrows coming to a circle indicates summation and one arrow indicates
replacement, red color values show the effect of computations and circles with thick
border are indicators as in Algorithm 1). (Color figure online)

encoding directly, but it is straightforward to adapt this to the verification of
the OpenCL kernel.

2.2 Prefix Sum Algorithms

Given an array of integers, the prefix sum of the array is another array with the
same size such that each element is the summation of all previous elements. We
define an algorithm as an (inclusive) prefix sum if it satisfies the following:

– INPUT: An array Input of integers of size N .

– OUTPUT: An array Output of size N such that Output[i] =
i∑

t=0

Input[t] for
0 ≤ i < N .

In the exclusive prefix sum algorithm, where the ith element is excluded from
the summation, the output will be:

– OUTPUT: An array Output of size N such that Output[i] =
i−1∑

t=0

Input[t] for
0 ≤ i < N .

Blelloch’s Parallel Prefix Sum. Blelloch’s algorithm [4] consists of two
phases: up-sweep and down-sweep. Figure 1 illustrates both up and down-sweep
phases visually, and Algorithm 1 shows the encoding of the in-place algorithm
in VerCors. The up-sweep part in the figure corresponds to lines 2–8 of the
algorithm and the down-sweep part corresponds to lines 12–23. Therefore, each
iteration in the up/down phases in Algorithm 1 (lines 3–8/16–23) correspond to
different levels in Fig. 1. We suppose that at the beginning of Algorithm 1, the
input and output array have the same values. There is a variable, stride, which
initially is 1 (line 2) and it is updated in both phases (lines 8 and 23). In the
figure, the input values are at level 0 in the up-sweep phase. As we can see, in
each iteration of the up-sweep, each pair is summed up at each level. As a result,
the last element at the highest level is the summation of the input values. In the
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Algorithm 1. Blelloch’s Prefix Sum Algorithm
1: function exclusive prefixsum(int[] Input, int[] Output, int tid , int N )
2: int indicator = 2 × tid + 1; int stride = 1;
3: while stride < N do

4: if indicator < N && indicator ≥ stride then

5: Output [indicator ] = Output [indicator ] + Output [indicator − stride];

6: Barrier(tid);
7: indicator = 2 × indicator + 1;
8: stride = 2 × stride;

9:
10: Barrier(tid);
11:
12: indicator = N × tid + N - 1; stride = N / 2;
13: int temporary;
14: if indicator < N then

15: Output [indicator ] = 0;

16: while stride ≥ 1 do

17: if indicator < N && indicator ≥ stride then

18: temporary = Output [indicator ];
19: Output [indicator ] = Output [indicator ] + Output [indicator − stride];
20: Output [indicator − stride] = temporary;

21: Barrier(tid);
22: indicator = (indicator - 1) / 2;
23: stride = stride / 2;

down-sweep phase, we first set the last element to 0. Then, we use the partial
sums calculated from the up-sweep to compute the prefix sum of the input as
indicated at the lowest level in down-sweep. Note that in order to synchronize
threads at each level of both phases, a barrier is needed (lines 6 and 21). There is
also a barrier between up-sweep and down sweep (line 10). The main purpose of
having this barrier is for a specification to redistribute the threads permissions.

Kogge-Stone’s Parallel Prefix Sum. In contrast to Blelloch’s algorithm,
Kogge-Stone’s [15] algorithm consists of one phase. Algorithm 2 illustrates the
encoding and Fig. 2 illustrates the algorithm visually. The levels in the figure
correspond to lines 2–11 of the algorithm. In the figure, the lowest level are the
input values. As we can see, at each level, each thread (tid) sums up elements in
locations tid and tid − offset . Since threads need current values before updating,
in the algorithm, we use an auxiliary variable, temp, and a barrier (line 7). The
threads are synchronized at each level by another barrier (line 10). As a result,
at the highest level, where offset exceeds the length of the array, the values are
the prefix sum of the values in the input array.
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Fig. 2. Kogge-Stone’s prefix sum algorithm (two arrows coming to a circle indicates
summation and one arrow indicates replacement, red color values show the effect of
computations and circles with thick border show tid ≥ offset as in Algorithm 2). (Color
figure online)

Algorithm 2. Kogge-Stone’s Prefix Sum Algorithm
1: function inclusive prefixsum(int[] Input, int[] Output, int tid , int N )
2: int offset = 1; int temp;
3: while offset < N do

4: temp = Output [tid ];
5: if tid ≥ offset then

6: temp = Output [tid − offset ] + temp;

7: Barrier(tid);
8: if tid ≥ offset then

9: Output [tid ] = temp;

10: Barrier(tid);
11: offset = 2 × offset;

3 Verification of Blelloch’s Algorithm

In this section, we explain how we verify Blelloch’s parallel prefix sum algorithm.
We first discuss how to prove data race-freedom and then functional correctness.
Instead of presenting the full specification, we explain the main ideas and veri-
fication steps by pictures and refer to Appendix A for the crucial annotations6.

3.1 Data Race-Freedom

To show that the algorithm is data race-free, we need to specify permissions
over resources that are shared among threads. Algorithm 1 has two arrays for
input and output. Thus, we specify how threads can read or write from these two
arrays. In the input array, each thread (tid) only needs read access to location
tid . The situation is more complicated for the output array. Figure 3 visualizes
the permission scheme of threads for the output array graphically. The red ele-
ments indicate the initial permissions for both phases. In the up-sweep, each

6 The source code is available at https://github.com/Safari1991/Prefixsum.

https://github.com/Safari1991/Prefixsum
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Fig. 3. Permission patterns for array of length 8: (left) up-sweep and (right) down
sweep phases of Blelloch’s algorithm (Wti indicates thread i has write permission, red
color indicates initial permissions of active threads, blue shows changes in permission
pattern and green shows lost permissions which assigned to thread 0. (Color figure
online)

thread needs write access to indicator and indicator − stride (line 5 in Algo-
rithm 1). Since initially, indicator and stride are 2 × tid + 1 and 1, respectively,
we specify write access for each thread to locations 2 × tid + 1 and 2 × tid ,
indicated by red color in Fig. 3 (left). Then, in each iteration, indicator and
stride are updated. Therefore, in the barrier of up-sweep (line 6), we change the
permissions according to the new values of indicator and stride, as shown in
blue.

Note that, in each iteration some threads lose permissions, since indicator
exceeds the array length (N). According to this scheme, at the end of up-sweep,
no threads have permissions left to access elements of the output array due
to indicator > N (blue color disappears). However, we need the same pattern
of permissions in down-sweep, and in the barrier between up and down sweep
(line 10), we cannot invent permissions, but we can only redistribute the current
permissions. To solve this, we specify that one random thread (thread 0) collects
the lost permissions in each iteration (indicated by green). As we can see, at the
end of up-sweep, thread 0 has write permission to all locations in the array.

In the down-sweep phase, Fig. 3 (right), we have the same permission pattern
in reverse direction. In down-sweep, thread 0 is the only one whose indicator
initially is in the bound of the output size (i.e, indicator is N × tid + N − 1 ).
Thus, initially, thread 0 has write access to indicator and indicator − stride
(indicated in red). Note that, at the beginning of this phase we update stride to
N/2. Thread 0 also has write permission for the rest of elements (indicated by
green color), since we need the permissions to redistribute them in the barrier
of down-sweep (line 21). As we can see, when we move down, the permission
scheme changes according to indicator and stride. In the end, each thread (tid)
has write permission to its own location (tid) of the output array. In this way
threads can safely compute the prefix sum in parallel.
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3.2 Functional Correctness

To verify functional correctness, we show that at the end of this algorithm,
the output array contains the prefix sum of the input array. Proving functional
correctness of this algorithm is particularly challenging because:

1. The algorithm is in-place; which means the elements change in each iteration.
2. There are two phases in the algorithm, each with different computations.
3. The intermediate steps are non-trivial, and non-trivial invariants have to be

proven to conclude that indeed the prefix sum is proven.

To overcome the above challenges, we keep track of the values in each iteration
of the algorithm. For this history of values, we use ghost variables (i.e., for each
iteration in both phases, we assign the current values of the output array to a
ghost variable of type sequence). Moreover, we need to specify invariants that
relate the computations in up-sweep and down-sweep. If we look at the only
values that change in Fig. 1 (red-colored values), we notice that in up-sweep
(left) the sum of those values equals the sum of the values in the input array in
each iteration. Further, in the down-sweep (right), the red values at each level
are the prefix sum of the red values at the corresponding level in the up-sweep.
Therefore, our general strategy to tackle the above challenges is:

1. Define different ghost variables in both up-sweep and down-sweep to keep a
history of values.

2. Define mathematical functions to update the ghost variables (according to
actual computations) in each iteration of the algorithm.

3. Prove functional correctness over the ghost variables using two invariants:
– In up-sweep, the sum of values that change in each iteration equals the sum
of the values in the input array.
– In down-sweep, the values that change at each level are the prefix sum of
the values that change at the corresponding level in up-sweep.

4. Relate the ghost variables to the actual arrays; i.e., prove that the elements
in the ghost variables capture the same elements as in the actual arrays.

Up-Sweep Ghost Variables. We go through the steps above to show func-
tional correctness of the algorithm. First, in the up-sweep phase, we define two
ghost variables: one to keep track of all values in each iteration as a full history
(f hist with type sequence of sequences), and one to keep history of the only
values that change as a partial history (p hist with type sequence of sequences).
We define two different ghost variables because p hist is used to show preser-
vation of the above two invariants, while f hist is used to prove that the ghost
variable in down-sweep is capturing the elements in the output array. Initially,
these two ghost variables contain the values in the input array.
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Fig. 4. Ghost variables: (left) Building f hist by applying Build full history to
f hist prev lvl , blue color indicates how value changes, (middle) Building p hist by
applying Build partial history to p hist prev lvl , colors show combination of each pair
and (right) creating down seq by applying p sum to p hist lvl . (Color figure online)

The next step is to define mathematical functions over these ghost vari-
ables to update them in the same way as the actual computations do over the
actual arrays. To update f hist in each iteration of up-sweep, we must add a
new sequence of current values in the output array to the chain of sequences in
f hist . Therefore, we define a Build full history function as shown in List 2. The
function takes the previous level in f hist , named as f hist prev lvl , the stride
and an integer i. The integer i, starts from 0 and increases up to the length of
f hist prev lvl , indicates the location of elements in f hist prev lvl to be updated.
The Build full history function goes through all elements and updates the ele-
ments if the condition (i%(2 × stride)) == (2 × stride − 1) && (i ≥ stride)
holds (lines 11–13), otherwise it keeps the elements unchanged (lines 14–15).
Note that, this is a recursive function that captures the same computation as
in the algorithm, but over the ghost variable. The postconditions (lines 2–8)
specify that the result is either the sum of two elements (according to stride) if
the condition holds (lines 3–5) or unchanged (lines 6–8) otherwise. By applying
this function (to f hist prev lvl), in each iteration of the algorithm, a full his-
tory of values is created like a matrix as sequence of sequences (Fig. 4 (left)). In
the figure, the underlined elements show the locations where the condition (in
Build full history) holds and the blue ones show how the values change accord-
ing to stride.
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List. 2. The Build full history function

1 /*@ requires stride > 0 && stride < |f hist prev lvl|;
2 ensures |\result| == |f hist prev lvl|-i;
3 ensures (\forall int j; j ≥0 && j <|\result|; ((i <|f hist prev lvl|) &&

4 ((i+j)≥stride) && (((i+j)%(2×stride)) == (2×stride-1))) ==>

5 \result[j] == f hist prev lvl[i+j] + f hist prev lvl[i+j-stride]);
6 ensures (\forall int j; j ≥0 && j <|\result|; ((i <|f hist prev lvl|) &&

7 (((i+j)<stride) || (((i+j)%(2×stride)) != (2×stride-1)))) ==>

8 \result[j] == f hist prev lvl[i+j]); @*/

9 static pure seq<int> Build full history(seq<int> f hist prev lvl, int stride,
10 int i) = i <|f hist prev lvl| ? (

11 ((i%(2×stride)) == (2×stride-1) && (i ≥ stride) ?

12 seq<int> {f hist prev lvl[i] + f hist prev lvl[i-stride]} +

13 Build full history(f hist prev lvl, stride, i+1) :

14 seq<int> {f hist prev lvl[i]} +

15 Build full history(f hist prev lvl, stride, i+1) )) : seq<int> {};

To update p hist , which keeps only the values that change during the itera-
tions, we define a Build partial history function (see List 3). It takes the previous
sequence, p hist prev lvl , as an argument, and it creates a sequence that con-
tains the values that changed according to the actual computation by summin
up each pair of elements (lines 4–5). Note that, the function uses operations head
and tail, where head returns the first element of a sequence and tail returns
a new sequence by eliminating the first element. Figure 4 (middle) shows the
result of applying Build partial history to p hist prev lvl .

Down-Sweep Ghost Variables. Next, in down-sweep, we define a ghost vari-
able, down seq , as a sequence to keep the values that change only in the current
iteration. In this way, we can show that the values that change in down-sweep
are in fact the exclusive prefix sum of the values changed in up sweep in each
iteration. To update down seq in each iteration of down-sweep, we define a func-
tion, epsum (List 4), and we apply it to the corresponding level of p hist , shown
as p hist lvl in the function. The argument i is initially 0. Note that the intsum
operation sums all elements in a sequence and take(xs, i), returns the i first ele-
ments of a sequence xs. The epsum function calculates the exclusive prefix sum
for each element in p hist lvl and returns it as a sequence to update down seq .
As an example, Fig. 4 (right) shows how down seq is updated in each iteration.
As we can see, the elements in down seq are the exclusive prefix sum of the ele-
ments in p hist at each level. Hence, it is the exclusive prefix sum of the lowest
level which is the input array.
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Fig. 5. Relation between Output (left) and p hist (middle) according to active threads
(grey color) in the table (right): Output [indicator ] == p hist [lvl − 1 ][2 × tid + 1 ] and
Output [indicator − stride] == p hist [lvl − 1 ][2 × tid ] (lvl > 0).

List. 3. The Build partial history function

1 //@ requires |p hist prev lvl| ≥ 0;

2 static pure seq<int> Build partial history(seq<int> p hist prev lvl) =

3 1 < |p hist prev lvl| ?

4 seq<int> {head(p hist prev lvl) + head(tail(p hist prev lvl))} +

5 Build partial history(tail(tail(p hist prev lvl))) : p hist prev lvl;

List. 4. The epsum function

1 /*@ requires 0 ≤ i && i ≤ |p hist lvl|;
2 ensures |\result| == |p hist lvl|-i;

3 ensures (\forall int j; j ≥0 && j <|\result|;

4 \result[j] == intsum(take(p hist lvl, i+j))); @*/

5 static pure seq<int> epsum(seq<int> p hist lvl, int i) =

6 i <|p hist lvl| ? seq<int> {intsum(take(p hist lvl, i))} + epsum(

p hist lvl, i+1) :

7 seq<int> { };

Relating Ghost Variables and Concrete Variables. We proved functional
correctness over the ghost variables, but we need to prove it against the actual
arrays. Therefore, the last step is to relate them. First of all, It is trivial to
relate the levels in f hist to the output array, because of the postconditions in
List 2 (lines 2–8), but we should relate the output array and p hist . Figure 5
indicates the relationship between the output array and p hist , according to tid
and indicator , where gray colors (in the table) indicate the active threads in each
iteration. The loop of the algorithm starts from level 1. We update the values in
the output array according to the current values. Correspondingly, the values are
created in p hist according to the previous level. The indicator and stride are also
updated in each iteration. In the output array and p hist , the same colors belong
to one thread according to tid , indicator and stride. The invariants that we have
in each iteration of up-sweep is Output [indicator ] == p hist [lvl − 1 ][2 × tid + 1 ]
and Output [indicator − stride] == p hist [lvl − 1 ][2 × tid ]. To prove them as
loop invariants in VerCors, we need some smaller steps and prove a property:
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Fig. 6. Relation between the actual array, Output , (left) and the ghost variable,
down seq (middle) according to active threads (grey color) in the table (right).

Property 1. For any sequence xs:
∀i.0 ≤ i < |xs| → Build partial history(xs)[i] == xs[2 × i] + xs[2 × i + 1].

Using this property and the invariants, we can establish the relation between
the output array and p hist . The invariants that hold in each iteration of down-
sweep is Output [indicator ] == down seq [tid ] and Output [indicator − stride] ==
p hist [lvl][2 × tid ] (see Fig. 6, for an example). Again, the gray colors indicate
the active threads and the same colors (in ghost and array) belong to one thread.
To prove the invariants in the tool, we first prove these two properties:

Property 2. For any sequence xs:
∀i.0 ≤ i < |xs|/2 → epsum(Build partial history(xs))[i] == epsum(xs)[2 × i].

Property 3. For any sequence xs:
∀i.0 ≤ i < |xs|/2 → epsum(xs)[2 × i + 1] == epsum(xs)[2 × i] + xs[2 × i].

As in up-sweep, by using the invariants, the two properties and several inter-
mediate small steps, we can establish the relation between down seq and the
output array. We refer to the implementation for further proof details.

4 Verification of Kogge-Stone’s Algorithm

This section explains the verification of Kogge-Stone’s parallel prefix sum algo-
rithm. We discuss how to verify this algorithm using the same approach as before.
Again, we first discuss data race-freedom and then functional correctness. We
only present the main ideas and refer to Appendix B for crucial annotations7.

4.1 Data Race-Freedom

To verify data race freedom of this algorithm, we need to specify permissions
over the output array. Figure 7 shows the permission pattern in each iteration.

7 The source code is available at https://github.com/Safari1991/Prefixsum.

https://github.com/Safari1991/Prefixsum
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Fig. 7. Permissions in Kogge-Stone’s algorithm; Rti,tj indicates read permission by
threads i and j, Wti indicates write permission by thread i, red color shows initial
permissions, blue/green show how the permissions change in the first/second barrier.
(Color figure online)

As in Algorithm 2, each thread (tid) first needs read permission to locations
tid and tid − offset (lines 4 and 6). Since offset initially is 1, each thread (tid)
needs read permission to its own (tid) and its left (tid − 1 ) locations as indicated
by the red color in Fig. 7. Then, in the first barrier (line 7), each thread gives
up read permissions and obtains write permission to its location to store the
results of the computation in line 9 (as shown in blue in Fig. 7). Finally, threads
reach the second barrier (line 10) and we change the permissions according to
the new value of offset for the next iteration. This is indicated in green in the
figure. This pattern is repeated by each iteration of the algorithm. At the end
of this algorithm, since offset is greater than all tids, each thread only has read
permission to its own location (tid).

4.2 Functional Correctness

Next, we briefly discuss how to verify functional correctness of the algorithm.
The difference between this algorithm and the previous one is that first, Kogge-
Stone is an inclusive prefix sum algorithm and second, there is only one phase.
Having one phase makes it easier to verify functional correctness, even though
this algorithm is in-place as well. We could reuse the functions and operations we
defined for the earlier verification. Since this algorithm is for an inclusive prefix
sum, first of all, we slightly change the definition of epsum to be an inclusive
prefix sum (ipsum). The strategy to verify this algorithm is the same as before,
i.e., we define a ghost variable to capture the elements in the output array and a
function to update this ghost variable in the same way as the actual computation
does. Then, we prove functional correctness over this ghost variable by using a
suitable property. Finally, we relate the ghost variable to the output array.

As we can see in Fig. 2, in each iteration, the values from index 0 up to
index offset are actually the inclusive prefix sum of the input array. We use this
property as a loop invariant to show that at the end of the algorithm, we have
the prefix sum of the input array. Thus, we define a ghost variable, temp seq ,
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and we update it inside the loop according to the partial prefixsum function in
List 5. This function captures the same computation as in the algorithm. We can
see from the postcondition of the function (lines 4–6 in List 5) that if index (and
the corresponding tid) is less than offset , then the second intsum returns 0, and
the first intsum returns the prefix sum up to index 8. Thus, in each iteration for
tid less than offset the result will be the prefix sum in temp seq . Therefore, in
the end, when offset is the length of the input (and output) array, all values in
the ghost variable are the prefix sum of the values in the input array.

List. 5. The partial prefixsum function

1 /*@ requires |input seq| ≥ 0 && index ≥ 0 && index ≤ |input seq|;

2 requires offset > 0 && offset ≤ 2×|input seq|;
3 ensures |\result| == |input seq| - index;

4 ensures (\forall int j; 0≤ j && j <|\result|; \result[j] ==

5 intsum(take(input seq, index+j+1)) -

6 intsum(take(input seq, index+j+1-offset))); @*/

7 static pure seq<int> partial prefixsum(seq<int> input seq, int index,
int offset) =

8 index < |input seq| ? seq<int> {intsum(take(input seq, index+1)) -

9 intsum(take(input seq, index+1-offset))} +

10 partial prefixsum(input seq, index+1, offset) : seq<int> { };

As we use offset in the function and from the postcondition that we defined,
VerCors can infer that in each iteration for tid less than offset , temp seq and
the output array have the same values (specified by a loop invariant). Thus, we
conclude that Kogge-Stone’s algorithm indeed computes the prefix sum.

5 Related Work

There are a few approaches to reason about GPGPU programs which mostly
focus on finding data races. In dynamic approach, programs are instrumented,
and then memory accesses are recorded by running them, trying to identify data
races (e.g., cuda-memcheck [18], Oclgrind [19] and GRace [21]). This is a simple
technique to apply, but since it depends on concrete inputs, it does not guarantee
the absence of data races. An improvement over this approach is dynamic sym-
bolic execution where concrete and symbolic (concolic) execution is used, such
as GKLEE [17] and KLEE-CL [11]. There are also several static approaches to
verify data race-freedom of GPGPU programs. In static approaches, we use logic
and theorem provers to guarantee the absence of data races. The key of this app-
roach is using invariants to prove data race-freedom. In addition to VerCors, tools
such as PUG [16] and GPUVerify [3] are based on this approach. Except VerCors
and VeriFast [14], none of these tools can reason about functional correctness
of parallel programs. VeriFast is a verification tool based on static approach to

8 Note that, the partial prefixsum is a recursive function. In lines 4–6, for the final
result, j is 0 and the parameter of take will be index + 1 , which means the first
index + 1 elements (i.e., starting from 0 it becomes up to element index).
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prove functional correctness of single-threaded and multithreaded C and Java
programs, but not able to reason about GPGPU programs.

The closest related work to our paper is by Chong et al. [10] where they ver-
ify data race-freedom and propose a method to verify functional correctness of
Blelloch’s and Kogge-Stone’s algorithm along with two other parallel prefix sum
algorithms for all inputs up to fixed sizes. They show that if a parallel prefix sum
algorithm is proven to be data race-free, then the correctness can be established
by generating one test case. Therefore, they use GPUVerify to prove data race-
freedom of 4 parallel prefix sum algorithms. Their approach is applicable for any
parallel prefix sum algorithm with other operations and types instead of sum-
mation and integers. Comparing VerCors to their tool, GPUVerify benefits from
more automation, while we need to specify the annotations manually. However,
since GPUVerify is based on model-checking approaches, to verify even data
race-freedom of GPU programs, the input size must be bounded. As a result,
they only show functional correctness for a fixed input size (a realistic size for
current GPUs). In this paper, we verified data race-freedom and also functional
correctness of the two algorithms for any arbitrary size of input. We believe that
it should be no problem to also prove the other two algorithms.

6 Conclusion

This paper shows how we verify data race-freedom and functional correctness of
the two most widely-used parallel prefix sum algorithms, Blelloch’s and Kogge-
Stone’s algorithm, for an arbitrary input size by encoding the algorithms into
VerCors verifier. Proving functional correctness of Blelloch’s algorithm is chal-
lenging for multiple reasons. First, the algorithm is in-place. Second, it consists
of two independent, but related phases and third, it is non-trivial to relate the
computations in both phases to conclude the desired end result (i.e., that it
establishes a prefix sum). We overcome these challenges by introducing ghost
variables and defining suitable functions that mimic the computations on the
ghost variables. Moreover, we prove suitable properties that help us to reason
about the algorithm. The verification of Kogge-Stone’s algorithm is not as hard
as the first one, since there is only one phase and the property that we define is
straightforward. We benefit from functions, operations and properties that are
defined in the earlier verification and reuse them in the second verification.

As future work, we plan to verify more complicated parallel algorithms that
use the prefix sum algorithm internally, such as stream compaction and sorting
algorithms. We also would like to investigate how to further automate the process
of proof creation. We believe that a substantial part of the required annotations,
in particular those related to permissions, can be generated automatically. In
addition, we plan to add a CUDA front-end to the tool.
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