®

Check for
updates

On the Industrial Application of Critical
Software Verification with VerCors

Marieke Huisman® and Rail E. Monti®

University of Twente, Enschede, The Netherlands
{m.huisman,r.e.monti}@utwente.nl

Abstract. Although software verification is evolving fast in both the-
oretical and practical aspects, it still remains absent from the actual
industrial production cycle. Case studies can help to encourage these
integrations. We report on our experiences applying software verification
in several projects with industry. In particular, we report on two projects
on the verification of tunnel control software at Technolution, where we
go from a high-level design to concrete code. These case studies show the
power of combining model checking (using mCRL2) and deductive ver-
ification (using VerCors) as complementary approaches. We also report
on a project with Thales, where we looked at antenna bearing control
software, and specified this based on their requirements documents. For
all cases, we report on lessons learned and on directions for future work
to improve both our tool and the industrial methodology for ensuring
software correctness. Notably, our second case study involves the mod-
elling and verification of critical software by a team of engineers from
Technolution. This case study is an ongoing project; we describe our
experience on the team’s learning curve for this experiment and present
the preliminary conclusions on the case study.

1 Introduction

Over the last years, software has become omnipresent in our daily lives, in a
very wide range of different applications, such as games, business software, and
embedded control software [29]. With the omnipresence of software, also the
potential consequences of software failures have increased, while at the same
time we see that all software contains bugs [15,26]. Thus, there is an urgent
need for tools and techniques that can be used to easily identify and prevent
bugs.

In this paper, we focus in particular on critical embedded control software,
and we investigate how formal verification techniques can be used to improve
the reliability of such control software. For this kind of software, reliability and
the absence of bugs is even more important than for other applications, as the
consequences of software errors can be very serious. To investigate how we can
improve the reliability of such software, we consider several case studies of indus-
trial control software, for tunnel and antenna bearing control, respectively, and
we discuss how we analysed those using techniques supported by the VerCors

© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12478, pp. 273-292, 2020.
https://doi.org/10.1007/978-3-030-61467-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61467-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-61467-6_18

274 M. Huisman and R. E. Monti

verifier for the verification of concurrent software [5]. The verification work on
these case studies has been done in close collaboration with our industrial part-
ners, Technolution and Thales. These companies have an elaborated software
development process, involving meticulous pair review, enormous test suits for
unit and integration testing, and a careful architectural design. However, the
preliminary results of our case studies show that despite this careful process, we
are still able to identify software errors using the VerCors verification technology.

The VerCors verification technology is mainly based on deductive verification,
i.e. a user annotates the source code with suitable pre- and postconditions, and
then from the specifications and the source code, the VerCors verifier generates
proof obligations (using the intermediate language Viper [20]), which are suit-
able for automated first-order reasoning, using e.g. Z3 [12]. In addition, VerCors
also provides techniques to reason about behavioural models of (concurrent)
programs [23,24]. Concretely, the user defines a model and then uses a model
checker (currently mCRL2 [16]) to reason about the model, while deductive ver-
ification is used to show that the source code implementation is a refinement of
the model.

The goal of the investigations described in this paper is three-fold. First of all,
we would like to demonstrate that it is indeed possible to use formal verification
techniques on industrial software, and that formal verification is able to find
errors in the software. Second, we would like to investigate what is needed to
make formal verification part of the main-stream development process, i.e. what
is needed to ensure that formal verification techniques become usable for non-
experts. The outcomes w.r.t. this goal can be divided into two parts. Part of
it is technical and related to the question how can we make formal verification
techniques easier to use. We will discuss some ideas in this direction in this paper
(see Sect.4.3). Part of the outcome is also psychological, i.e. it has to do with
how to convince our industrial partners that it is worthwhile to invest in the
use of formal verification techniques. This is a long-term process, which requires
to build up a trust relation. We started this process by inviting some of our
industrial contacts for the VerCors advisory board. However in the mean time
we realised it takes much more than just talking about what we are able to do. We
also need to demonstrate this on examples that are of interest to them. Moreover,
it involves identifying bugs and problems in the code they have developed, and
which cannot easily be identified with the quality-control cycle that is already in
place, i.e., the use of formal verification techniques really need to have additional
value. Third, we use these case studies to identify new directions of work for the
VerCors verifier, which need to be addressed to make sure that the verification
techniques can handle the size and complexity of modern industrial software.

Notice that the VerCors verifier has originally been developed for the verifi-
cation of concurrent software. In the case studies described in this paper, con-
currency is not relevant. However as one of the goals of the VerCors project is to
make verification of concurrent software accessible to non-verification experts,
we feel that the case studies presented in this paper are an important first step
in this direction. Moreover, the software components that we investigated here

On the Industrial Application of Critical Software Verification with VerCors 275

might be part of larger applications, where concurrency is used. Therefore, we
believe that it is important that formal verification technology combines ease of
use with support for a large range of language features, including concurrency.

Concretely, this paper describes three different case studies. The first case
study (Sect. 3) describes work we did for Technolution on detecting a deadlock
in tunnel control software. This case study has been described in detail else-
where [25], but we include a high-level description here because it illustrates our
point that incorporating formal verification in industrial software development
is a long-term process. This first case study was done on existing software with a
known bug. As we were able to identify the bug much faster, and in a systematic
way, this led to the second case study described in Sect. 4, where we use formal
verification techniques in parallel to the standard software development, and
in direct collaboration with some Technolution employees. In both these case
studies, we use our technique to specify a behavioural model, following Tech-
nolution’s design documents, and to analyse these models using mCRL2; while
using VerCors to show that their implementation adheres to the model. The third
case study (Sect.5) addresses the verification from a different perspective, as we
encode a requirements document directly into pre- and postconditions, and then
verify whether the code respects these pre- and postconditions.

For all case studies, we describe the lessons that we learned from the case
study, and we also identify directions for future research. As mentioned above,
future research is aimed at different directions: making verification technology
easier to use for non-experts, and improving our verification technology to make
it applicable to a larger range of applications.

Finally, this paper concludes with a discussion of related work in Sect. 6,
where we compare our experiences with other experience reports discussing the
use of formal verification in an industrial setting, and then concludes in Sect. 7
with the most important lessons that we learned from the case studies described
in this paper.

2 Background

2.1 VerCors

VerCors [5] is a static verification tool that focuses on the verification of (con-
current) programs written in high level programming languages such as Java,
OpenCL, OpenMP for C and its own prototypal verification language PVL. Ver-
Cors allows reasoning about data race freedom, memory safety, and functional
properties of (possibly non-terminating) concurrent programs. Static verification
in VerCors follows a design by contract approach: the user needs to specify the
code with program-annotations in the form of pre- and post-conditions, follow-
ing the style of JML [18]. VerCors then takes the program and its annotations
and translates it into a problem for the intermediate language verifier Viper [20].

VerCors implements permission-based Separation Logic (PBSL) [1,6] to rea-
son about different concurrency models, notably heterogeneous concurrency (e.g.
Java programs) and homogeneous concurrency (e.g. GPU kernels). For this, the

276 M. Huisman and R. E. Monti

program specification needs to explicitly express heap ownership in the form of
permission annotations.

Figure 1 shows an example of program specification for verification with Ver-
Cors. The lines prepended with //@ present VerCors specifications. Keyword Perm
is used to indicate heap ownership. For method inc we require that the thread
executing this method should have write permission to variable x in order to
change its value. This is done at line 5, where value 1 means full (write) per-
mission. The logic of VerCors verifies that the sum of all granted permissions to
a same heap location never exceeds 1, which ensures absence of data races in
a verified program. Then, we can ensure that the final value of x will actually
be the expected one (line 7). At line 6 we only ensure to return half (1\2) of
the permissions we obtained for x, i.e. a read permission. Retaining half of the
permission to x will actually cause the verification to fail at line 17, since we will
not be able to provide the write permission required by the second call to inc.

1 class Foo{ 11

2 12 //@ requires Perm(x,1);

3 int x; 13 //@ ensures Perm(x,1);

4 14 //@ ensures x == \old(x)+2;
5 //@ requires Perm(x,1); 15 void incx2(){

6 //@ ensures Perm(x,1\2); 16 inc();

7 //@ ensures x == \old(x)+1; 17 inc();

8 void inc(){ 18 }

9 x=x+ 1; 19

10 } 20)

Fig. 1. VerCors verification example.

Most interesting for the first two case studies in this work, VerCors features a
model-based verification technique [23,24]. This uses a process algebra language
to capture the behaviour of a software system by abstracting its access to shared
memory by means of actions. The model specifies the acceptable executions of the
system, and this can be verified to fulfil behavioural properties by an external
model checker. Our technique then allows to connect blocks of code from the
implementation to the actions in the abstract model. VerCors is then capable of
verifying if the model is actually an abstraction of the code, or equivalently, if
the implementation refines the model.

A central aspect of this technique is a formally proven deduction system
which allows to link the abstract modelled behaviour of the software and its
actual implementation. With this, we fill the usual gap between the model and
the implementation: (safety) properties that are proven valid in the model are
by refinement also true for the code.

The VerCors Advisory Board. The VerCors Advisory Board consists of members
of the Thales, BetterBe, Technolution, Rosen, and PolderValley, companies. It is
intended to be a place to exchange interests and experience with the industrial
side of software production. The members of the Advisory Board were selected
based on former interactions with them, who approached the VerCors team

On the Industrial Application of Critical Software Verification with VerCors 277

presenting some interest in formal verification. It was also intended that they
would represent an wide and diverse spectrum in the industrial application field
for formal verification. The Advisory Board is intended to meet with the VerCors
team twice a year. During the meetings we present our advances in support for
formal verification and we get feedback, new ideas and case study proposals from
the industrial side.

2.2 mCRL2

mCRL2 [8] is a state of the art tool set for model checking which offers an
ACP-style process algebra as modelling language and allows to verify properties
specified in modal p-calculus with data. The tool set offers around sixty different
tools to describe, manipulate and analyse the models.

Figure 2a shows an mCRL2 model of a producer/consumer protocol, where
the producer generates messages of type A and B, queues them, and sends them
to a consumer. Line 1 defines a new type T with constructors A and B. Line 3
defines several actions, parametrised by the type T. Lines 5 and 9 define process
P and C respectively representing the producer and the consumer respectively. P
is parametrised by an mCRL2 native type List, to queue up to two generated
messages. In line 12, init indicates the initial setting of the system: allow defines
the visible actions (opposite to usual hiding of actions) and comm renames the
multi-action snd|rcv to com to indicate that P and C will communicate by both
executing snd respectively rcv at the same time. Finally, line 16 defines that P
and C should execute in parallel.

Figure2b shows the labeled transition system of the producer/consumer
model as presented by the ltsgraph tool from the mCRL2 tool chain. This
tool allows to visually inspect the model described by the algebra. mCRL2 also
allows to minimise the models against several bisimulation notions, to reduce
the size of the generated state space.

3 Case Study 1: Tunnel Emergency Control Software

This section gives a high level overview of the first case study study [25] car-
ried out between our group and Technolution [27], a Dutch software and hard-
ware development company located in Gouda, with a recorded experience in
developing safety-critical industrial software. The aim of this case study was
to understand to what extent our formal verification tools could be applied in
the context of Technolution’s software development projects. The case study
analysed an emergency control module from a traffic tunnel system, by (1) for-
malising and verifying the design by means of the mCRL2 model checker and (2)
by demonstrating that the implementation is a refinement of the design by using
our VerCors tool. The main goal of the case study was to explore if the mentioned
combination of model checking and refinement by deductive verification could
really be applied to a real-world software product, and to what extent this would
be beneficial for the company involved, i.e. Technolution. We refer the curious
readers to [25] and [23] for more details about this case study.

278 M. Huisman and R. E. Monti

LTSGraph - Media/queue.Its

-] Automatic layout
([Bv B]) Attraction
1 sort T = struct A | B; A\ Wi
2 nev‘v(B]
3 act snd, rcv, new, com: T; | com®) Naturaltransition ength
4 ('([B]) Handle weight
5 proc P(q:List(T)) = ‘;@)
F [ney N
6 (#9<2) -> sum x: T . new(x) . P(g<l|x) nev)f(A) co®)) \ch\(A) oot
+ @A)~ / (A8
7 (#9>0) -> snd(head(q)) . P(tail(q)); }iﬁ‘“’ P
8 com(E) com(A)| new(®) B
9 proc C = | new(a) - .
v tart

10 sum x: T . rcv(x) . C; s Viuatsaton
11 s (-] Information
12 init [comia) it stte: 0
13 allou({new, conl, iy .
14 comm({snd|rcv->com}, M ea Number of state abels: 7
15 PCID 11 €O s (A T

38drag: move camera; scroll: zoom infout; Esc: reset viewpoint; Right click: fix a node/handle

(a) mCRL2 model of prod/cons. (b) 1tsgraph visualisation of prod/cons.

Fig. 2. mCRL2 model of a producer/consumer and its state space visualisation in the
ltsgraph tool.

3.1 Formal Verification of an Industrial Safety-Critical Traffic
Tunnel Control System

Technolution provided us with the specification and implementation of an
already deployed emergency control software from a traffic tunnel. This con-
trol system is in charge of ensuring that the right measures are taken when
any (possible) calamity is detected in the tunnel. These measures could be, for
instance, enabling fire extinguishers, turning on visual notification for people to
know how to get to a safe place, turning the fans in the right direction to expel
the smoke out of the tunnel, etc. This software is considered to be highly critical
and for this reason the Dutch government imposes very high reliability demands
on it, which are specified in a document of requirements that is over 500 pages
in length [21].

As expected, the development process of the traffic tunnel control system was
executed as an elaborate process of quality assurance/control, to satisfy the high
demands on reliability imposed by the Dutch government. Significant time and
energy has been spent on software design and specification, code inspection, peer
reviewing, unit and integration testing, etc. In particular, we were given a precise
design of the system, assisted by pseudocode definitions for each functionality
(see Fig.3 for an excerpt of [21]) and detailed state machines indicating the
possible state changes after executing these functionalities (see [25] for more
details). However, even though precise, the specification was informal and could
not be formally verified.

Our goal was to demonstrate how formal methods could aid the verification
of this control software by answering two main questions: (1) Is the informal
specification of the tunnel control system consistent, meaning that it does not

On the Industrial Application of Critical Software Verification with VerCors 279

1 Evacueer()

2 Evacueer de aangegeven verkeersbuis.

3 (Overgang 6)

4

5 Conditie: #substate = calamiteit_volledig
6 Acties: #substate := calamiteit_evacuatie
7 NaarEvacuatie ()

Fig. 3. Pseudo-code design of the Evacueer() function from the National Tunnel Stan-
dard [21].

reach undesired states such as deadlocks or present any dangerous behaviour?
and (2) does the actual implemented code follow the pseudocode specification?

Our approach to address the verification of these properties followed a com-
bination of verification techniques (see Fig.4 for a graphical representation of
the approach). To answer question (1), we used model checking, by developing
a formal model from the informal specification and verifying appropriate prop-
erties on this model. Particularly, we used the model checker mCRL2 for this
task. To answer question (2), we used the refinement technique developed for
VerCors [23,24], mentioned above, to formally prove that the code implementing
the controller followed the behaviour described by the model.

Desired
Properties

Model Checking
with mCRL2

Formal
Model

VerCors
Annotated
Code

Verification
with VerCors

Software
Design

Implemen-
tation

Developed at Technolution

Fig. 4. Scheme of our model based deductive verification approach to code verification.

3.2 Model Checking the Design

To build the model for the control system, we followed the pseudocode descrip-
tions of the intended functionalities and state machine diagrams describing the
state jumps triggered by these functionalities. We also took into account interest-
ing parts of the execution model, which slightly restricted the order of execution
of the functionalities.

280 M. Huisman and R. E. Monti

Although the initial model was too big to analyse, a series of abstraction
iterations allowed us to arrive to a sufficiently expressive and concise model, small
enough to verify. A couple dozen of properties elaborated by us after consulting
the team of engineers from Technolution were verified on the model. During the
verification we were able to identify a deadlock in the model, resulting from
an intricate combination of times and events, which is very difficult to discover
by methods traditionally implemented in industry. In fact, Technolution had
discovered this error by chance, and had intensionally given us a faulty design
to test our approach.

3.3 Code Verification by Refinement

Next, we used VerCors to prove deductively that the code developed by Tech-
nolution followed the formal specification of the tunnel, i.e. it refines the actual
model. An important property of our refinement technique is that it preserves
safety properties, such as deadlock freedom. The mCRL2 model is first translated
to an intended equivalent model in the specification language of VerCors. The
actions of the model can then logically be attached to sets of commands in the
corresponding code by annotating blocks of code. The proof rules that VerCors
implements allow to formally verify that the behaviour of the code follows the
behaviour of the model [23,24]. Actually, we did not verify the Java implemen-
tation, but we translated it into equivalent code in our prototypal verification
language (PVL), since at the moment this has a better support for the refine-
ment verification. Although there is no formal proof of the equivalence between
the original mCRL2 model and the VerCors model, the relation becomes quite
evident from the proximity of the model structure. During the verification refine-
ment we were able to conclude that the code followed the behaviour specified by
the model.

3.4 Lessons Learned

During this first case study, in roughly 7 working days, with a single PhD student
assigned to the project, we constructed a formal model of the informal specifi-
cation of the tunnel control system, analysed it using mCRL2, and used VerCors
to deductively prove that the implementation adheres to the specification. This
resulted in the detection of undesired behaviour, preventing the control sys-
tem from automatically starting the calamity procedure after an emergency has
been detected. Even though Technolution was already aware of this behaviour,
they only found it coincidentally, while we demonstrated that formal methods
can indeed help to find such undesired behaviours in a structural manner, and
within realistic time. It is our intention to continue investigating this technique
in further case studies with Technolution and other companies. We believe that
the success of this first step in the case study was highly influenced by the qual-
ity of the tunnel specification which, despite being informal, was well-structured,
and therefore had the potential to be formalised within reasonable time.

On the Industrial Application of Critical Software Verification with VerCors 281

Note that we did not find any discrepancies between the code and the spec-
ification by means of our refinement technique. We believe that this could be
because we verified an implementation that was already deployed and thor-
oughly tested. This partly jeopardised our goal of demonstrating the usability
of the technique, as the company only saw the extra effort, without any gain in
the form of bugs found. Nevertheless they became aware of the potential of the
technique and opened to new collaborations.

We also mentioned that we did not verify the actual Java implementation
but an intended equivalent PVL implementation. On future case studies we
would like to extend our tool support for the refinement technique to the rest
of our front end languages, in order to verify the actual code. This is in fact a
compulsory step for the systematic application of our technique in industry.

Finally, the experiences with this case study led to an idea to investigate if the
pseudocode specification language can be formalised into a domain specific lan-
guage (DSL), that can be automatically translated to mCRL2. We suspect that
the specification of the pseudocode description in terms of this language would
be a mechanical and straightforward activity. As a consequence, we expect that
this language will greatly reduce the effort of adopting our technique for further
verification at Technolution, in contrast to the steep learning curve necessary to
use the mCRL2 modelling language.

4 Case Study 2: A New Tunnel Emergency Control
Software

After the promising results of the first case study, we are currently working on a
follow up project with Technolution. In contrast to our earlier collaboration, in
this project we are working on the formal specification and verification during
the development process of a new tunnel project. Moreover, a team of engineers
from Technolution will be in charge of the formal modelling and model checking
verification steps, while we advise them and work on the verification of code.

A main goal of this follow up project is to understand how much effort it will
take the engineers at Technolution to learn formal verification and to what extent
they can use this knowledge to verify their software. Furthermore, we want to
obtain new insights and ideas on how to ease this process. Although not formally
a goal of the project, we expect to be able to shape the characteristics of the
DSL language as we mentioned as an insight from our previous case study with
Technolution. Another main goal of this case study is to showcase our refinement
verification with VerCors. We hope to increase the chances of finding bugs this
time, by targeting the implementation in the earlier stages of development.

Figure 5 shows the steps we agreed upon before the start of the project: a
team of two or three engineers from Technolution will use our help and expertise
to learn the modelling principles surrounding mCRL2. They will try to model
an interesting part of the tunnel specification by themselves, while only seeking
for our help if really needed. Once the first version of the code for the selected
components will become available to us, we will start the refinement verification
against the mCRL2 model from the Technolution team using the VerCors tool.

282 M. Huisman and R. E. Monti

Estimated in number of weeks
1[2]3]4]5]6]7[8]9]10[11]12]13]14

mCRL2 learning
tunnel modelling
components selection
VerCors refinement]

development

code 1st version

development 7

Fig. 5. Gantt chart of the steps of the project. White colour inside bars indicates the
progress already made. (Color figure online)

4.1 Progress of the Project

We started the project by teaching mCRL2 modelling to the Technolution team.
For this, we developed a series of slides presenting the main concepts of mod-
elling, focusing on their applicability. We also used the mCRL2 web tutorial [19]
for putting the learned concepts into practice. The other main standard source
to learn mCRL2 is the book “Modeling and Analysis of Communicating Sys-
tems” [16]. Although the engineers working in the project initially dedicated
considerable time to reading this book and understanding its concepts, they
finally concluded that it was ineffective for their purpose. They claimed that the
book assumes a thorough understanding of many formal mathematical concepts
and notations, not common for outsiders in formal verification, and that the
return on investment for understanding these concepts is not directly applicable
to the modelling; they experienced quite some distance between the learned con-
cepts and their application using the modelling language. They expect to have
sources better aimed towards the application of the verification methodologies.

In between the teaching meetings, we had several extra modelling meetings,
where we investigated the new tunnel specification and attempted to both figure
out the differences with the former project and to choose interesting new aspects
to model and verify. This turned to be beneficial in the sense that it also helped
the engineers to analyse how the different concepts of modelling could match the
different aspects of the system design.

When a good level of understanding of the modelling and verification con-
cepts was reached, the Technolution team was ready to select the target modules
to verify. The new tunnel differs from the former tunnel by being split into two
consecutive sections. It consists of two parallel tubes both split in half by a join-
ing lane (see Fig. 6 for clarification). This involves introducing new control units
and protocols to coordinate each segment of the tubes. The engineering team
decided to target these new modules for their verification.

On the Industrial Application of Critical Software Verification with VerCors 283

Joining lane
€ J
Tube A Upstream > Tube A Downstream
Tube B Downstream <A Tube B Upstream

r A\
Fig. 6. The new tunnel topology.

In the current stage of the project, the Technolution team is attempting to
model the selected modules. They are also defining the properties to verify and
use these to decide upon the level of abstraction they should apply during the
modelling. We expect the first version of the code to be available by August
2020. Then we will be able to start the verification by refinement with VerCors.

4.2 Lessons Learned Up to Now

Even though the project is still ongoing, we can already report on some important
observations, mostly involving the learning curve of the modelling language.

We found that the official material, i.e. the web tutorial [19] and book [16],
alone is not enough to learn the mCRL2 modelling language with an approach on
application: the tutorial examples helped to get started but they focus mostly
on covering each of the characteristics of the language, and miss a focus on real
case studies concerning for instance of distributed systems and communication
protocols. The book discusses the mathematical concepts behind the tool, and
lacks the practical approach desired by the engineers. For the same reason, its
language differs from the one used in practice and thus misguides the engineers
when trying to apply what they learn.

We also realised that the modelling language is too low level and general for
the usual purpose of the engineer. As an example, during some proof-of-concept
designs that we developed with the Technolution team, we came up with many
different solutions to the problem of communicating the state of a process to
another process. Some of these solutions turned out to be more efficient than
others, i.e. they generated a smaller state space for the same problem. Some were
actually found to be wrong solutions. Finding and understanding which one is
viable and more efficient could have been spared from us if this mechanism had
been offered at a higher level of abstraction.

Furthermore, we experienced that the complexity of p-calculus is highly
unpractical for our purpose. Of course the property specification language is
not necessary meant to be practical, but powerful. However, our experience was
that explaining the initial concepts of the logic, without yet involving the fix-
point modalities, already took a substantial amount of time and practice. The

284 M. Huisman and R. E. Monti

fixpoint modalities were presented from an application point of view as a way to
express finite/infinite recursions on the propositional formulas, or liveness and
safety properties respectively. Nevertheless the concept remains to be unclear,
and the typical working mode right now is to use pre-built templates and modify
them when needed to express a new property.

On a positive side, we experienced that with the current set-up for the case,
the attitude of the engineers involved is much more proactive in comparison to
our previous general experiences with students at university level. This makes it
possible to compensate for the experienced difficulties, such as not completely
understanding the intricacies of the modelling language.

4.3 Sketches on Future Directions

As mentioned before, we found that the complexity of the u-calculus formulas
are one of the weakest points in adapting our formal verification techniques to
an industrial setting. As a workaround, it was discussed several times during our
meetings that it would be convenient to prepare more template formulas, to avoid
reworking them each time a similar property has to be defined. An important
property of such patterns is that they can be tool independent, since they can be
translated into different logics for property specification. Furthermore, if defined
simple and intuitive, such patterns can reduce the learning curve for the use of
formal logics for specification.

As an example, in the context of emergency control systems, it is very com-
mon to require properties about recoverability: It is always possible to recover
from a calamity state. That is, we should always be able to take our system back
to a normal execution after a calamity has been resolved. A common way of
specifying such property by a p-calculus formula would look like:

[true*.enterCalamity] v.X (
[~exitCalamity™|{exitCalamity)trueA (1)
[true*.enterCalamity] X)

which is neither direct to understand nor to remember. Ideally, we would like to
use a declarative version such as

recover(enterCalamity, exitCalamity)

which is automatically translated into the formula above.

Of course, ideas for adapting the logics for property specification into more
suitable languages for a systematic use in industry are not new. For example,
the Bandera tool for Model Checking Java code [10], defines the Bandera tem-
poral specification language (BSL) [11]. The language consists of a set of com-
mon specification patterns corresponding to common classes of temporal require-
ments such as response, precedence or absence. For instance, a response property
requires that the occurrence of a designated state or event is followed by another
designated state or event in the execution. BSL also defines pattern scopes which

On the Industrial Application of Critical Software Verification with VerCors 285

restrict the fragments of execution where the property patterns are validated.
For instance a between scope may define that a certain pattern is expected to
be valid in between the occurrence of some pair of designated states or actions.
For example, property (1) can be expressed in BSL by using a 1eads to pattern
and a globally scope as follows:

exitCalamity leads to enterCalamity globally

The EVALUATOR3.5 tool from the CADP [14] project, defines a translation
from BSL to p-calculus [7].

Also SUGAR [4] presents an interesting approach to ease the specification of
properties in temporal formalisms by defining syntactic sugar on top of CTL. As
an example, a next_event operator, defined in terms of the weak until operator,
refers to the next time an event may occur, in contrast to AX which refers to the
next state. The language also defines a within operator to define properties to be
expected between two states or actions, and syntactic sugar to introduce counters
into the formulas. A similar approach is followed by the SALT [3] language,
where several syntactic sugars are introduced inspired by relevant case studies
on real-world specifications.

As an output of our case study, we plan to produce a list of interesting prop-
erties and patterns. We would like to analyse if some of the mentioned specifi-
cation languages effectively covers this list, or if we would need some extension
to them. An alternative direction would be defining a more specific language
tailored to emergency control systems in general. In any case, we consider that
it is important to still allow the use of the underlaying formalism for property
specification (p-calculus in the case of mCRL2), for a bigger expressive power
whenever needed.

5 Case Study 3: Antenna Bearing Controller in C

Next we discuss a third case study, provided by the Thales group [28]. Thales is
a world-scale software and hardware company specialised in defence technology,
digital identity and security, and transportation among others.

The goal of this case study is to understand how VerCors can improve the
quality of Thales’ software development. A parallel goal is to investigate what
needs to be improved in VerCors to be able to verify Thales’ software projects in
the future.

As part of our VerCors Advisory Board, a representative of Thales attended a
presentation about the type of verification we target with our tool. As a result,
they proposed us to verify a critical component of the control software for a
radar. This component is in charge of validating the messages obtained from the
sensors that measure the current position of the radar bearing.

286 M. Huisman and R. E. Monti

5.1 Case Study Settings

The settings for this case study considerably differ from the two case studies
discussed above. The code provided by Thales is completely written in C and
instead of a design document a requirements document was provided. We inves-
tigated how can we use VerCors C support to validate the code against the
requirements, and how to improve our support (if needed).

Structure of the Requirements. The bearing validation component can be divided
into several smaller modules, which are each in charge of the validation of spe-
cific data included in the messages received from the sensors. For each of these
modules, the requirement document defines a general requirement enumerating
which sub-requirements have to be fulfilled in order to validate a specific property
of the message assigned to this module (See Fig. 7 for clarification). The smaller
requirements define conditions to be fulfilled by specific values in the message.
These conditions are usually comparisons against predefined constants, or val-
ues in former messages, aiming to ensure the consistency of the newly arrived
messages. The structure of messages and their fields are defined in a separate
document and used in the conditions of the requirements.

Structure of the Code. On the implementation side, the messages from the sensors
are represented by structures with field names that closely follow the ones defined
in the requirements document. Other fields inside these same data structures
allow the code to keep track of the validity verdict for the message. In particular,
a valid field in the message structure indicates if the message is considered to
be valid, i.e. if it is considered to fulfil all the validity conditions from the radar
validation component. A few other fields are used as flags to indicate the cause
of invalidation of the message.

A single C-file implements the code to validate each requirement from the
validation component. The code follows the structure of the requirements doc-
ument. There are general functions which validate the general requirements by

SUB_REQ_O:

The validation component
shall verify that the
value of field F from the
message M lays between

REQ_MODULE_O: constants C and C’.
MODULE_O declares that .
message M is valid only SUB_REQ_N:
if SUB_REQ_O to SUB_REQ_N The validation component
are validated. shall verify that ...
(a) A general requirement. (b) Sub-requirements for (a).

Fig. 7. Structure of the requirements for the validation component. (Concrete names
from the case study have been anonymised for confidentiality reasons).

On the Industrial Application of Critical Software Verification with VerCors 287

void REQ_MODULE_O(struct Message *msg){
SUB_REQ_O (msg) ;
SUB_REQ_N(msg) ;

}

void SUB_REQ_O(struct Message *msg){
// set msg->flago to the result of validating SUB_REQ_O
// from the requirements document, and update msg->valid.

}

void SUB_REQ_N(struct Message *msg){
// set msg->flagy to the result of validating SUB_REQ_N
// from the requirements document, and update msg->valid.

}

Fig. 8. Structure of implementation code for 7

calling sub-functions which validate the sub-requirements. The message data
structure travels through the function calls as a parameter and the verdict of
the validations are written into it using the valid and flags fields (see Fig.8
for clarification).

5.2 Approach to Verification with VerCors

To verify the implementation of the validation component, we translated each
sub-requirement from the specification document to a postcondition for the func-
tion in charge of validating the corresponding sub-requirement. Figure 9 shows
an example specification for SUB_REQ_0 from Fig. 7b.

*Q

ensures (msg->valid && msg->flag_sub_req_0) ==
(C <= \old(msg->F) && \old(msg->F) <= C’);
@*\
void sub_req_O(struct Message *msg){

}

Fig. 9. Example of contract for verification of requirements.

288 M. Huisman and R. E. Monti

To validate a general requirement, such as the one in Fig. 7a, we specified its
corresponding function with the following postcondition:

ensures msg->validAlmsg->flag, A --- Almsg->flag, < condg A--- A condy;

where cond; encodes the conditions specified by sub-requirement 1.

To showcase the approach we validated a single general requirement (and
its sub-requirements) that was representative of the rest of them. We did not
find any implementation errors during the validation. However, while inspecting
the code, we found annotations in the form of comments indicating assumptions
on the use of certain functions, such as an argument being positive, and we
turned them into requirements of the alleged functions. During verification, we
realised that one of these assumption was not met. Fortunately, the documented
assumption was not considered in the implementation of the function and thus
it did not evolve into an error in the code. However, the engineers from the
Thales group considered this a useful discovery, because they claimed that most
of the times developers would blindly follow the assumption and not implement
a check inside the function in order to keep the code simple. Notice that these
specifications in the form of comments are completely overlooked by the test
suites which only involve testing the implementation code.

5.3 Lessons Learned

On the positive side, we discovered that even in relatively simple and well struc-
tured code, requirement inconsistencies can be overlooked by traditional testing
techniques, while they are easily spotted by our tool.

On the other hand, a first limitation we found while working on this case
study, is our poor support for the C language. For instance, support for structures
and floating point numbers was missing. While we were able to add support
for structures (in a limited fashion) quite easy, we decided in the meanwhile
to abstract from floating point calculations by rounding every value to a close
integer; the amount of work that it would take to add support for floats would
have stalled the case study.

In this same direction, it was interesting to learn the discrepancies between
the characteristics of the code used in industry and the one we imagine should be
targeted while developing VerCors. In fact we are more used to focus on intricate
algorithms with complex concurrency models, while this is usually the kind of
code that industrial critical software tries to avoid. The risks of producing this
kind of software, which is difficult to analyse, is too high. At the same time, we as
developers of a verification tool, overlook other aspects such as the importance
of having complete support of front end languages.

Another caveat we found in our tool is the amount of annotations needed
to verify relatively simple properties. Actually, most of the annotations belong
to permission-related constraints, inherent to VerCors’ separation logic based
verification. This problem was strengthened due the presence of large structures
with many fields for which the precise access permissions have to be defined at
each function contract.

On the Industrial Application of Critical Software Verification with VerCors 289

5.4 Directions for Improving VerCors

A first direction of improvement we observe from this case study is to broaden
our support for C. Some of this support can be added in a straightforward way,
or by just applying some (substantial) engineering effort. Some other aspects,
such as reasoning about floating point numbers will be a bigger challenge. We
can find inspiration for this in other verification tools which already support
these features, such as Why3 [30] or Frama-C [2].

We should also work on automating the annotations of contracts for verifica-
tion. The amount of annotations the developer needs to manually introduce is
sometimes overwhelming, and it makes the code difficult to read and maintain.
During this case study the rate reached up to around 10 lines of specification
code for each line of implementation code. A possible way to reduce this rate
would be to extend our C frontend by defining predicates to encapsulate anno-
tations, which are already present in our Java and PVL frontends. However, we
believe that adding this support may not be sufficient by itself, since we have
also found this problem in the other frontends before. A complementary solution
would be to work on fully automated, or semi-automated user-assisted proce-
dures to annotate permissions constraints. This solution will imply research work
to develop and to figure out to what extent we can be apply these techniques.

6 Related Work

The lessons learned and the various discoveries during or case studies are of
course not completely new to us, and we can find similar experiences in other
works. In [22] the authors present several case studies on critical software, one
of which is on deductive verification of a C program. They happened to find the
same problem we have with floating point numbers which are pervasive in this
kind of code. They also discus on the complexity of the verification languages
and the struggles that non-expert personnel have to go through to come up
with the right specifications to verify. They admit that even after 8 years of
conducting case studies at the same company, they have not yet managed to
introduce formal verification in a larger scale.

Dwyer et al. [13] hypothesise that a main cause of the difficulty of transition-
ing into industrial application of formal methods for verification is that practi-
tioners are unfamiliar with specification processes and notations. They propose
a pattern-based approach to property specification. We also discuss this, since it
has actually been a concurrent request from the engineers involved in our case
studies.

Larsen et al. [17] analyses 20 years of development of their model check-
ing tool UPPAAL. They emphasise the importance of industrial case studies
and collaborations, which they claim to have guided the construction of their
tool. From the lessons learned in this process, they highlight that reaching an
industrial impact of formal methods requires several iterations on collaboration
with industrial partners and a coordinated evolution of both the tool and the

290 M. Huisman and R. E. Monti

industrial methods. They also emphasise that, although formal, the specification
languages should be engineer-friendly in order to increase the chances of impact.

Cok [9] states that engaging the software developers responsible for code
development directly in the specification and verification process is a current
challenge. In this sense, we believe our work is making a valuable contribution,
since we are presenting an actual experience where we have managed to involve
the design engineering team of Technolution (as described in Sect. 4) in the tasks
of modelling, specifying and verifying their software product. In fact, it is not
easy to find similar case studies; in the big majority of cases, the experts in
formal verification are in charge of the experimentation.

7 Conclusion

A first conclusion from our work is that it takes time to build a relation with
industry that may result in the eventual adaption of formal verification into an
industrial environment and its application as a successful way of verifying critical
software. We noticed that our VerCors Advisory Board has been very helpful to
generate this relation; it allows us to communicate what we can do to industrial
partners, and to get proposals for case studies from them.

In our experience, case studies have been very useful. They helped us to
understand what are the usual problems that industry faces when developing
critical software, and they helped us to improve our tool to make it suitable to
solve such problems. We noticed that even some small success in a case study
can open further collaborations and experiments with the industrial partners,
since it showcases for them that there exists a real possibility of applying formal
methods in their industrial processes. We find that in general, they are interested
in finding techniques that can help them to improve software quality, as long as
there is a good trade-off between invested time and results.

From the case studies analysed in this work, we have derived several points
for improvement of our tool. These involve broadening the support for our fron-
tend languages by, for instance, supporting floating point reasoning, as well as
structures in C. We would also like to investigate patterns and DSL languages
for our model based verification, in order to ease its adoption, which is now quite
limited by the learning curve of the mCRL2 tool. Finally it is worth to investi-
gate automating the permissions specifications, which is currently an error prone
unpleasant job for the developer.

In the future we would like to continue with these case studies and spin-offs
that may emerge from them. We are looking forward to the results of our ongoing
tunnel control software verification with Technolution, and we will look for new
case studies on which to showcase our planned upgrades to the C frontend.

References

1. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. Log. Methods Comput. Sci. 11(1), 1-66 (2015)

On the Industrial Application of Critical Software Verification with VerCors 291

10.

11.

12.

13.

14.

Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In:
Giesl, J., Hahnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 127-141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_11
Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757-775.
Springer, Heidelberg (2006). https://doi.org/10.1007/11901433_41

Beer, 1., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 363-367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4_33

Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102-110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1_7

Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, 12-14 January 2005, pp. 259-270. ACM (2005)
The BSL to MU-calculus webpage. http://cadp.inria.fr/resources/evaluator/
rafmc.html. Accessed June 2020

Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21-39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

Cok, D.R.: Java automated deductive verification in practice: lessons from indus-
trial proof-based projects. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11247, pp. 176-193. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03427-6_16

Corbett, J.C., et al.: Extracting finite-state models from Java source code. In:
Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick Ireland, 4-11 June
2000, pp. 439-448. ACM (2000)

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: A language framework for express-
ing checkable properties of dynamic software. In: Havelund, K., Penix, J., Visser,
W. (eds.) Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification, Stanford, CA, USA, 30 August — 1 September
2000. LNCS vol. 1885, pp. 205—223. Springer, Heidelberg (2000). https://doi.org/
10.1007/10722468_13

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Ardis. M.A., Atlee, J.M. (eds.) Proceedings of the Sec-
ond Workshop on Formal Methods in Software Practice, 4-5 March 1998, Clear-
water Beach, Florida, USA, pp. 7-15. ACM (1998)

Fernandez, J.-C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu,
M.: CADP - a protocol validation and verification toolbox. In: Alur, R., Henzinger,
T.A. (eds.) Proceedings of the 8th International Conference Computer Aided Ver-
ification, CAV 1996. LNCS, New Brunswick, NJ, USA, 31 July — 3 August 1996,
vol. 1102, pp. 437-440. Springer (1996). https://doi.org/10.1007/3-540-61474-5_97

https://doi.org/10.1007/978-3-642-14203-1_11
https://doi.org/10.1007/11901433_41
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
http://cadp.inria.fr/resources/evaluator/rafmc.html
http://cadp.inria.fr/resources/evaluator/rafmc.html
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-03427-6_16
https://doi.org/10.1007/978-3-030-03427-6_16
https://doi.org/10.1007/10722468_13
https://doi.org/10.1007/10722468_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-61474-5_97

292

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.

M. Huisman and R. E. Monti

Ganapathi, A., Patterson, D.A.: Crash data collection: a windows case study. In:
Dependable Systems and Networks (DSN), pp. 280-285. IEEE Computer Society
(2005)

Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

Guldstrand Larsen, K., Lorber, F., Nielsen, B.: 20 years of real real time model
validation. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018.
LNCS, vol. 10951, pp. 22-36. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-95582-7_2

Leavens, G., Baker, A., Ruby, C.: JML: a notation for detailed design. In: Kilov, H.,
Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and Sys-
tems, pp. 175-188. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-
5229-1_12

mCRL2-Tutorials. https://www.mcrl2.org/web/user_manual /tutorial /tutorial.
html. Accessed May 2020

Miiller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.)
Dependable Software Systems Engineering, NATO Science for Peace and Security
Series - D: Information and Communication Security, vol. 50, pp. 104-125. 10S
Press (2017)

Landelijke Tunnelstandaard (National Tunnel Standard). http://publicaties.
minienm.nl/documenten/landelijke-tunnelstandaard. Accessed May 2020

Nyberg, M., Gurov, D., Lidstrém, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139-158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6_14

Oortwijn, W.: Deductive techniques for model-based concurrency verification.
Ph.D. thesis, University of Twente, Netherlands (2019)

Oortwijn, W., Gurov, D., Huisman, M.: Practical abstractions for automated verifi-
cation of shared-memory concurrency. In: Beyer, D., Zufferey, D. (eds.) Proceedings
of the 21st International Conference Verification, Model Checking, and Abstract
Interpretation, VMCAI 2020. LNCS, New Orleans, LA, USA, 16-21 January 2020,
volume 11990, pp. 401-425. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-39322-9_19

Oortwijn, W., Huisman, M.: Formal verification of an industrial safety-critical traf-
fic tunnel control system. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019.
LNCS, vol. 11918, pp. 418-436. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34968-4_23

Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Where the bugs are. In: 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISTTA),
pp. 86-96. ACM (2004)

The Technolution webpage. https://www.technolution.eu. Accessed May 2020
The Thales webpage. https://www.thalesgroup.com/en. Accessed May 2020

van Genuchten, M., Hatton, L.: Metrics with impact. IEEE Soft. 30, 99-101 (2013)
Why3 Floating point axiomatisation. http://why3.Iri.fr/stdlib/floating_point.html.
Accessed June 2020

https://doi.org/10.1007/978-3-319-95582-7_2
https://doi.org/10.1007/978-3-319-95582-7_2
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-1-4615-5229-1_12
https://www.mcrl2.org/web/user_manual/tutorial/tutorial.html
https://www.mcrl2.org/web/user_manual/tutorial/tutorial.html
http://publicaties.minienm.nl/documenten/landelijke-tunnelstandaard
http://publicaties.minienm.nl/documenten/landelijke-tunnelstandaard
https://doi.org/10.1007/978-3-030-03427-6_14
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-030-39322-9_19
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23
https://www.technolution.eu
https://www.thalesgroup.com/en
http://why3.lri.fr/stdlib/floating_point.html

	On the Industrial Application of Critical Software Verification with VerCors
	1 Introduction
	2 Background
	2.1 VerCors
	2.2 mCRL2

	3 Case Study 1: Tunnel Emergency Control Software
	3.1 Formal Verification of an Industrial Safety-Critical Traffic Tunnel Control System
	3.2 Model Checking the Design
	3.3 Code Verification by Refinement
	3.4 Lessons Learned

	4 Case Study 2: A New Tunnel Emergency Control Software
	4.1 Progress of the Project
	4.2 Lessons Learned Up to Now
	4.3 Sketches on Future Directions

	5 Case Study 3: Antenna Bearing Controller in C
	5.1 Case Study Settings
	5.2 Approach to Verification with VerCors
	5.3 Lessons Learned
	5.4 Directions for Improving VerCors

	6 Related Work
	7 Conclusion
	References

