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Abstract
The linear mixed effects model is an often used tool for the analysis of multilevel 
data. However, this model has an ill-understood shortcoming: it assumes that obser-
vations within clusters are always positively correlated. This assumption is not 
always true: individuals competing in a cluster for scarce resources are negatively 
correlated. Random effects in a mixed effects model can model a positive correla-
tion among clustered observations but not a negative correlation. As negative clus-
tering effects are largely unknown to the sheer majority of the research community, 
we conducted a simulation study to detail the bias that occurs when analysing nega-
tive clustering effects with the linear mixed effects model. We also demonstrate that 
ignoring a small negative correlation leads to deflated Type-I errors, invalid stand-
ard errors and confidence intervals in regression analysis. When negative clustering 
effects are ignored, mixed effects models incorrectly assume that observations are 
independently distributed. We highlight the importance of understanding these phe-
nomena through analysis of the data from Lamers, Bohlmeijer, Korte, and Wester-
hof (2015). We conclude with a reflection on well-known multilevel modelling rules 
when dealing with negative dependencies in a cluster: negative clustering effects 
can, do and will occur and these effects cannot be ignored.
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1 Introduction

The popularity of the linear mixed effects models (e.g., random effect models, 
multilevel models) is intuitively explained by the variety of different names under 
which the family of statistical models for clustered data are known. In clustered 
data (e.g., hierarchical data, multilevel data) observations are associated, and not 
independently observed (Dorman 2008). Dependencies among observations in 
clusters can be expressed as a correlation, where positively correlated observa-
tions share similar information (Kenny and Judd 1986), and are not as informa-
tive as independent observations (Galbraith et  al. 2010). Only when accounting 
for the correlation between clustered observations, correct statistical inferences 
can be made. In the well-known multilevel modelling framework (McCulloch 
et  al. 2008), this correlation is modelled by a random effect –also known as a 
latent variable– where clustered observations are positively correlated since they 
share the same random effect. The variance of the random effect then determines 
the strength of the correlation. As a result, the multilevel modelling frame-
works restricts correlations to be positive, since a variance parameter cannot be 
negative.

However, negative correlations among clustered observations can and do occur 
(Kenny et al. 2002). For instance, when fixed resources are divided among group 
members, in non-random sampling when dissimilar groups are sampled by inten-
tion, or when there is competitive social interaction: when individuals compete 
for a scarce (and fixed) set of resources (e.g. litter mates are negatively correlated 
in terms of food, water and living space), and the speaking time of one individual 
is at the expense of another individual (Pryseley et al. 2011). When observations 
within clusters are negatively associated, observations within clusters are less 
alike than observations from different clusters (Kenny and Judd 1986). From a 
sampling perspective this is sometimes referred to as the situation where observa-
tions within a cluster are even less alike than under random assignment of obser-
vations to clusters (Molenberghs and Verbeke 2007; Verbeke and Molenberghs 
2003; Molenberghs and Verbeke 2011). Negative intra-cluster correlations (ICC; 
see Table 1 for an overview of the often used abbreviations) can also be detected 

Table 1  List with the often used abbreviations in the current article

Abbreviation Full term

CI Confidence interval
CR Coverage rate
ICC Intra-cluster correlation, intra-class correlation, intra-

class correlation coefficient
LM Linear model
LME Linear mixed effects (model)
CSM Covariance structure model
SE Standard error
VIF Variance inflation factor, also known as the design effect
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in randomized experiments, when evaluating the effects of covariates that vary 
systematically within each cluster (Norton et al. 1996).

In general, it is well-known that ignoring a small positive clustering leads to the 
incorrect assumption that the observations are independently distributed. It is our 
aim to extend this knowledge with the current article: we will show that ignoring 
a positive and negative clustering leads to a violation of the independence assump-
tion. In fact, any violation of the independence assumption (positive and negative) 
results in inaccurate Type-I errors, which increase the risk of accepting an incor-
rect hypothesis (Clarke 2008). Barcikowski (1981) quantified the effects of ignor-
ing small positive correlations in clustered observations in a two-level study design 
(with a group and an individual level). He showed that, when having ten observa-
tions per group, even the ignorance of an ICC as small as .01 can lead to an infla-
tion of making a Type-I error: a regression effect will be assumed to be significant 
with a significance level of 5% although the true significance level equalled 6%. Fur-
thermore, Barcikowski showed that the Type-I error increased for increasing val-
ues of the ICC. For an ICC of .05 the Type-I error rate is .11 and for an ICC of 
.40 the Type-I error is .46. Moreover, by increasing the number of observations per 
group the Type-I error is even more inflated (the findings of Barcikowski are in line 
with those of many others, see for example Clarke 2008; Dorman 2008; Rosner and 
Grove 1999).

As negative clustering effects are largely unknown to the sheer majority of the 
research community, we conducted a simulation study to detail the bias that occurs 
when analysing negative clustering effects with the linear mixed effects model in 
similar fashion as Barcikowski (1981). Towards that end, we demonstrate that ignor-
ing a small negative correlation leads to deflated Type-I errors, invalid standard 
errors and confidence intervals in regression analysis. We highlight the importance 
of understanding these phenomena through analysis of the data from Lamers et al. 
(2015). We conclude with an updated reflection on well-known multilevel modelling 
rules. In the remainder of this section, we discuss negative dependencies between 
observations in clustered data, show how the linear mixed effects model (LME) 
deals with negative clustering effects, and reflect on why the LME should include 
negative variance components. Note that the LME is used only to quantify bias 
when ignoring negative clustering effects. We stress that the LME is not designed 
to model negatively correlated observations and it should not be expected to per-
form properly to those cases. The covariance structure model (CSM) is introduced 
to deal with negative within-cluster correlations and this model is used in our real 
data example to examine negative clustering effects.

1.1  Type‑I errors and positive and negative dependencies between observations

The inflation of the Type-I error under violated of the independence assumption can 
be explained by the variance inflation factor (VIF), also referred to as the design 
effect (Kish 1965). In case of cluster sampling, a design effect that is greater than 
one is known to indicate a positive within-cluster correlation, indicating that obser-
vations are not independent of each other. When VIF > 1 the precision of cluster 
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sample estimates are less than that of those based on a simple random sample with 
a similar size. The homogeneity in clustered observations leads to less information 
in comparison to an independent random sample. When ignoring a small positive 
ICC, the VIF is underestimated, which leads to an underestimation of the standard 
errors (i.e. overestimating the precision), and the corresponding confidence intervals 
(CIs) are too narrow, and effect sizes will then also be incorrect as they depend on 
standard error (SE) estimates (Hox et al. 2010; Kenny et al. 2002). When the CI of 
an estimate is too narrow, there is an increase in the probability to reject a correct 
null hypothesis, which corresponds to an inflation of the Type-I error.

Although a few researchers have reported about negative clustering effects 
(Kenny et  al. 2002; Molenberghs and Verbeke 2007, 2011; Pryseley et  al. 2011; 
Oliveira et al. 2017; Verbeke and Molenberghs 2003; El Leithy et al. 2016; Klotzke 
and Fox 2019a, b; Loeys and Molenberghs 2013), the effects of ignoring negatively 
clustered observations has hardly been recognized. Because negative clustering 
effects are not considered by the majority of the multilevel modelling community, 
these effects are not well understood. This is partly caused by the fact that the mixed 
effect models (to which we also refer as ‘LME’, see Table 1) can only describe posi-
tive correlations, and cannot handle negative correlations among clustered observa-
tions (Searle et al. 1992). In the next section, it is explained why negative clustering 
effects cannot be modeled with LME, and we reflect on the key principles of nega-
tive ICCs.

The LME cannot identify any negative correlation and will assume indepen-
dently distributed observations. Researchers usually fix negative ICC estimates to 
zero and ignore any negative correlation within a cluster (Baldwin et al. 2008; Maas 
and Hox 2005). Furthermore, it is sometimes concluded that negative ICC estimates 
are caused by a small between-cluster variance (smaller than the within-cluster 
variance) and that such a small between-group variance can be ignored (Giberson 
et al. 2005; Krannitz et al. 2015; Langfred 2007). Other researchers relate negative 
ICC estimates to sampling error (cf. Eldridge et  al. 2009), which can be ignored. 
Others –such as Baldwin et al. (2008), Norton et al. (1996), and Rosner and Grove 
(1999)– stated that the Type-I error will be deflated when fixing a negative ICC to 
zero.

1.2  The linear mixed effects model and negative dependencies

In this study, we consider two models: the LME and a covariance structure model 
(CSM, see Table 1). Both models can assess clustered data, where a one-way clas-
sification structured is considered. In the one-way classification, a common correla-
tion is assumed among clustered observations, and observations from different clus-
ters are assumed to be independently distributed.

1.2.1  The linear mixed effects model

Without making an explicit distinction between a random variable and a realized 
value, the LME for the one-way classification is given by
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referred to as the random intercept model, where the random effect is assumed to 
be normally distributed, uj ∼ N(0, �) , and the error term is also assumed to follow a 
normal distribution eij ∼ N(0, �2) . A total of j = 1 ,… ,m clusters are assumed with 
each i = 1 ,… , n observations, which leads to a balanced study design. The common 
intercept and regression parameter are referred to as �0 and �1 , respectively. The out-
come yij is assumed to be independently distributed given the random effect uj.

It can be shown that the random effect uj defines a variance-covariance structure 
for the data. The covariance between two clustered observations is equal to (sup-
pressing the conditioning on �j)

and the variance of an observation equals

The dependence structure of the observations in the clusters �j modelled by the ran-
dom effect uj is given by

Thus, � = �2�n + �n� represents the dependence structure implied by the random 
effect uj . The �n is a matrix of dimension n with all elements equal to one and �n is 
the identity matrix.

1.2.2  The covariance structure model

An alternative specification of the LME in Equation (1) can be given. In this 
approach, the covariance structure is modelled directly and not indirectly through 
the specification of a random effect. The distribution of clustered observations is 
assumed to be multivariate normally distributed with a covariance matrix �,

where the errors are multivariate normally distributed, �j ∼ N(0,�) . We refer to 
the model in Equation (5) as the CSM. The development and use of the covariance 
structure model has a long history, which is intertwined with the development of 
factor models. Classic works in covariance structure modelling can be found in that 
tradition (e.g., Bock and Bargmann 1966; Jöreskog 1969, 1971). Fox et al. (2017), 
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Klotzke and Fox (2019a), and Klotzke and Fox (2019b) developed a novel Bayesian 
modelling framework in which they directly modelled the covariance structure of 
more complex dependence structures. In their Bayesian covariance structure model-
ling (BCSM) approach, dependencies among observations that are usually modelled 
through random effects are modelled directly through covariance parameters under 
the BCSM.

When comparing the modelling structure of the CSM (also referred to as BCSM; 
Klotzke and Fox 2019a, b) with that of the LME, it can be seen that the � is restricted 
to be positive in the model in Equation (1), since it represents a variance parameter. 
However, in the model in Equation (5), the � parameter can also be negative since it 
represents a covariance parameter. This makes the CSM more general than the LME, 
since the covariance parameters can be positive and negative, which allows for more 
flexibility in specifying complex dependence structures (cf. Klotzke and Fox 2019a, b).

1.3  The linear mixed effects model with negative variance components

There are some restrictions on the variance-covariance components in the CSM. 
From the definition of the error variance follows directly that the �2 is restricted 
to be greater than zero (i.e. 0 < 𝜎2 < ∞ ). However, the covariance parameter � is 
not necessarily restricted to be greater than zero. Under the CSM, the covariance 
matrix � needs to be positive definite, which that implies the restriction –for bal-
anced designs– n𝜏 + 𝜎2 > 0. This important result follows from Rao (1973, p. 32), 
where the determinant of a compound symmetry covariance matrix is expressed as

and the covariance matrix is positive definite if the determinant is greater than zero 
. Subsequently, � needs to be greater than −�2∕n . However, when modeling the 
covariance structure with the LME, the � is restricted to be greater than zero, since 
it represents the random intercept variance. In the literature, it has been shown that 
the maximum likelihood estimate of the random effect variance can become nega-
tive (Kenny et al. 2002; Molenberghs and Verbeke 2007, 2011; Pryseley et al. 2011; 
Oliveira et al. 2017; Verbeke and Molenberghs 2003; El Leithy et al. 2016; Klotzke 
and Fox 2019a, b; Loeys and Molenberghs 2013). For the (one-way) LME (for bal-
anced groups), two sums of squares are considered to estimate the covariance com-
ponents � and �2,

Consider the sum of squares SSA , which has as expected value n� + �2 . It follows 
that, 𝜏 = SSA∕(nm) − 𝜎2∕n , which leads to a negative estimate of � if 𝜎2 > SSA∕m . 
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This scenario is often neglected or referred to as statistically incorrect, restricting � 
to represent a positive covariance among clustered observations.

For 𝜏 > 0, the ICC is often interpreted as the ratio of variance explained by 
the clustering of observations in comparison to the total variance in the data; 
� = �∕(� + �2) (Raudenbush and Bryk 2002; Snijders and Bosker 2012; Oliveira 
et  al. 2017). However, the ICC can also be considered to quantify the degree of 
resemblance or average similarity of observations within a cluster, or as the ‘aver-
age correlation’ in each cluster (Kenny and Judd 1986; Kenny et  al. 2002). Then, 
conceptually, a negative covariance (𝜏 < 0) represents a negative ICC. In that case, 
� becomes negative, and the ICC represents a negative association among clustered 
observations (i.e. observations within clusters are less alike than observations from 
different clusters). A negative ICC simply represents the opposite of a positive ICC: 
if an observation in a cluster is below the population mean, then it is more likely that 
another value in that cluster is above the population mean if the observations are 
negatively correlated (Kenny and Judd 1986; Kenny et al. 2002).

Even though negative clustering effects were discussed previously by others (cf. 
Oliveira et al. 2017; Pryseley et al. 2011), there still appears to be a lack of aware-
ness about these effects. As the LME comes with the restriction that observations 
need to be positively clustered, several suggestions can be found in the literature that 
� should be set to zero, when the ICC estimate becomes negative (see for example 
Baldwin et al. 2008; Maas and Hox 2005; Gibson et al. 2015; Krannitz et al. 2015; 
Langfred 2007; Eldridge et al. 2009). In the next section, we will discuss our simu-
lation study which aims to not only show that fixing the ICC to 0 is –in fact– wrong, 
but also quantify the bias that arises when negative clustering effects are ignored.

2  Methods

The object of the simulation study was to quantify the estimation errors that are 
made in the statistical analysis, when ignoring a (small) negative or positive clus-
tering in the data. While ignoring a small positive and negative ICC, the accuracy 
of the intercept and regression parameter estimates, the SEs, the 95% CIs, and the 
inflation and/or deflation of Type-I errors were assessed.

A large number of clusters can compensate for biases that occur due to ignoring 
small ICC values, where the number of observations per cluster affects the magni-
tude of the Type-I error (Barcikowski 1981; Dorman 2008). In this study, m = 10 
clusters were considered to assess the bias, and the number of observations per clus-
ter n = {10, 15, 30} varied to examine the effects for small sample sizes. The error 
variance �2 was fixed to one, where � took on values ranging from −�2∕n to 0, in 
incremental steps of .02 and from 0 to .20 in steps of .05. The step size for 𝜏 < 0 
were set to .005 for n = 30, so that at least two negative values of � were used for 
data generation. For each condition a lower-bound was defined, �Lb = −�2∕n , which 
represented the lower bound on the allowable negative correlations in the clustered 
data. Only the CSM allowed generating data with negative correlations, where under 
the LME data could only be generated with positive correlations. The true value of 
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the intercept and slope parameter were set to 0 and 0.1 (�0 = 0 , �1 = 0.1), respec-
tively, and those parameters were considered to assess the effects of ignoring the 
correlation in the data. An intercept-only model and an intercept-slope were used to 
simulate data. However, note that we could have evaluated the intercept estimates 
under the intercept-slope model, since the slope parameter estimates would not be 
affected by the considered dependence structures, and could not interfere with infer-
ences about the intercept.

A Monte Carlo simulation study was used to evaluate the appropriateness of the 
LME as an analysis tool for negative clustering and small positive clustering effects. 
Therefore, data were generated under the LME (see Equation (1)) which only gener-
ated data with positively correlated observations in clusters. Data with negatively 
or positively correlated observations were generated according to the CSM (Equa-
tion 5), with a covariance matrix displaying the dependence structure in a cluster. 
The LME was fitted to data generated under the LME and under the CSM, and the 
parameter estimates (REML) for the LME were obtained using the lme4-package 
in R (Bates et al. 2015; R Core Team 2020). A linear regression model (LM) was 
also fitted that ignored any correlation in the clustered observations (positive or 
negative). Parameter estimates for the LM were obtained using the lm-function in 
the stats-package in R (the stats-package is a core package in R Core Team 
2020). The lmerTest-package was used to compute p-values of the fixed effects 
in the LME (Kuznetsova et  al. 2017), where Satterthwaite’s degrees of freedom 
method was used (Satterthwaite 1946). For each condition, a total of 1,000 data sets 
were generated, and reported per condition the average p-value, coverage rate (CR), 
SE, and bias of � estimate. The bias was computed as the average over replications 
between the estimate and the true parameter value. The average SE estimate across 
replications was computed and reported as the SE. The CR was computed as the 
percentage of times the true parameter value was located in the 95% confidence 
interval over data replications. The average of the computed p-values across data 
replications was considered to be the average p-value. The ICC values were close to 
the � values, since the error variance �2 was set to 1. Therefore, results were mostly 
reported for � and only sparsely for the ICC.

3  Results

We use this section to first discuss the simulation study. We also include a real 
data example to illustrate that not accounting for negative clustering can lead to an 
increase of a Type-II error. For this example, we re-used data from Lamers et  al. 
(2015), and Smink et al. (2019).

3.1  Coverage rate and Type‑I error

The 95% CRs were estimated for the intercept-only condition ( �0 = 0 , �1 = 0 ), and 
the intercept-slope condition ( �0 = 0 , �1 = .1 ; see Equation  1). For the intercept-
only condition, the results concerning the intercept are presented under the label 
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�0 . For the intercept-slope condition, the results concerning the slope are presented 
under the label �1 . In Table 2, results are given of data generated under the LME, 
which were analysed with the LME (model variant 1 in Table 2) and the LM (model 
variant 3), and results are given of data generated under the CSM which were ana-
lysed with the LME (model variant 2) and the LM (model variant 4). For data gener-
ated under CSM, (model 2 and 4) true values of � were also allowed to be negative. 
For data generated under the LME (model 1 and 3), the � was restricted to be greater 
than or equal to zero. Note that when � = 0 , the uj were equal to zero representing 
no variance across clusters (see Equation 1). The simulated data for � = 0 under the 
LME did not contain any clustering effects. For data generated under the LME, the 
CR was only computed for � ≥ 0.

The reported CRs of the intercept in the intercept-only condition showed bias. 
When the true value of � was smaller than zero, the CR was greater than .95, which 
means that the Type-I error was deflated. For all cluster sizes, the CR was at least .97 
for very small negative ICCs ( � = .01 ), with a maximum of one for more negative 
ICCs. A similar bias in CR estimates were found for the LME and the LM (model 
variant 2 and 4 in Table 2). Thus, for negative correlations the LME performed simi-
lar to the LM. Under the LME, the random effect variance � was estimated to be 
(approximately) zero, which made the LME similar to the LM as model for analysis 
for � ≤ 0 . Note that a CR of one is an upper bound, but the width of the CIs still 
increased for more negative values of �.

When the correlation was greater than zero, and the LM was used to analyse the 
data, the CRs were highly underestimated, where the underestimation was larger for 
n = 30 than for n = 10 . When increasing the correlation, the CRs were more under-
estimated. LM ignored correlation within groups, and the model assumed more 
information in the data than there actually was observed. This led to an inflation of 
the Type-I error, since a significant result was more easily obtained with estimated 
CIs that were too narrow. This bias was not expected when the LME was used as 
model for analysis. However, in that case also an underestimation of the CRs was 
observed. For increasing value of the correlation a decrease in the CR was observed. 
This underestimation increased when increasing the cluster size, and was observed 
for data generated under CSM as well as for data generated under the LME. For 
medium cluster sizes ( n = {15, 30} ), and relatively high correlations within a cluster 
(.10-.20), the CRs were underestimated, although the LME was used as the model 
for analysis. For all cluster sizes used in this simulation study, the coverage was at 
least .97 for small negative ICCs (� ≤ −.01), which means that the Type-I error was 
deflated. This effect was the same for the CSM variants. The LME cannot handle 
negative cluster correlation. When the true � was negative, � was estimated to be 
around zero under the LME, leading to similar results of the LME and LM.

For all model variants and all conditions, the CR of the slope parameter was 
(approximately) equal to 95%, representing the finding that the 95% CI covered 
the true value in 95% of the data sets. The estimated CRs for the slope parameter 
did not show any bias. Even for negative correlations among clustered observa-
tions were the CRs around the level of 95%. It was concluded that the ignorance 
of the correlation within groups did not have an influence on the Type-I error of 
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the slope parameter. Adjusting the level of correlation in the observations did not 
affect the regression effect or its precision of the predictor variable. As the slope 
was unaffected by the ignorance of the correlation, the remainder of this results 
sections only concerns data generated under the only-intercept condition.

Table 2  95% coverage rates for 
the intercept (�0) and the slope 
parameter (�1) for different 
cluster sizes (n = 10, 15, 30) 
and various correlations among 
clustered observations (�)

Note. The � is restricted to a lower bound L
b
= −�2∕n . For data gen-

erated under the LME � ≥ 0 . LME is the linear mixed effects model, 
CSM is the covariance structure model, LM is the linear regression 
model. GEN, the model that generated the data; ANA, the model that 
analysed the data

(1) (2) (3) (4)

GEN LME CSM LME CSM

ANA LME LME LM LM

� �0 �1 �0 �1 �0 �1 �0 �1

L
b
= −1∕10, n = 10

−0.09 1.00 0.93 1.00 0.94
−0.07 1.00 0.94 1.00 0.94
−0.05 1.00 0.95 1.00 0.95
−0.03 0.98 0.95 0.98 0.95
−0.01 0.98 0.95 0.97 0.96
0.00 0.96 0.94 0.97 0.95 0.95 0.94 0.95 0.95
0.05 0.93 0.94 0.94 0.94 0.89 0.94 0.90 0.95
0.10 0.94 0.95 0.94 0.95 0.86 0.96 0.86 0.95
0.15 0.94 0.95 0.93 0.94 0.81 0.95 0.80 0.95
0.20 0.94 0.94 0.94 0.94 0.76 0.95 0.80 0.95
L
b
= −1∕15, n = 15

−0.06 1.00 0.96 1.00 0.96
−0.04 1.00 0.95 1.00 0.96
−0.02 0.98 0.94 0.98 0.94
0.00 0.95 0.95 0.96 0.94 0.94 0.95 0.95 0.94
0.05 0.95 0.95 0.94 0.95 0.88 0.95 0.88 0.95
0.10 0.93 0.96 0.93 0.95 0.81 0.97 0.80 0.95
0.15 0.93 0.94 0.92 0.95 0.75 0.94 0.76 0.96
0.20 0.91 0.94 0.93 0.96 0.70 0.94 0.72 0.95
L
b
= −1∕30, n = 30

−0.03 1.00 0.95 1.00 0.96
−0.01 97 0.96 0.97 0.97
0.00 0.97 0.95 0.96 0.94 0.96 0.94 0.95 0.94
0.05 0.94 0.96 0.94 0.95 0.82 0.95 0.79 0.94
0.10 0.93 0.94 0.93 0.93 0.69 0.93 0.68 0.93
0.15 0.92 0.95 0.94 0.94 0.62 0.94 0.62 0.92
0.20 0.90 0.96 0.93 0.95 0.53 0.94 0.59 0.94
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3.2  Standard error and p‑value

Generally, when testing if the intercept is equal to zero, �0 = 0 and the true value 
is zero, then p-values are expected to be uniformly distributed and centred at .50. 
Furthermore, 5% of the p-values are expected to be smaller than or equal to .05. 
When the p-value is biased upwards, less than 5% of the p-values take a value of at 
most .05, which means that the Type-I error is deflated (i.e., a decrease in the prob-
ability to reject a correct null hypothesis). For p-values that are biased downwards, 
more than 5% of the p-values take a value of at most .05, which means that the 
Type-I error is inflated (i.e., an increase in the probability to reject a correct null 
hypothesis).

As can be seen in Table 3, for 𝜏 > 0 and the LME or CSM was used to generate 
the data, the p-values were centred around .50 for different positive values of � . This 
confirmed that LME can be used to control for the positive correlation in clustered 
data, and correct p-values were computed for the intercept. When the LM was used 
to analyse the data, for 𝜏 > 0, the p-values were underestimated. With increasing � 
that was ignored, the model assumed more and more information in the data than 
there actually was, which led to a higher percentage of significant p-values than the 
significance level of 5%. This led to an increase of the probability of rejecting a cor-
rect null hypothesis using a significance level of 5%.

For � equal to zero, the p-value was always biased upwards for data analysed with 
the LME, since estimates of � were upwardly biased when the � was negative or 
close to 0, see Table 3. This was caused by the lower bound for � under the LME. 
For negative � , the p-values were always overestimated, when analysing the data 
with LME or LM. This bias was similar under both models, since the LME and LM 
cannot control for negative cluster correlation. It can also be seen that the level of 
overestimation increases quickly for a small increase in negative �.

The bias of the p-value was larger for larger cluster sizes, which was caused 
by a smaller sampling error and more data information about the intercept. For a 
large number of observations per cluster, already a small negative correlation led 
to a large bias in p-value. For example, for n = 30 the correct p-value of .50 was 
increased by .06 for � = −.01 ; and for � = −.03 the p-value was overestimated by 
.27. For smaller cluster sizes the bias was smaller. However, for a smaller cluster 
size the lower bound for � was also smaller, and for more negative correlations 
among clustered observations the bias in p-values again increased.

Similar findings were made for the SE of the estimated intercept. When data was 
generated under the LME or CSM, for � greater than zero, results under the LME 
showed that the SE estimates were slowly increasing for increasing values of � . The 
increasing correlation in the data led to an increase in the reduction of information 
about the intercept. When the LM was used as model for analysis, the SEs were 
underestimated (compared to those of the LME), since the correlation in the data 
was ignored. Both models cannot handle a negative correlation, which was ignored 
and the SE estimates showed a slight decrease for more negative correlations. The 
total variance in the observations was reduced for a negative � (see Equation 3). This 
reduction in the total variance led to a reduction in the estimated SEs under LME 
and LM.
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In Fig.  1, it can be seen that for � ≥ .05 , correct estimates of the p-values 
(around .50) were obtained under the LME. For 0 ≤ 𝜏 < .05 , the correlation was 
(slightly) overestimated leading to an overestimation of the p-values under the 
LME. When accounting incorrectly for intra-cluster correlation the data con-
tained more information about the intercept than captured by the LME. Specifi-
cally, when the correlation was zero, the LME slightly overestimated the p-value 

Table 3  Estimated SEs and 
p-values of the intercept 
(averaged across 1,000 
replications) – which is set to 
0 – for all four model variants, 
with varying number of 
observations per cluster (n)

Note. The � is restricted to a lower bound of L
b
= −�2∕n . For data 

generated under the LME � ≥ 0 . LME is the linear mixed effects 
model, CSM is the covariance structure model, LM is the linear 
regression model

(1) (2) (3) (4)
GEN LME CSM LME CSM

ANA LME LME LM LM

� SE (p) SE (p) SE (p) SE (p)

L
b
= −1∕10 , n = 10

−0.09 0.095 (.80) 0.095 (.80)
−0.07 0.097 (.68) 0.097 (.68)
−0.05 0.098 (.61) 0.098 (.61)
−0.03 0.100 (.57) 0.098 (.56)
−0.01 0.105 (.53) 0.099 (.51)
0.00 0.107 (.52) 0.107 (.53) 0.100 (.50) 0.100 (.50)
0.05 0.123 (.50) 0.124 (.52) 0.102 (.43) 0.102 (.45)
0.10 0.138 (.50) 0.139 (.50) 0.104 (.41) 0.104 (.40)
0.15 0.157 (.51) 0.156 (.50) 0.107 (.38) 0.106 (.37)
0.20 0.170 (.49) 0.168 (.51) 0.108 (.35) 0.108 (.36)
L
b
= −1∕15 , n = 15

−0.06 0.079 (.76) 0.079 (.76)
−0.04 0.080 (.62) 0.080 (.62)
−0.02 0.083 (.57) 0.081 (.56)
0.00 0.087 (.52) 0.087 (.52) 0.081 (.49) 0.081 (.50)
0.05 0.108 (.52) 0.106 (.51) 0.084 (.43) 0.083 (.42)
0.10 0.127 (.50) 0.126 (.49) 0.085 (.37) 0.085 (.36)
0.15 0.144 (.49) 0.143 (.50) 0.087 (.33) 0.087 (.34)
0.20 0.157 (.49) 0.160 (.50) 0.088 (.32) 0.089 (.31)
L
b
= −1∕30 , n = 30

−0.03 0.057 (.77) 0.057 (.77)
−0.01 0.059 (.56) 0.057 (.55)
0.00 0.062 (.53) 0.062 (.51) 0.058 (.50) 0.058 (.49)
0.05 0.088 (.51) 0.089 (.50) 0.059 (.38) 0.059 (.37)
0.10 0.111 (.50) 0.112 (.48) 0.060 (.32) 0.060 (.29)
0.15 0.132 (.49) 0.131 (.49) 0.061 (.26) 0.061 (.25)
0.20 0.147 (.47) 0.147 (.50) 0.062 (.23) 0.063 (.25)
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due to assuming that there was a small amount of correlation, while there was no 
correlation in the data. This was caused by the fact that the level of zero correla-
tion is a lower bound under the LME. When the LM is used as model of analysis, 
the deflation and inflation of p-values is shown for increasing values of the cor-
relation in each cluster. For 𝜏 > 0 , the underestimation of the p-values occurred 
when ignoring the correlation, which is shown under the LM. When the level of 
correlation is negative, there is a steep increase in the overestimation of the p-val-
ues for increasing negative values of the correlation under both the LME and LM. 
It can be concluded the LME performs as poorly as the LM, when it concerns a 
negative cluster correlation.

In Figure 2, the average SE estimates are shown for increasing values of the cor-
relation, where the LM and the LME is used as model of analysis. For 𝜏 > .05 the 
SE estimates under the LME were considered to be the baseline, as LME accounts 
for the positive correlation in the clusters. It can be seen that with the LM as model 
of analysis, the SEs were underestimated, which became more severe for increasing 
values of the correlation. This can be seen from the increase in difference in SE esti-
mates under the LM and the LME. For � = 0 , the LM was the correct model of anal-
ysis, and in that case the SE estimate under the LME was slightly higher showing 
that the LME incorrectly assumed more correlation in the data leading to an overes-
timation of the SE. For 𝜏 < 0 , the SE estimates under the LME were more similar to 
those under the LM. However, even for small negative correlations, the SE estimates 
under the LME were higher than those obtained under the LM. The LME incor-
rectly assumed a positive correlation among clustered observations. Furthermore, 
for negative correlations the total variance reduced leading to a slight decrease in 
estimated SEs under both models.

3.3  Estimation of the correlation �

The values of � were estimated under the LME, and the data were generated under 
LME and under CSM. The � values for data generated under LME were restricted 
to be greater than or equal to zero, where under CSM the � values were also nega-
tive. The reported estimates of � in Table 4 were averaged values across the 1,000 
data sets. It can be seen that the estimated � values under LME were biased, when 
the true � was less than .05 or negative. In specific, the � estimates were biased 
upwards, when the true value of � was equal to zero. As can be seen in Table 4, 
the bias was smaller for larger values of the cluster size, because with an increas-
ing sample size there was less sampling error. This led to less variability in the 
data, which means that more information about the fixed effect was included in 
the data. For a true positive correlation of � = .05 still some bias was found in 
the estimates for small cluster sizes. When the true positive � values were greater 
than or equal to .10, the estimates of � were not biased. This effect was equal for 
all cluster sizes. However, for small negative � , small positive correlations were 
estimated under the LME, when the cluster size was small, and a zero correlation 
was estimated, when the cluster size increased to 30 observations.
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4  Reformulating LMEs as SEMS

Rovine and Molenaar (2000) and Bauer (2003) showed that a general class of LMEs 
can be reformulated as structural equation models (SEMs). Therefore, estimation 
methods designed for SEMs can be used to fit LMEs. The general idea is straight-
forward, the LME is reformulated as a SEM by considering the marginal model for 
the data. The CSM in Equation (5), which is the reformulated LME of Equation (1), 

Table 4  Estimates of � , 
averaged across 1,000 
replication, for different 
observations per cluster and 
m = 10 clusters under the LME

Note. The � is restricted to a lower bound of L
b
= −�2∕n . LME is 

the Linear Mixed Effects model, and CSM is the Covariance Struc-
ture model

(1) (2)
GEN LME CSM

ANA LME LME

� 𝜏 𝜏

L
b
= −1∕10 , n = 10

−0.09 0.000
−0.07 0.000
−0.05 0.001
−0.03 0.005
−0.01 0.014
0.00 0.019 0.018
0.05 0.059 0.059
0.10 0.099 0.103
0.15 0.159 0.157
0.20 0.204 0.197
L
b
= −1∕15 , n = 15

−0.06 0.000
−0.04 0.000
−0.02 0.004
0.00 0.012 0.012
0.05 0.055 0.051
0.10 0.104 0.100
0.15 0.151 0.150
0.20 0.194 0.201
L
b
= −1∕30 , n = 30

−0.03 0.000
−0.01 0.002
0.00 0.006 0.007
0.05 0.049 0.050
0.10 0.097 0.099
0.15 0.150 0.150
0.20 0.196 0.195
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represents the marginal distribution of the data with covariance matrix �2�n + ��n�
t
n
 . 

To define the corresponding SEM, the factor loading matrix is represented by the 
design matrix of the random intercept, which is � = �n , the mean vector of the 
latent variable equals � = (�0, �1) , and the residual covariance matrix is given by 
� = �2�n . Although � represents the variance of an endogenous latent variable 
in the SEM model, it enters the model-implied covariance matrix as a covariance 
parameter.

The maximum likelihood fitting method for SEM maximizes the likelihood of 
the observed covariance matrix, and minimizes the discrepancy between the implied 
covariance matrix and the observed covariance matrix. This estimation method 
supports the estimation of a negative � , since it uses the implied covariance matrix 
for which � is not restricted to be a variance parameter. The maximum likelihood 
parameters are obtained by minimizing the maximum likelihood fitting function 
(Ferron and Hess 2007). A numerical method (e.g., Newton-Raphson) is used to 
find the parameter values that minimizes the function. There are various software 
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Fig. 1  Estimated p-values for the intercept (averaged across 1,000 replicated data sets) for different levels 
of correlation among n = 10 clustered observations and m = 10 clusters for the LME and the LM
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packages that uses the maximum likelihood fitting function for estimation (e.g., 
Lavaan, Mplus).

Lavaan has been used to fit the SEM version of the random intercept model. 
However, for the considered conditions in the simulation study, the number of 
observations (number of clusters) was less than the number of variables (number of 
dependent plus independent variables). This led to estimation problems in Lavaan. 
When increasing the number of clustered observations, the number of variables rap-
idly increase the number of observed clusters. The sample size restriction is a seri-
ous limitation of the SEM estimation method. Wolf et  al. (2013) showed that for 
a one-factor confirmatory factor analysis at least 30 to 190 independent cases are 
needed. This makes the SEM approach not useful for applications with a few clus-
ters with many clustered observations. This will lead to a large covariance matrix, 
which needs to be estimated with only a few independent data cases.

4.1  Real data example

The data from Lamers et al. (2015) were used to study negative clustering effects. 
The dataset included 174 clients who were recruited through advertisements 
in Dutch newspapers and web-sites. Only participants who felt depressed and 
expressed interest in writing about their life were included. Clients with no missing 
data were used leading to a total of 90 clients, denoted as i = 1,… , n , who were at 
random equally divided over m = 5 counselors, denoted as j = 1,… ,m (leading to a 
balanced study design). The study had two treatment-arms: auto-biographic writing 

0.08

0.10

0.12

0.14

0.16

−0.05 0.00 0.05 0.10 0.15 0.20

Correlation within clusters

S
E

s

Model

LME

LM

Fig. 2  Estimated standard errors (SEs) for the intercept (averaged across 1,000 replicated data sets) for 
different levels of correlation among n = 10 clustered observations and m = 10 clusters under the LME 
and the LM
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condition (AW), and expressive writing condition (EW). Clients were also randomly 
assigned to one of the treatments.

The AW condition was a life-review self-help intervention that consisted of 
homework assignments, divided over modules that had to be completed over the 
course of ten weeks. Clients communicated about their progress with trained coun-
selors through a weekly e-mail interaction. The EW intervention was based on the 
method of expressive writing by Pennebaker (1997). The method consisted of daily 
writing about emotional experiences, for 15 − 30 minutes on 3 − 4 consecutive days 
during one week. The available data included the pre- and post-therapeutic measure-
ments, denoted as t = 1, 2 , of the Center for Epidemiologic Studies Depression Scale 
(CES-D) score. The CES-D is a brief self-report questionnaire to measure severity 
of depressive symptoms in the general population. Higher CES-D scores indicated 
more depressive symptoms (20 items, range 0 − 60, � = 0.78 ). The random assign-
ment of clients to treatment groups ensured that there was not a significant differ-
ence between the average pre-therapeutic measurements of both groups.

Interest was focused on examining the influence of the counselor on the health 
improvement of the clients. Therefore, a two-factor (LME) model was examined, 
with a (nested) factor client (clustering the pre- and post measurements), and clients 
were again clustered by counselors. The treatment indicator was included to exam-
ine differences in scores among the treatment groups. The LME represents this two-
factor model, and is given by,

The treatment variable ( Treatmentij ) equaled one when client i of counselor j was 
assigned to the EW intervention and zero when assigned to the AW intervention. The 
variable I(Post) is the indicator for the post measurements and TreatmentijI(Post) the 
treatment indicator for the post measurements. Parameter �01 is the intercept for the 
pre measurements, and �02 the intercept for the post measurements. A pre-existing 
difference between intervention groups is represented by the parameter �10 , which 
represents a deviation from the intercept �01 for clients in the EW intervention. A 
difference at the post measurement is represented by parameter �11 , which represents 
a deviation from the intercept �02 for clients in the EW intervention. The fit of this 
LME model led to estimation problems. The estimated covariance matrix was sin-
gular, and the variance component of the latent variable counselor was estimated 
to be zero (or less than zero, but LME4 does not report information about negative 
variance component estimates; Smink et al. 2019). It was concluded that the model 
with counselor as a latent variable was singular, and the model parameters could not 
be estimated.

The model can be rewritten as a multilevel SEM to allow for negative within-
cluster correlations, by assuming that the pre- and post-measurements of each client 

(8)

Yijt = �01 + �02I(Post) + �10Treatmentij + �11TreatmentijI(Post)

+ clientij + counselorj + eijt

eijt ∼ N(0, �2)

clientij ∼ N(0, �)

counselorj ∼ N(0, �).
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are multivariate normally distributed. The multilevel structure is defined by clients 
(factor variable) who are nested within counselors (factor variable). Then, the ML-
SEM, referred to as M1, is represented by

where the vector of loadings, � , contains only ones. The �0 represents the inter-
cepts for the pre- and post measurement, and the �1 the (within-counselor) treatment 
effects for the pre- and post measurements, as described in Equation (8).

Model M1 was fitted in Lavaan (version 0.6-5), and it reported convergence of 
the estimation algorithm with a warning that some latent variable variance estimates 
were negative. The fit indices did not indicate a misfit of the model; CFI=1 and 
RMSEA=0. In Table 5, the parameter estimates and standard errors are reported. 
It follows that on average the CES-D decreased from around 21.7 to 17.6 for those 
in the AW condition. Clients in the EW condition scored approximately 1.5 points 
lower on the post measurement and 0.1 lower on the pre measurement than those 
in the AW condition. However, the (within-counselor) treatment effect on the post 
measurements was not significantly different from zero. The pre-existing difference 
in scores between conditions was expected to be around zero due to the random 
assignment of clients to treatments.

The covariance among scores of clients of the same counselor was estimated to 
be around -1.156, which differed significantly from zero. The negative correlation 
made it impossible to investigate a homogenous treatment effect of counselors. The 
negative correlation among observations clustered by the counselor showed that 
scores differed substantially among clients who were treated by the same counselor. 
We argue that the counselor differentiated clients in their treatment, where some cli-
ents benefitted much more from the treatment than other clients.

It was investigated if the negative correlation of clustered scores by counselors 
differed across treatment levels. Therefore, a multivariate distribution was assumed 
for the client scores in the EW and AW condition, where for each condition an inter-
cept (pre- and post measurement), residual variance, client and counselor factor 
variance was defined. In this model M2, in contrast to model M1, intercepts were 
defined for the pre and post scores for the AW and EW condition, instead of defining 
deviations from the general intercepts for the EW condition.

The parameter estimates of the multilevel SEM are given in Table 5 under the 
label model M2. It can be seen that on average the clients in the EW condition 
scored lower on the pre- and post measurement. When examining the intra-cluster 
correlation (ICC) of the factor variables, it follows that for the AW condition the 
ICC is around -8.1% (-1.088/(-1.088+14.463)), and for the EW condition around 
-9.5% (-.852/(-.852+9.865)). However, the differentiation in EW and AW counselor-
specific cluster effects led to non-significant cluster (co)variance estimates. Note that 

(9)

�ij = �0 + �1Treatmentij +��ij + �ij

�ij = clientij + counselorj

clientij ∼ N(0, �)

counselorj ∼ N(0, �).

�ij ∼ N(0, �2�2),
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the negative ICC shows that the counselor explained variability in client scores, but 
it led to more dissimilarity between clients. The treatment effect of a counselor var-
ied across clients, where some clients benefitted from the treatment and others did 
not. A positive ICC would indicate a homogenous treatment effect, where all clients 
benefit from the treatment, but some more than others. A more negative ICC leads 
to a greater distinction between clients treated by the same counselor who benefit 
and who do not benefit from the treatment. Clients in the EW condition were more 
likely to differentiate in the effect of their treatment than those in the AW condition 
but the differentiation in clustering between EW and AW clients was not significant.

Data was retrieved under a pretest-posttest randomized experiment with two treat-
ment arms. The randomization procedure (i.e. clients were randomly assigned to 
counselors and treatment groups) ensured that it was unlikely that another factor(s), 
besides the counselor, was responsible for the negative ICCs. Therefore, it was con-
cluded that counselors induced the negative correlation among client scores. It was 
argued that a differentiation in the treatment of the clients by the counselor could 
have caused this. An individualized treatment by counselors could have worked for 
some clients and not for other clients, which led to negative clustering effects. The 
differentiation in treatment effects between clients (most likely) led to a non-signifi-
cant main difference between the AW and EW condition.

The clustered scores by counselors correlate negatively, which leads to a nega-
tive variance estimate of the factor variable counselor. A negative variance estimate 

Table 5  Real data: estimated 
ML-SEM parameters

Model Parameter Estimate Std. Error

M1 Fixed
Intercept (Pre (AW)) 21.690 0.771
Intercept (Post (AW)) 17.645 0.721
Treatment (Pre (EW)) −0.113 1.281
Treatment (Post (EW)) −1.468 1.281
Random
Residual (W) 21.382 3.187
Client (W) 16.002 4.396
Counselor (B) −1.156 0.309

M2 Fixed
Intercept (Pre (AW) 21.800 0.832
Intercept (Post (AW)) 17.625 0.832
Intercept (Pre (EW) 20.500 0.715
Intercept (Post (EW)) 15.675 0.715
Random
Residual (AW) (W) 21.922 4.902
Residual (EW) (W) 17.422 3.896
Client (AW) (W) 14.463 6.553
Client (EW) (W) 9.865 4.894
Counselor (AW) (B) −1.088 1.525
Counselor (EW) (B) −0.852 1.083
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is often referred to as a “Heywood case”. There are many causes given in the lit-
erature for getting negative variance estimates: outliers, nonconvergence, under-
identification, structurally misspecified models, missing data, and sampling error. 
In this study, it can be argued that a model misspecification was the cause for the 
negative variance estimate. For instance, mediator variable(s) could be missing, rep-
resenting an indirect effect of the counselor on the client scores. The relationship 
between counselor and clients could depend on a moderator variable, which was not 
included in the model. Furthermore, a possible mediation effect could be moder-
ated by another variable. However, mediator and/or moderator variables were not 
measured during the experiment. Given the randomization procedure, there were no 
theoretical reasons that it was necessary to control for other (confounding) variables 
at the client level.

5  Discussion

The purpose of this study was to confirm that estimates of the ICC were biased 
upwards for true small positive and negative values. The results confirm that the 
ignorance of (small) positive correlation within groups leads to an increase of Type-
I error, p-values that are biased downwards and CIs that are too narrow. The results 
for ignoring true positive correlation within clusters validate earlier research. The 
inflation of Type-I errors of this study correspond to those reported by Barcikowski 
(1981). Regarding the different conditions, when ignoring a positive correlation 
within groups, the results of this study also confirm earlier research. As reported by 
Barcikowski (1981) and Dorman (2008), the smallest bias in Type-I error was found 
for a smaller number of observations per group. When the number of observations 
per group increased, the inflation of the Type-I error also increased. Furthermore, 
when increasing the positive correlation, the Type-I error was increasing as well. 
Furthermore, the results show that, in general, only the intercept parameter and not 
the slope parameter was affected by ignoring a common correlation within clusters. 
Effects of slope variables are not affected, when ignoring a common correlation the 
distortion only concerns the intercept parameters.

Regarding the estimates of the correlation, the results show the negative effects 
of restricting the correlation among clustered observations to be positive. Already 
for small positive correlation ( 𝜏 < .05 ) the correlation was overestimated. The bias 
was larger when the correlation was very small positive or negative. However, for a 
positive correlation within groups larger than .05, the LME model gave correct esti-
mates, which validates the accuracy of the LME for clustered data with positively 
correlated observations.

Next to ignoring a positive correlation, the ignorance of a (small) negative 
correlation within groups was considered. The results showed opposite effects 
compared to ignoring positive correlation within groups: a deflation of Type-I 
errors, p-values that are biased upwards and overestimated SEs (i.e. CIs that are 
too wide). The deflation of the Type-I error, when ignoring a negative correlation 
has been mentioned by other researchers (Barcikowski 1981; Rosner and Grove 
1999), but without quantifying the negative effects of ignoring the common 
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negative correlation. Current findings indicate that when clustered observations 
are negatively correlated, the data is more informative than it would be under 
independent sampling. This study adds that smaller biases of the Type-I error 
and the SEs occur, when increasing the number of observations in a cluster. The 
increase in sample size leads to smaller sampling error and more accurate esti-
mates. In addition, the bias of the Type-I error is examined, where a deflation of 
the Type-I error by 2% can already occur for a true negative ICC of −.01. Fur-
thermore, the results indicate that p-values were biased upwards when negative 
correlation within groups was ignored. For a larger number of observations per 
cluster, even the ignorance of a very small negative correlation within groups can 
lead to substantial bias of the p-value.

With respect to the results of the current study, it is recommended to be aware 
of the fact that a negative correlation within groups can occur. The advice is to be 
very cautious with clustered data that possibly contains a common negative correla-
tion among observations within groups. Researchers need to be aware of the fact 
that the maximum likelihood estimate of the between-cluster variance, representing 
the covariance among clustered observations (see Equation 2) can become negative. 
Common software packages for multilevel and mixed effects models, such as the 
lme4-package, restrict the random-effect variance estimate to be positive (although 
SAS PROC MIXED allows for negative variance estimates). This means that the 
correlation among clustered observations is restricted to be positive even when the 
true correlation is negative. This study showed that this can lead to a deflation of 
Type-I errors, p-values that are biased upwards and SEs that are overestimated. In 
addition, a large number of observations per cluster does not compensate for bias. It 
is important to notice that with 30 observations per cluster a very small true negative 
correlation of −.008 can lead to an inflation of the p-value with 5%. It is also noted 
that for a smaller number of observations per cluster, the correlation can become 
more negative than with a larger number of observations. Thus, the bias of the 
p-value is smaller when the true negative correlation between observations is small. 
However, in that case the correlation can become more negative which can lead to 
more bias.

The reformulation of an LME to SEM for continuous outcomes makes it possible 
to use SEM software (e.g., Lavaan, Mplus). The maximum likelihood fitting method 
can be used to estimate the parameters of the implied covariance matrix in which the 
factor variance is represented as a covariance parameter. This makes it possible to 
examine negative within-cluster correlations as shown in the real data example. The 
situation is different for categorical outcomes, where numerical integration is per-
formed to integrate out factor variables. In general, nonlinear and generalized LME 
models cannot be parameterized as SEMs (Bauer 2003). Another issue is that the 
sample size requirements are higher for SEMs than LMEs. For instance, the sam-
ple size conditions considered in our simulation study led to estimation issues for 
corresponding SEMs. Baird and Maxwell (2016) showed that unconstrained vari-
ance estimation for random effects can improve the convergence of the estimation 
method, and unconstrained estimation can also provide more insight about sources 
of misfit. However, negative variance estimates can indicate negative within-cluster 
correlation, which needs to be taken into account.
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When the data has negative correlations SEM software can be used to analyse 
the clustered data, but more research is needed to improve the modeling of nega-
tive within-cluster correlations. For instance, bias in the estimated precision of 
the slope parameter can occur when ignoring correlation among clustered obser-
vations. Consider a random intercept-slope model,

where both random effects are normally distributed. Subsequently, the implied 
covariance matrix for cluster j is represented by �j = �2�n + �0�n + �1�j�

t
j
 . The 

estimated precision of the intercept contained bias, when ignoring the common cor-
relation �0 in cluster j. In the same way, the estimated precision of the slope parame-
ter will contain bias, when ignoring the common correlation �1 modified by the outer 
product of �j . However, more research is needed to quantify bias in the precision of 
the common regression effect, when ignoring cluster correlation implied by a clus-
ter-specific regression effect.

Statistical testing (negative) within-cluster correlations is very important to 
understand the dependence structure of the clustered data. This is usually com-
plex, since this means testing the variance parameter of a random effect at the 
lower-bound of the parameter space. This task is easier, when testing the corre-
sponding covariance parameter of the implied covariance matrix. Then, hypoth-
eses concerning a positive or a negative dependence structure can be exam-
ined. Mulder and Fox (2019) developed a Bayes factor to evaluate restrictions 
on intra-class correlation coefficients defined under a random intercept model. 
In their proposed method, the intra-class correlation is defined from an implied 
covariance matrix and is allowed to be negative as long as the covariance matrix 
is positive definite. They also show that a hypothesis concerning a negative 
intra-class correlation can be evaluated. This test method has the potential to be 
applicable to test the dependence structure of an implied covariance structure of 
an LME, even when the within-cluster correlation is negative.

5.1  What can be learned from our study?

We conclude with a discussion of what we found to be the most important les-
sons (that can be learned based on our study), and we give an updated overview 
of well-known multilevel modelling (golden) rules by including the findings 
concerning negative clustering effects. This reflection highlights the importance 
of understanding negative clustering effects.

(10)

�j =�0 + �1�j + u0j + u1j�j + �j,

u0j ∼N(0, �0),

u1j ∼N(0, �1),

�j ∼N(0, �2�n),
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5.1.1  Lesson 1: Negative correlations among clustered observations can –and do– 
occur in practice

Although this has been addressed in the introduction, it is important to stress that 
–although simulated data were used in the current study– negative correlations can 
and do occur in practice. Several practical examples were discussed, when the cor-
relation � is negative. Pryseley et al. (2011) and Kenny et al. (2002) mention several 
examples: when individuals compare for a scarce (and fixed) set of resources, the 
speaking time of one individual is at the expense of another individual (i.e. ‘one’s 
pain is the other’s gain’). Litter mates are also negatively correlated in terms of 
food, water and living space. In addition to that, it has been shown that Bayesian 
covariance structure modelling (BCSM; Klotzke and Fox 2019a, b) can be used to 
simulate these negative correlations in clusters. In doing so, a simulation study was 
developed where observations are negatively clustered and data were simulated that 
others, most notably (Kenny et  al. 2002; Oliveira et  al. 2017), and Pryseley et  al. 
(2011) described.

5.1.2  Lesson 2: The ICC has multiple interpretations

It is important to be aware of the multiple interpretations of the ICC, because view-
ing it as the proportion of explained variance due to clustering restricts the ICC to 
only positive values (Oliveira et al. 2017). It is good to stress that the ICC remains a 
measure of correlation, and correlations can become negative. A negative � leads to 
a negative ICC, thus both values can become negative. Researchers need to be aware 
that negative correlation between observations in clustered data may occur, and that 
negatively correlated clustered data are not (always) a modelling error.

5.1.3  Lesson 3: The LME ignores negative associations in clusters

The LME (e.g., multilevel model, random effects model) is an inappropriate tool 
for analysing clustered data with negative correlations between observations within 
clusters. The LME is a well-established tool to model the dependence structure of 
the clustered data using random effects. However, this is only possible for positively 
correlated observations, but –as shown– the random effects cannot model negative 
correlations, and consequently will ignore the negative dependence between obser-
vations. When the LME is used for analysing data with negative correlations within 
clusters, the model assumes the observations to be independently distributed. There-
fore, the LME is an inappropriate tool for analysing clustered data with negative 
correlations within clusters.

5.1.4  Lesson 4: Do not fix the ICC or � to 0

Fixing a negative ICC to zero forces the statistical model to ignore the clustered 
structure in the data. Then, the observations are assumed to be independently dis-
tributed while they are negatively correlated. It is shown that if a common nega-
tive correlation in clusters is ignored, the Type-I errors are deflated, the SEs are 
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too large, and the p-values are also overestimated. Fixing the ICC to 0 forces the 
statistical model to assume that data are independently distributed. Researchers 
should always account for a non-zero ICC, positive or negative. Huang (2018) 
stated that “literally too many to list” suggested that it is not necessary to account 
for relatively small (positive) ICC values. Given the fact that ignoring a nega-
tive correlation can also have a large impact, it is stressed that small positive or 
negative ICCs cannot be ignored. For instance, when having ten observations in 
each group, ignoring an ICC of only −.029 ( � = −.03 ) leads to an deflation of the 
Type-I error of around 6%. The occurrence of a Type-I errors quickly increases: 
an ICC of −.047 ( � = −.05 ) deflates the Type-I error with 11%.

5.1.5  Lesson 5: An increase in cluster size increases the bias

When the number of observations in each cluster n tends to get larger, the bias 
of the Type-I error and the SEs increases. The results indicate that p-values were 
biased upwards (downwards) when negative (positive) correlation within groups 
was ignored, and the bias increased with an increasing cluster size. When assum-
ing more clustered observations to be independently distributed, while they are 
correlated, the bias will increase, since an incorrect assumption is made about a 
larger data set.

5.1.6  Lesson 6: Negatively correlated clustered observations cannot be ignored

It was shown that ignoring a small negative ICC leads to serious bias. It can also 
be argued that a cluster sample with negatively correlated observations contains 
more information than a simple random sample of the same size. The variance 
inflation factor (VIF; i.e. design effect; Kish 1965) can be used to explain the 
impact of the ICC (�) . In the random selection of equal clusters, the VIF can be 
expressed as a function of �;

where n is the number of observations in a cluster. The VIF represents the ratio of 
the actual sample variance to the variance of a simple random sample (i.e. indepen-
dently distributed observations). In cluster sampling, when the ICC is positive, the 
VIF is greater than one. There is a loss in precision (i.e., increase in sample vari-
ance) due to the homogeneity of observations within each cluster. A simple random 
sample of the same size contains more information than a cluster sample with posi-
tively correlated observations. However, when the observations are negatively cor-
related, leading to a negative ICC, the VIF will be smaller than one, but greater than 
zero given that the ICC is greater than −1∕(n − 1) . In that case, the cluster sample 
leads to a gain in precision in comparison to simple random sampling. The cluster 
sample, with negatively correlated data provide more information than a simple ran-
dom sample of equal size.

(11)VIF = 1 + (n − 1)�,
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5.2  Conclusion

Just as small (positive) clustering effects mandate adjustment, negative clustering 
effects also require the attention of researchers. It is shown that ignoring negative 
clustering leads to deflated Type-I errors, an overestimation of the SEs, and overes-
timated p-values. The LME is an inappropriate tool for the analysis of negative clus-
tering in data and can only handle positive clustering. Although it seems obvious, 
the LME should not be used when there is no clustering.
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