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Abstract

Quantum Monte Carlo methods are first-principle approaches that approximately solve
the Schrödinger equation stochastically. As compared to traditional quantum chemistry
methods, they offer important advantages such as the ability to handle a large variety of
many-body wave functions, the favorable scaling with the number of particles, and the
intrinsic parallelism of the algorithms which are particularly suitable to modern mas-
sively parallel computers. In this chapter, we focus on the two quantum Monte Carlo
approaches most widely used for electronic structure problems, namely, the variational
and diffusion Monte Carlo methods. We give particular attention to the recent progress
in the techniques for the optimization of the wave function, a challenging and important
step to achieve accurate results in both the ground and the excited state. We con-
clude with an overview of the current status of excited-state calculations for molecular
systems, demonstrating the potential of quantum Monte Carlo methods in this field of
applications.
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1 Excited-state calculations with quantum
Monte Carlo

1.1 Introduction

Quantum Monte Carlo (QMC) methods are a broad range of approaches which em-
ploy stochastic algorithms to simulate quantum systems, and have been used to study
fermions and bosons at zero and finite temperature with very different many-body Hamil-
tonians and wave functions in the fields of molecular chemistry, condensed matter, and
nuclear physics. While all QMC methods, despite the diversity of applications, share
some core algorithms, we restrict ourselves here to the two zero-temperature continuum
QMC methods1 that are most commonly used in electronic structure theory, namely,
variational (VMC) and diffusion (DMC) Monte Carlo [1–3].

As compared to deterministic quantum chemistry approaches, solving the Schrödinger
equation by stochastic means in VMC or DMC offers several advantages. The stochastic
nature of the integration allows for a greater flexibility in the functional form of the many-
body wave function employed, which can for instance include the explicit dependence
on the inter-electronic distances. As a consequence, more compact wave functions can
be used (the number of determinants needed to get the same energy is reduced by a
few orders of magnitude) and, further, the dependence on the basis set is much weaker.
Even though VMC and DMC are expensive, they have a favorable scaling with the
system size (a mere polynomial N4 in the number of electrons N), which has enabled
simulations with hundreds and even thousands of electrons also in condensed matter,
where traditional highly-correlated approaches are very difficult to apply. Finally, the
intrinsically parallel nature of QMC algorithms renders these methods ideal candidates
to take advantage of the massively parallel computers which are now available. An
impressive example of such calculations is shown in Fig. 1.1 where the interaction energy
dominated by dispersion is benchmarked with DMC for remarkably large complexes [4].

That said, when inspecting the literature, it is evident that VMC and DMC methods
have traditionally been employed to calculate mainly total energies and total energy
differences as the computation of quantities other than the energy is more complicated.
QMC calculations are for instance generally carried out on geometries obtained at a
different level of theory and also the construction of the many-body wave function and
its optimization are not straightforward. Particular care must in fact be paid to this
step since the residual DMC error can be larger than sometimes assumed in the past,

1A quantum Monte Carlo approach not in real space but in Slater determinant space (i.e. the full
configuration interaction QMC method) is briefly introduced in Chapter 1.
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1 Excited-state calculations with quantum Monte Carlo

Figure 1.1: Interaction energies of the complexes A–C computed with DMC and den-
sity functional theory with two different dispersion corrections (D3) and the
many-body dispersion method (MBD). Adapted from Ref. [4].

when calculations were anyhow limited to relatively simple wave functions and it was
not feasible to extensively explore the dependence of the results on the choice of wave
function. We will come back below to this point, which is especially relevant for excited
states.

The last few years have however seen remarkable progress in methodological devel-
opments to overcome these and other limitations, as well as extend the applicability of
QMC to larger systems both in the ground and the excited state. In particular, robust
optimization algorithms for the parameters in the wave function have been developed for
ground states [5–8] and extended to the state-average [9] as well as state-specific [10,11]
optimization of excited states. Importantly, it has recently become possible to efficiently
compute the quantities needed in these optimization schemes (i.e. the derivatives of the
wave function and the action of the Hamiltonian on these derivatives) at a cost per
Monte Carlo step which scales like the computation of the energy alone [12–14]. Con-
sequently, the determinantal component of a QMC wave function does not have to be
borrowed from other quantum chemical calculations but can be consistently optimized
within VMC after the addition of the correlation terms depending on the inter-electronic
distances. These developments also enable the concomitant optimization of the struc-
tural parameters in VMC even when large determinantal expansions are employed in
the wave function [14,15]. The possibility of performing molecular dynamics simulations
with VMC forces has also been recently demonstrated [16,17].

Researchers have also been actively investigating more complex functional forms [18–
22] to recover missing correlation and allow a more compact wave function than the one
obtained with a multi-determinant component. A local correlation description has also
been shown to be a promising route to achieve smaller expansions and reduced compu-
tational costs for ground and excited states [23, 24]. In parallel, algorithms have been
explored for a more automatic selection of the determinantal component, avoiding the
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1.2 Variational Monte Carlo

possible pitfalls of a manual choice based on chemical intuition [15,25–30]. Importantly,
effort has been devoted to develop algorithms for the computation of quantities other
than the energy via estimators characterized by reduced fluctuations as well as wave
function bias [5, 31–36]. In addition to these methodological advances, various tools
have become available to facilitate the calculations, such as tables of pseudopotentials
and corresponding basis sets especially constructed for QMC [37–42]. Finally, multi-
scale methods have been proposed to include the effects of a (responsive) environment
on an embedded system treated with QMC [43–48].

After a brief description of the VMC and DMC methods, we will focus here on some
of these recent developments, giving special attention to the algorithms employed to
optimize the variational parameters in the wave function. We will then review relevant
work and recent advances in the calculation of excited states and their properties, mainly
for molecular systems. We note that useful sources for QMC are the introductory book to
Monte Carlo methods and their use in quantum chemistry [49], and the reviews on QMC
methods and their applications to solids [1, 50–52] and to noncovalent interactions [53].
A detailed introduction to VMC and DMC can be found in Ref. [54]. Finite-temperature
path integral Monte Carlo methods are covered in Ref. [55].

1.2 Variational Monte Carlo

Variational Monte Carlo is the simplest flavor of QMC methods and represents a gen-
eralization of classical Monte Carlo to compute the multidimensional integrals in the
expectation values of quantum mechanical operators. The approach enables the use of
any “computable” wave function without severe restrictions on its functional form. This
must be contrasted to other traditional quantum chemical methods which express the
wave function as products of single particle orbitals in order to perform the relevant
integrals analytically.

To illustrate how to compute an expectation value stochastically, let us consider the
variational energy Ev, namely, the expectation value of the Hamiltonian Ĥ on a given
wave function Ψ, which we rewrite as

Ev =

∫
Ψ(R)∗ĤΨ(R)dR∫
|Ψ(R)|2dR

=

∫
|Ψ(R)|2 ĤΨ(R)

Ψ(R) dR∫
|Ψ(R)|2dR

=

∫
ρ(R)EL(R)dR , (1.1)

where we have introduced the probability distribution, ρ(R), and the local energy,
EL(R), defined as

ρ(R) =
|Ψ(R)|2∫
|Ψ(R)|2dR

and EL(R) =
ĤΨ(R)

Ψ(R)
, (1.2)

with R denoting the 3N coordinates of the electrons. We note that we can interpret
ρ(R) as a probability distribution since it is always non-negative and integrates to one.
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Figure 1.2: Local energy (circle) and its running average (green line) in a typical VMC
run. The size of the root-mean-square fluctuations of the local energy, σv, is
also indicated.

The integral can then be estimated by averaging the local energy computed on a set
of M configurations {Rk} sampled from the probability density ρ(R) as

Ev ≈ ĒL =
1

M

M∑
k

EL(Rk) . (1.3)

According to the central limit theorem, this estimator converges to the exact value,
Ev, with increasing number of Monte Carlo configurations with a statistical uncertainty
which decreases as

err(ĒL) ∝ σv√
M

, (1.4)

where σ2
v =

∫
ρ(R)(EL(R)−Ev)2dR is the variance of the local energy. For this relation

to hold, the chosen wave function must yield a finite variance of the sampled quantity,
in this case, the local energy. A typical VMC run is illustrated in Fig. 1.2, where the
local energy is computed at each Monte Carlo step together with its running average.

Importantly, the statistical uncertainty decreases as 1/
√
M independently of the num-

ber of dimensions in the problem so that Monte Carlo displays a faster convergence than
deterministic numerical integration already for small numbers of dimensions2. Further-
more, as the trial wave function3 improves, the Monte Carlo estimate of the variational
energy requires fewer Monte Carlo steps to converge. In the limit of the wave function
being an exact eigenstate of the Hamiltonian, the variance approaches zero and a sin-
gle configuration is sufficient to obtain the exact variational energy. This zero-variance
principle applies straightforwardly to the Hamiltonian and operators commuting with
the Hamiltonian (therefore, the large number of total energy calculations found in the

2For instance, the error for the Simpson’s integration rule decreases as 1/M (4/d) with d the number
of dimensions and M the number of integration points, so Monte Carlo integration is more efficient
already for d > 8.

3A trial wave function is a wave function used as an approximation to the state of interest.
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QMC literature). This principle can however be generalized to arbitrary observables by
formulating an equivalent, improved estimator having the same average but a different,
reduced variance [31]. Reduced variance estimators have been derived for the computa-
tion of electron density [56,57], the electron pair densities [34], interatomic forces [33,35],
and other derivatives of the total energy [5].

In practice, the probability distribution ρ(R) is sampled with the Metropolis-Hastings
algorithm by simulating a Markov chain. This is a sequence of successive configurations,
R1, . . . ,RM , generated with a transition probability, P (R′|R), where the transition to
a new configuration R′ only depends on the current point R. The transition probability
is stochastic, which means that it has the following properties:

P (R′|R) ≥ 0 and

∫
P (R′|R)dR′ = 1 . (1.5)

Repeated application of P generates a Markov chain which converges to the target
distribution ρ as

lim
M→∞

∫
P (R|RM ) . . . P (R2|R1)ρinit(R1)dR1 . . .RM = ρ(R) , (1.6)

if P is ergodic (it possible to move between two different configurations in a finite
number of steps) and fulfills the so-called stationarity condition:∫

P (R′|R)ρ(R)dR = ρ(R′) . (1.7)

The stationarity condition tells us that, if we start from the desired distribution ρ, we
will continue to sample ρ. Moreover, if the stochastic probability P is ergodic, it is
possible to show that this condition ensures that any initial distribution will evolve to ρ
under repeated applications of P .

In the Metropolis-Hastings algorithm, the transition to a new state is carried out in
two steps: a new configuration is generated by a (stochastic) proposal probability and
the proposed step is then accepted or rejected with an acceptance probability. The
latter can be constructed so that the combined proposal and acceptance steps fulfill the
stationarity condition. Most importantly, the acceptance depends only on ratios of ρ(R)
so that the generally unknown normalization of the distribution ρ is not required. We
note that it is desirable to reduce sequential correlation among configurations. Proposing
large steps to quickly explore the phase space must therefore be balanced against the
rate of acceptance which decreases with large steps. For these reasons, electrons are
generally moved one at the time to allow larger steps with a reasonable acceptance rate,
a necessary feature as the system size grows since the size of the move would need to be
decreased to have a reasonable acceptance of a move of all particles.

VMC is a very powerful method as the stochastic nature of integration gives a lot of
freedom in the choice of the functional form of the wave function. It also allows us to
learn a great deal about a system by exploring which ingredients in the wave function
are necessary for its accurate description. Finally, in VMC, there is no sign problem
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1 Excited-state calculations with quantum Monte Carlo

associated with Fermi statistics, which generally plagues other quantum Monte Carlo
approaches as we will see below. The obvious drawback is that, for each particular prob-
lem, a parametrization of the wave function has to be constructed. This process can
be non-trivial and tends to be biased towards simpler electronic states: for example, it
is easier to construct a good wave function for a closed-shell than an open-shell system
so that the energy of the former will be closer to the exact result than for the latter.
Furthermore, properties other than the energy (or expectation values of operators com-
muting with the Hamiltonian) can be significantly less accurate since they are first order
in the error of the wave function instead of second order as for the energy. It has however
been shown that it is possible to extend this favorable property of the energy to arbitrary
observables by using modified estimators which lead not only to reduced fluctuations but
also to a reduced bias due to the wave function [33] as convincingly demonstrated in
some promising applications [33, 34, 36, 57]. An example of this so-called zero-variance
(ZV) zero-bias (ZB) approach applied to the computation of the intracule density is
shown in Fig. 1.3: the use of a ZV estimator significantly reduces the statistical fluc-
tuations of the density and the further ZB formulation yields the correct result even
when a simple Hartree-Fock wave function is employed. In general, the VMC approach
is an extremely valuable tool and, in recent years, its use and impact has in fact become
greater thanks to the availability of robust methods to optimize the many parameters
in the wave function and, consequently, to increase the accuracy of the observables of
interest already at the VMC level. Finally, characterizing and optimizing the trial wave
function in VMC represents a necessary ingredient for more advanced projector Monte
Carlo methods like the diffusion Monte Carlo approach described in next Section.

1.3 Diffusion Monte Carlo

Projector Monte Carlo methods are QMC approaches which remove (at least in part)
the bias of the trial wave function which characterizes VMC calculations. They are a
stochastic implementation of the power method for finding the dominant eigenstate of
a matrix or integral kernel. In a projector Monte Carlo method, one uses an operator
that inverts the spectrum of Ĥ to project out the ground state of Ĥ from a given trial
state.

Diffusion Monte Carlo (DMC) uses the exponential projection operator e−t(Ĥ−ET)

with ET a trial energy whose role will become immediately apparent. To understand
the effect of applying this operator on a given wave function, let us consider a trial wave
function Ψ, which we expand on the eigenstates of Ĥ, Ψi with eigenvalues Ei. In the
limit of infinite time t, we then obtain

lim
t→∞

e−t(Ĥ−ET)|Ψ〉 = lim
t→∞

∑
i

e−t(Ei−ET)|Ψi〉〈Ψi|Ψ〉 = lim
t→∞

e−t(E0−ET)|Ψ0〉〈Ψ0|Ψ〉 ,

(1.8)
where, in the last equality, we used that the coefficients in front of the higher eigenstates
decay exponentially faster than the one of the ground state. If we adjust ET to E0, the
projection will yield the ground state Ψ0. Note that the starting wave function must
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1.3 Diffusion Monte Carlo

Figure 1.3: Spherically-averaged intracule density I(u) as a function of the electron-
electron distance u for the He atom calculated in VMC with a histogram, a
zero-variance, and a zero-variance zero-bias estimator and the same Hartree-
Fock wave function (without a Jastrow factor). Adapted from Ref. [34].
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1 Excited-state calculations with quantum Monte Carlo

have a non-zero overlap with the ground-state one.

In the position representation, this projection can be rewritten as

Ψ(R′, t) =

∫
G(R′|R, t)Ψ(R)dR , (1.9)

where we introduced the coordinate Green’s function defined as

G(R′|R, t) = 〈R′|e−t(Ĥ−ET)|R〉 . (1.10)

This representation readily allows us to see how to translate the projection into a Markov
process provided that we can sample the Green’s function and the trial wave function.
For fermions, the wave function is antisymmetric and cannot therefore be interpreted as
a probability distribution, a fact that we will ignore for the moment.

A further complication is that the exact form of the Green’s function is not known.
Fortunately, in the limit of small-time steps τ , Trotter’s theorem tells us that we are
allowed to consider the potential and kinetic energy contributions separately since

e−τ(T̂+V̂ ) = e−τT̂ e−τV̂ +O(τ2) , (1.11)

so that

〈R′|e−τĤ |R〉 ≈ 〈R′|e−τT̂ e−τV̂ |R〉 =

∫
dR′′〈R′|e−τT̂ |R′′〉〈R′′|e−τV̂ |R〉

= 〈R′|e−τT̂ |R〉e−τV (R) . (1.12)

Therefore, we can rewrite the Green’s function in the short-time approximation as

G(R′|R, τ) = (2πτ)−3N/2 exp

[
−(R′ −R)2

2τ

]
exp [−τ (V (R)− ET)] +O(τ2) , (1.13)

where the first (stochastic) factor is the Green’s function for diffusion while the second
term multiplies the distribution by a positive scalar. The repeated application of the
short-time Green’s function to obtain the distribution at longer times (Eq. 1.9) can be
interpreted as a Markov process with the difference that the Green’s function is not
normalized due to the potential term, and we therefore obtain a weighted random walk.

The basic DMC algorithm is rather simple:

1. An initial set of M0 so-called walkers R1, . . . ,RM0 is generated by sampling the
trial wave function Ψ(R) with the Metropolis algorithm as in VMC. This is the
zero-th generation and the number of configurations is the population of the zero-th
generation.

2. Each walker diffuses as R′ = R + ξ where ξ is sampled from the 3N -dimensional
Gaussian distribution g(ξ) = (2πτ)−3N/2 exp

(
−ξ2/2τ

)
.

10



1.3 Diffusion Monte Carlo

Figure 1.4: Schematic representation of a DMC simulation showing the evolution of the
walkers in a one-dimensional potential V (x). The walkers are uniformly
distributed at the start and converge to the ground-state distribution Ψ0

after a number of time steps (adapted from Ref. [1]).

3. For each walker, we compute the factor

p = exp [−τ(V (R)− ET)] . (1.14)

and perform the so-called branching step, namely, we branch the walker by treating
p as the probability to survive at the next step: if p < 1, the walker survives with
probability p while, if p > 1, the walker continues and new walkers with the same
coordinates are created with probability p − 1. This is achieved by creating a
number of copies of the current walker equal to the integer part of p + η where η
is a random number between (0,1). The branching step causes walkers to live in
regions with a low potential V < ET and die in regions with high V .

4. We adjust ET so that the overall population fluctuates around the target value
M0.

Steps 2-4 are repeated until a stationary distribution is obtained and the desired proper-
ties are converged within a given statistical accuracy. A schematic representation of the
evolution for a simple one-dimensional problem is shown in Fig. 1.4. Since the short-time
expression of the Green’s function is only valid in the limit of τ approaching zero, in
practice, DMC calculations must be performed for different values of τ and the results
extrapolated for τ which goes to zero.

The direct sampling of this Green’s function proves however to be highly inefficient and
unstable since the potential can vary significantly from configuration to configuration
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1 Excited-state calculations with quantum Monte Carlo

or also be unbounded like the Coulomb potential. For example, the electron-nucleus
potential diverges to minus infinity as the two particles approach each other, and the
branching factor will give rise to an unlimited number of walkers. Even if the potential
is bounded, the approach becomes inefficient with increasing size of the system since
the branching factor also grows with the number of particles. These difficulties can be
overcome by using importance sampling, where the trial wave function, Ψ, is used to
guide the random walk. Starting from Eq. 1.9, we multiply each side by Ψ(R′) and
define the probability distribution f(R, t) = Ψ(R, t)Ψ(R) which satisfies

f(R′, t) =

∫
G̃(R′|R, t)Ψ(R)2dR , (1.15)

where the importance sampled Green’s function is given by

G̃(R′|R, t) = Ψ(R′)〈R′|e−t(Ĥ−ET)|R〉/Ψ(R) . (1.16)

In the limit of long times, this distribution f(R, t) approaches Ψ0(R)Ψ(R).
Assuming for the moment that Ψ(R′)/Ψ(R) > 0, the importance sampled Green’s

function in the short-time approximation becomes

G̃(R′|R, τ) ≈ (2πτ)−
3
2
N exp

[
−(R′ −R− τV(R))2

2τ

]
exp [−τ(EL(R)− ET)] , (1.17)

where one has assumed that the drift-velocity V(R) = ∇Ψ(R)/Ψ(R) and the local
energy (Eq. 1.2) are constant in the step from R to R′. There are two important new
features of G̃. First, the quantum velocity V(R) pushes the walkers to regions where
Ψ(R) is large. In addition, the local energy EL instead of the potential appears in the
branching factor. Since the local energy becomes constant and equal to the eigenvalue as
the trial wave function approaches the exact eigenstate, we expect that, for a good trial
wave function, the fluctuations in the branching factor will be significantly smaller. In
particular, imposing the cusp conditions on the wave function will remove the instabilities
coming from the singular Coulomb potential. The simple DMC algorithm can be easily
modified by sampling the square of the trial wave function in a VMC calculation (step
1), drifting before diffusing the walkers (step 2), and employing the exponential of the
local energy as branching factor (step 3). Several important modifications to this bare-
bone algorithm can and should be introduced to reduce the time-step error, which are
described in detail along with further improvements in Ref. [58].

Up to this point, we have assumed that the wave function does not change sign. This
is true for the ground state of a bosonic system, whose wave function can be in principle
projected exactly in a DMC simulation. For fermions, however, a move of a walker
can lead to a change of sign due to the antisymmetry of the wave function. While it
is possible to work with weights that carry a sign, the stochastic realization of such a
straightforward approach is not stable since the separate evolution of the populations of
positive and negative walkers will lead to the same bosonic solution, and the fermionic
signal will be exponentially lost in the noise. This is known as the fermionic sign
problem. To circumvent this problem, we can simply forbid moves in which the sign of

12



1.3 Diffusion Monte Carlo

Figure 1.5: A 3-dimensional slice of the nodal surface of the N (top) and P (bottom)
atoms obtained as a scan of the wave function moving one electron and
keeping the others at snapshot positions (green/blue spheres). The black
spheres mark the positions of the nucleus. (a, c) Nearly exact nodes and (b,
d) Hartree-Fock nodes. Adapted from Ref. [59].

the trial wave function changes and the walker crosses the nodes which are defined as
(3N−1)-dimensional surface where the trial wave function is zero. Imposing the nodal
constraint can be achieved either by deleting the walkers which attempt to cross the
nodes or by using the short-time importance sampled Green’s function, where walkers
do not cross the nodes in the limit of zero time step. This procedure is known as the
fixed-node approximation. Forbidding node crossing is equivalent to finding the exact
solution with the boundary condition of having the same nodes as the trial wave function.
The Schrödinger equation is therefore solved exactly inside the nodal regions but not
at the nodes where the solution will have a discontinuity of the derivatives. The fixed-
node solution will be exact only if the nodes of the trial wave function are exact. In
general, the fixed-node energy will be an upper bound to the exact energy. A cut through
the nodal surface of the N and P atoms for a simple Hartree-Fock and a highly-accurate
wave function (Fig. 1.5) reveals that considerable differences are possible which are atom
dependent and directly translate in a larger size of the fixed-node error for the N atom
when a mono-determinantal wave function is used [59].

The fixed-node DMC algorithm can be also used to study excited states. There is no
particular difficulty in applying DMC to the lowest state of a given symmetry by simply
employing a trial wave function of the proper spatial and spin symmetry4. For excited
states which are energetically not the lowest in their symmetry, all that we know is that
fixed-node DMC will give the exact solution if we employ a trial wave function with

4More precisely, the DMC energy is variational if the trial function transforms according to a one-
dimensional irreducible representation of the symmetry group of the Hamiltonian [60].
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1 Excited-state calculations with quantum Monte Carlo

the exact nodes [60]. However, there is no variational principle and one may expect a
stronger dependence of the result on the choice of the wave function, which is now not
only used to overcome the fermion-sign problem but also to select the state of interest.
In our experience, unless we intentionally generate a wave function with a large overlap
with the ground-state one, we do not suffer from lack of variationality in the excited-state
calculation. In fact, the use of simplistic wave functions (e.g. HOMO-LUMO Hartree-
Fock, configuration-interaction singles, non-reoptimized truncated complete-active-space
expansions) has been shown to generally lead to an overestimation of the excitation
energy also in DMC, especially when the excited state has a strong multi-determinant
character [61]. Consequently, while DMC cannot cure the shortcomings of a poor wave
function, such a choice will likely yield smaller fixed-node errors in the ground than the
excited state and, ultimately, an overestimation of the DMC excitation energy.

1.4 Wave functions and their optimization

The key quantity which determines the quality of a VMC and a fixed-node DMC calcu-
lation is the trial wave function. The choice of the functional form of the wave function
and its optimization within VMC are key steps in a QMC calculation as they are cru-
cial elements to obtain accurate results already at the VMC level and to reduce the
fermionic-sign error in a subsequent DMC calculation.

Most QMC studies of electronic systems have employed trial wave functions of the
so-called Jastrow-Slater form, that is, the product of a sum of determinants of single-
particle orbitals and a Jastrow correlation factor as

Ψ = J
∑
k

ckDk , (1.18)

where Dk are Slater determinants of single-particle orbitals and the Jastrow correlation
function is a positive function of the interparticle distances, which explicitly depends on
the electron-electron separations. The Jastrow factor plays an important role as it is
used to impose the Kato cusp conditions and to cancel the divergences in the potential
at the inter-particle coalescence points. This leads to a smoother behavior of the local
energy and therefore more accurate and efficient VMC as well as DMC calculations
thanks to the smaller time-step errors and reduced fluctuations in the branching factor.

Moreover, the Jastrow factor introduces important correlations beyond the short elec-
tron-electron distances [62] and QMC wave functions enjoy therefore a more compact
determinantal expansion than conventional quantum chemical methods. Even though
the positive Jastrow function does not directly alter the nodal structure of the wave func-
tion which is solely determined by the antisymmetric part, the optimal determinantal
component in a QMC wave function will be different than the one obtained for instance
in a multi-configuration self-consistent-field calculation (MCSCF) in the absence of the
Jastrow factor. Upon optimization of the QMC wave function, the determinantal com-
ponent will change and it is often possible to obtain converged energy differences in
VMC and DMC with relatively short determinantal expansions in a chosen active space.
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1.4 Wave functions and their optimization

Furthermore, thanks to the presence of the Jastrow factor, QMC results are generally
less dependent on the basis set. For instance, excitations and excited-state gradients
show a faster convergence with basis set than multiconfigurational approaches, and an
augmented double basis set with polarization functions is often sufficient in both VMC
and DMC for the description of excited-state properties [24,63,64].

Important requirement for the optimization of the many parameters in a QMC wave
function is the ability to efficiently evaluate the derivatives of the wave function and the
action of the Hamiltonian on these derivatives during a QMC run. In general, this is
central to the computation of low-variance estimators of derivatives of the total energy
as, for instance, the derivatives with respect to the nuclear coordinates (i.e. interatomic
forces). Computing these derivatives at low cost is therefore crucial to enable higher
accuracy as well as to extend the application of QMC to larger systems and a broader
range of molecular properties. Automatic differentiation was successfully applied for the
computation of analytical derivatives [12] but the application to large computer codes is
not straightforward and the memory requirements might become prohibitive.

Recently, an efficient and simple analytical formulation has been developed to compute
a complete set of derivatives of the wave function and of the local energy with the
same scaling per Monte Carlo step as computing the energy alone both for single- and
multi-determinant wave functions [13,14]. This formulation relies on the straightforward
manipulation of matrices evaluated on the occupied and virtual orbitals and can be very
simply illustrated in the case of a single determinant in the absence of a Jastrow factor:

D = det(A) = |φ1φ2 . . . φN | , (1.19)

where A is a Slater matrix defined in terms of theN occupied orbitals, φi, as Aij = φj(ri).
For this wave function, it is not difficult to show that the action of a one-body operator
Ô = O(r1) + . . . + O(rN ) on the determinant can be written as the trace between the
inverse A matrix and an appropriate matrix B,

ÔD

D
= tr(A−1B) , (1.20)

where B is obtained by applying the operator O(r) to the elements of A as

Bij = (Oφ)j(ri) . (1.21)

For instance, if we consider the kinetic operator, we obtain

T̂ det(A) = −1

2

∑
i

∆i det(A) = −1

2

∑
i

∑
j

∆φj(ri) (A−1)ji det(A)

 , (1.22)

which can be rewritten as

T̂ det(A)

det(A)
=
∑
i

∑
j

Bkin
ij (A−1)ji = tr(A−1Bkin) , (1.23)
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1 Excited-state calculations with quantum Monte Carlo

where Bkin
ij = −1

2∆iAij = −1
2∆φj(ri). It is possible to show that an equivalent trace

expression holds also in the presence of the Jastrow factor but with a B matrix which
depends not only on the orbitals but also on the Jastrow factor.

The compact trace expression of a local quantity (Eq. 1.20) offers the advantage that
its derivative with respect to a parameter µ can be straightforwardly written as

∂µ
ÔD

D
= tr(A−1∂µB −X∂µA) , (1.24)

where ∂µA and ∂µB are the matrices of the derivatives of the elements of A and B,
respectively, and the matrix X is defined as

X = A−1BA−1 . (1.25)

This can easily be derived by using ∂µ(A−1) = −A−1∂µAA
−1 and the cyclic property

of the trace. Therefore, if one computes and stores the matrix X, it is then possible to
evaluate derivatives at the cost of calculating a trace, namely, O(N2). Consequently,
this procedure enables for instance the efficient calculation of the O(N) derivatives of
the local energy (Ô = Ĥ) with respect to the nuclear coordinates, reducing the scaling
of computing the interatomic forces per Monte Carlo step to the one of the energy,
namely, O(N3). The same scaling is also obtained for the optimization of the orbital
parameters as shown in Fig. 1.6 (left panel) and further discussed in Ref. [13]. This
simple formulation and its advantages in the calculation of energy derivatives can be
extended to multi-determinant wave functions to achieve a cost in the computation of a
set of derivatives proportional to the one of evaluating the energy alone [14] as illustrated
in Fig. 1.6 (right panel) for the interatomic derivatives.

With all the derivatives of the wave function and the corresponding local quantities
at hand, the next step is to use them for the optimization of the wave function. The
use of wave functions with a large number of parameters requires efficient algorithms
and the two most commonly used approaches, the linear method and the stochastic
reconfiguration method, are discussed in the following. We will begin with the simpler
case of the optimization in the ground state (or an excited state which is energetically
the lowest for a given symmetry).

Stochastic Reconfiguration Method

In the stochastic reconfiguration (SR) method [65, 66], one starts from a given wave
function, Ψ, and obtains an improved state by applying the operator (1−τĤ), namely, a

first-order expansion of the operator e−τĤ used in DMC. The new state is then projected
in the space spanned by the current wave function and its derivatives, {Ψi} = {Ψ, ∂iΨ}
as

Np∑
j=0

δpj |Ψj〉 = P̂ SR(1− τĤ)|Ψ〉 , (1.26)

where Np is the number of wave function parameters and Ψ0 = Ψ. By taking the internal
product with 〈Ψi| and eliminating the scaling δp0 through the i = 0 equation, one derives
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Figure 1.6: Cost per Monte Carlo step of computing a complete set of derivatives of the
wave function and local energy relative to a VMC run where only the en-
ergy is calculated. Left: increasing number of variational parameters for the
series CnHn+2 with n between 4 and 44 (reproduced from Ref. [13]). Right:
increasing number of determinants in the Jastrow-Slater wave function for
CnHn+2 with n between 4 and 60 (reproduced from Ref. [14]).

a set of equations for i = 1, . . . , Np, which can be written in matrix notation as

S̄ δp = −τ
2
g , (1.27)

where g is the gradient of the energy with respect to the parameters,

gi = 2

[
〈Ψi|Ĥ|Ψ〉
〈Ψ|Ψ〉

− Ev
〈Ψi|Ψ〉
〈Ψ|Ψ〉

]
≡ ∂iEv , (1.28)

and S̄ is related to the overlap matrix between the derivatives, S, as

S̄ij =
〈Ψi|Ψj〉
〈Ψ|Ψ〉

− 〈Ψi|Ψ〉
〈Ψ|Ψ〉

〈Ψ|Ψj〉
〈Ψ|Ψ〉

≡ Sij − Si0S0j (1.29)

With an appropriate choice of τ , a new set of parameters can be determined as p′i =
pi + δpi and the procedure iterated until convergence. Therefore, the SR method is like
a Newton approach where one follows the downhill gradient of the energy, using however
the matrix S̄ instead of the Hessian of the energy. Even though the method can display
a slow convergence since τ scales like the inverse of the energy range spanned by the
wave function derivatives [67], it was recently employed to successfully optimize very
large numbers of parameters [14, 15]. We will come back to this point when discussing
the linear method below.

In a VMC run of SR optimization, one needs to compute the gradient and the overlap
matrix S by sampling the distribution ρ given by the square of the current wave function
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1 Excited-state calculations with quantum Monte Carlo

(Eq. 1.2) as

Sij =
〈Ψi|Ψj〉
〈Ψ|Ψ〉

=

∫
Ψi(R)Ψj(R)dR∫

Ψ(R)2dR

=

∫
Ψi(R)

Ψ(R)

Ψj(R)

Ψ(R)
ρ(R)dR ≈ 1

M

M∑
k

Ψi(Rk)

Ψ(Rk)

Ψj(Rk)

Ψ(Rk)
. (1.30)

For large number of parameters, not only the storage of this matrix becomes problematic
but also its calculation whose cost scales as O(MN2

p ). However, if we use a conjugate
gradient method to solve the linear equations (1.27), we only need to repeatedly evaluate
S acting on a trial vector of parameter variations as

Np∑
j=1

Sijδpj =
1

M

M∑
k

Ψi(Rk)

Ψ(Rk)

Np∑
j=1

Ψj(Rk)

Ψ(Rk)
δpj , (1.31)

where the order of the sums in the last expression has been swapped [68]. Therefore, if
we compute and store the M ×Np matrix of the ratios Ψi(Rk)/Ψ(Rk) during the Monte
Carlo run, we can reduce the memory requirements by exploiting the intrinsic parallelism
of Monte Carlo simulations: we can employ a small M per core and increase instead
the number of cores to obtain the desired statistical accuracy. The computational cost
of solving the SR equations is also reduced to O(NCGMNp), where NCG is the number
of conjugate gradient steps, which we have found to be several orders of magnitude
smaller than the number of parameters in recent optimization of large determinantal
expansions [14,15].

Linear Method

The linear optimization method is related to the so-called super configuration interaction
(super-CI) approach used in quantum chemistry to optimize the orbital parameters in a
multi-determinant wave function. The starting point is the normalized wave function,

|Ψ̄〉 =
1√
〈Ψ|Ψ〉

|Ψ〉 , (1.32)

which we expand to first order in the parameter variations around the current values
in the basis of the current wave function and its derivatives, {Ψ̄i} = {Ψ̄, ∂iΨ̄} with
Ψ̄0 = Ψ̄. The important advantage of working with the “barred” functions is that they
are orthogonal to the current wave function since

|Ψ̄i〉 =
1√
〈Ψ|Ψ〉

(
|Ψi〉 −

〈Ψ|Ψi〉
〈Ψ|Ψ〉

|Ψ〉
)
, (1.33)

which has been found to yield better (non-linear) parameter variations and a more robust
optimization than simply using the derivatives of the wave function.
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1.4 Wave functions and their optimization

The change of the parameters δp is then determined by minimizing the expectation
value of the Hamiltonian on the linearized wave function in the basis {Ψ̄i}, which leads
to the generalized eigenvalue equations:

Np∑
j=0

H̄ijδpj = Elin

Np∑
j=0

S̄ijδpj , (1.34)

where H̄ij = 〈Ψ̄i|Ĥ|Ψ̄j〉 and S̄ij = 〈Ψ̄i|Ψ̄j〉. We note that the overlap S̄ is equivalent to
the expression introduced above in the SR scheme (Eq. 1.29). A new set of parameters
can be generated as p′i = pi + δpi/δp0 and the algorithm iterated until convergence.
Importantly, in a Monte Carlo run, the matrix H̄ will not be symmetric for a finite
sample and a non-obvious finding is that the method greatly benefits from reduced
fluctuations if one does not symmetrize the Hamiltonian matrix, as originally shown
by Nightingale and Melik-Alaverdian for the optimization of the linear parameters [32].
Other important modifications can be introduced to further stabilize the approach and
improve the convergence as discussed in Ref. [7].

It is simple to recognize that, at convergence, the linear method leads to an optimal
energy if we express explicitly the secular equations above in matrix form as(

Ev
1
2g

T

1
2g H̄

)(
δp0

δp

)
= Elin

(
1 0
0 S̄

)(
δp0

δp

)
, (1.35)

where we have used that H̄00 = 〈Ψ̄|Ĥ|Ψ̄〉 is the current energy and the elements of
the first column and row, H̄i0 = 〈Ψ̄i|Ĥ|Ψ̄〉 and H̄0i = 〈Ψ̄|Ĥ|Ψ̄i〉, respectively, are both
mathematically equal to the components of the energy gradient (Eq. 1.28). Therefore,
when the wave function parameters are optimal, the variations with respect to the current
wave function will no longer couple to it (δpi = 0) and the H̄i0 and H̄0i elements must
therefore become zero. This directly implies that the gradient of the energy with respect
to the parameters is identically zero.

To further understand how the linear method is related to other optimization schemes,
one can recast its equations as a Newton method [69]:

(A + αS̄)δp = −1

2
g , (1.36)

where A = H̄ − EvS̄ and α = Ev − Elin > 0. Therefore, the parameters are varied
along the downhill gradient of the energy with the use of an approximate Hessian A
level-shifted by the positive definite matrix αS̄. The presence of the latter renders the
optimization more stable and effective than the actual Newton method even when the
exact Hessian matrix is used. While the linear method is in principle significantly more
efficient than for instance the SR approach, we find that its stochastic realization suffers
from large fluctuations in the elements of H̄ when one optimizes the orbital parameters or
the linear coefficients of particularly extended multi-determinant wave functions (where
the derivatives are very different from the actual wave function used in the sampling).
As a result, the optimization requires long VMC runs to achieve reliable variations in
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1 Excited-state calculations with quantum Monte Carlo

the parameters or a large shift added to the diagonal elements of H̄ (except H̄00) [7] to
stabilize the procedure. In these cases, we find that the SR scheme, which only makes
use of the S̄ matrix, is more robust and efficient since it allows less strict requirements
on the error bars.

Finally, we note that, as in the SR scheme, it is possible to avoid to explicitly con-
struct the full matrices H̄ and S̄: one stores the local quantities Ψi(R)/Ψ(R) and
ĤΨi(R)/Ψ(R) in the Monte Carlo run and uses for instance a generalized Davidson
algorithm to find the eigenvectors where only matrix-vector products with trial vectors
are evaluated, significantly reducing the computational and memory requirements [68].

1.5 Excited States

For excited states of a different symmetry than the ground state, one can construct a
trial wave function of the desired space and spin symmetry (with an appropriate choice of
the determinantal component) and apply either the SR or the linear method to minimize
the energy in VMC, subsequently refining the calculation in DMC. For excited states
which are energetically not the lowest in their symmetry class, one can instead follow
different routes as in other quantum chemistry methods to find an accurate excited-state
wave function. We will begin to describe the possibilities within energy minimization
and then consider optimization schemes targeting the variance of the energy which has
a minimum for each eigenstate of the Hamiltonian.

1.5.1 Energy-based methods

While the linear method is generally employed for ground-state wave function optimiza-
tions, it is in fact possible to use it in a state-specific manner for the optimization of
excited states [70]. One can target a higher-energy state and linearize the problem with
respect to the chosen state. Solving a generalized eigenvalue problem as in Eq. 1.35 will
yield lower energy roots as well as the state of interest. The resulting wave function will
be only approximately orthogonal to the lower ones since orthogonality is only imposed
in the basis of the variations of the optimal target wave function with respect to the
parameters. Furthermore, since following such a higher root leads to the optimization
of a saddle point in parameter space, the procedure may exhibit convergence problems
so that the parameters do not converge to the desired state. One may also observe
flipping of the roots: As the optimization proceeds the optimized excited target state
can obtain a lower eigenvalue than the unoptimized ground state. Such problems will
be particularly severe in case of close degeneracy as in proximity of conical intersection
regions.

A different route to optimize multiple states of the same symmetry lies in the gener-
alization of state-average (SA) approaches to QMC [9]. We start from a set of Jastrow-
Slater wave functions for the multiple states that are constructed as linear combinations
of determinants multiplied by a Jastrow factor as

ΨI = J
∑
k

cIkDk , (1.37)
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1.5 Excited States

where the index I labels the states. The wave functions of the different states are
therefore characterized by different linear coefficients cIi but share a common set of
orbitals and the Jastrow factor J .

The optimal linear coefficients cIi can be easily determined through the solution of the
generalized eigenvalue equations∑

j

Hijc
I
j = EI

∑
j

Sijc
I
j , (1.38)

where the matrix elements are here given by

Hij = 〈JDi|Ĥ|JDj〉 and Sij = 〈JDi|JDj〉 , (1.39)

and are computed in a VMC run, where we do not symmetrize the Hamiltonian matrix
for finite Monte Carlo sampling to reduce the fluctuations of the parameters as discussed
above for the general linear method. After diagonalization of Eq. 1.38, the optimal linear
coefficients are obtained and, at the same time, orthogonality between the individual
states is automatically enforced.

To obtain a robust estimate of the linear coefficients of multiple states, it is important
that the distribution sampled to evaluate Hij and Sij has a large overlap with all states
of interest (and all lower lying states). A suitable guiding wave function can for instance
be constructed as

Ψg =

√∑
I

|ΨI |2 , (1.40)

and the distribution ρg in the VMC run defined as the square of this guiding function.
The matrix elements Sij (and, similarly, Hij) are then evaluated in the Monte Carlo run
as

Sij
〈Ψg|Ψg〉

=

∫
JDi(R)JDj(R)dR∫

Ψ2
g(R)dR

=

∫
JDi(R)

Ψg(R)

JDj(R)

Ψg(R)
ρg(R)dR

≈ 1

M

M∑
k

JDi(Rk)

Ψg(Rk)

JDj(Rk)

Ψg(Rk)
. (1.41)

We note that we can introduce the denominator 〈Ψg|Ψg〉 if we simply divide by it both
sides of Eq. 1.38.

As done in state-average multi-configurational approaches to obtain a balanced de-
scription of the states of interest, one can optimize the non-linear parameters of the
orbitals and the Jastrow factor by minimizing the state-average energy

ESA =
∑
I

wI
〈ΨI |Ĥ|ΨI〉
〈ΨI |ΨI〉

, (1.42)

with the weights of the states wI kept fixed and
∑

I wI = 1. The gradient of the SA
energy can be rewritten as

gSA
i =

∑
I

wI〈Ψ̄I
i |Ĥ|ΨI〉 , (1.43)
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where, similarly to Eq. 1.33, we have introduced for each state the variations, |ΨI
i 〉 = |∂iΨI〉,

and the corresponding “barred” functions orthogonal to the current state |ΨI〉:

|Ψ̄I
i 〉 =

1√
〈ΨI |ΨI〉

(
|ΨI

i 〉 −
〈ΨI |ΨI

i 〉
〈ΨI |ΨI〉

|ΨI〉
)
. (1.44)

The variations in the parameters can be obtained as the lowest-energy solution of the
generalized eigenvalue equation in analogy to the linear method for the ground state,(

ESA 1
2(gSA)T

1
2g

SA H̄SA

)(
δp0

δp

)
= E

(
1 0
0 S̄SA

)(
δp0

δp

)
. (1.45)

The state-average matrix elements are defined as

H̄SA
ij =

∑
I

wI
〈Ψ̄I

i |Ĥ|Ψ̄I
j 〉

〈Ψ̄I |Ψ̄I〉
, (1.46)

and an analogous expression for S̄SA
ij is introduced. To compute these matrix elements

in VMC, we perform a single run sampling the square of a guiding wave function Ψg

(Eq. 1.40) and compute the numerators and denominators in the matrix expressions for
all relevant states. We note that the state-average equations (Eq. 1.45) are not obtained
by minimizing a linearized expression of the SA energy (Eq. 1.42) but are simply inspired
by the single-state case. However, since the first row and column in Eq. 1.45 are given by
the gradient of the SA energy, at convergence, the optimal parameters minimize the SA
energy. We find that the use of these state-average Hamiltonian and overlap matrices
leads to a similar convergence behavior as the linear method for a single state.

Following this procedure, the algorithm alternates between the minimization of the
linear and the non-linear parameters until convergence is reached. The obtained energy
ESA is stationary with respect to variations of all parameters while the energies of the
individual states, EI , are only stationary with respect to the linear but not the orbital
and Jastrow parameters. If the ground state and the target excited state should be
described by very different orbitals, a state-specific approach may yield more accurate
energies.

1.5.2 Time-dependent linear-response VMC

A very different approach to the computation of multiple excited states is a VMC for-
mulation of linear-response theory [71]. Given a starting wave function Ψ with optimal
parameters p0, a time-dependent perturbation V̂ (t) is introduced in the Hamiltonian Ĥ
with the coupling constant γ as

Ĥ(t) = Ĥ + γV̂ (t) , (1.47)

so that the ground-state wave function itself becomes time-dependent as the variational
parameters p(t) evolve in time. It is convenient to work with a wave function subject
to an intermediate normalization,

|Ψ̄(t)〉 =
|Ψ(t)〉
〈Ψ0|Ψ(t)〉

, (1.48)
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where the starting wave function Ψ0 ≡ Ψ is taken to be normalized. This choice leads
to wave function variations to first and second order that are orthogonal to the current
optimal wave function Ψ0.

At each time t, one can apply the Dirac-Frenkel variational principle to obtain the
parameters p(t) as

∂

∂p∗i

〈Ψ̄(t)|Ĥ(t)− i ∂∂t |Ψ̄(t)〉
〈Ψ̄(t)|Ψ̄(t)〉

= 0, (1.49)

where the parameters can now in general be complex. To apply this principle to linear
order in γ, the wave function is expanded to second order in δp(t) around p0:

|Ψ̄(t)〉 = |Ψ̄0〉+
∑
i

δpi(t)|Ψ̄i〉+
1

2

∑
ij

δpi(t)δpj(t)|Ψ̄ij〉 , (1.50)

with |Ψ̄i〉 = |∂iΨ̄〉 and |Ψ̄ij〉 = |∂i∂jΨ̄〉 computed at the parameters p0. These can be
explicitly written as

|Ψ̄i〉 = |Ψi〉 − 〈Ψ0|Ψi〉|Ψ0〉
|Ψ̄ij〉 = |Ψij〉 − 〈Ψ0|Ψi〉|Ψj〉 − 〈Ψ0|Ψj〉|Ψi〉

+ (2〈Ψ0|Ψi〉〈Ψ0|Ψj〉 − 〈Ψ0|Ψij〉) |Ψ0〉 , (1.51)

where we use the same notation as above for the derivatives of Ψ, namely, |Ψi〉 = |∂iΨ〉
and |Ψij〉 = |∂i∂jΨ〉. Inserting this wave function in Eq. 1.49 and keeping only the
first-order terms in δp(t), in the limit of γ → 0, one obtains

A δp(t) + B δp(t)∗ = iS̄
∂δp(t)

∂t
, (1.52)

with the matrix elements Aij = 〈Ψ̄i|Ĥ − E0|Ψ̄j〉 = H̄ij − E0S̄ij and Bij = 〈Ψ̄ij |Ĥ|Ψ0〉.
If we search for an oscillatory solution,

δp(t) = Xne
−iωnt + Y∗ne

iωnt , (1.53)

with ωn an excitation energy and Xn and Yn the response vectors, we obtain the well-
known linear-response equations, here formulated as a non-Hermitian generalized eigen-
value equation, (

A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(
S̄ 0
0 −S̄∗

)(
Xn

Yn

)
. (1.54)

Neglecting B leads to the Tamm-Dancoff approximation,

AXn = ωnS̄Xn , (1.55)

which is equivalent to the generalized eigenvalue equations of the linear method (Eq. 1.35)
for an optimized ground-state wave function (when the gradients of the energy are there-
fore zero):

H̄Xn = (ωn + E0)S̄Xn . (1.56)
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The energy E0 is the variational energy, Ev, for the optimized ground state. Therefore,
upon optimization of the ground-state wave function in the linear method, we can simply
use the higher roots resulting from the diagonalization of the equations to estimate the
excitation energies as ωn = (Elin)n − E0 together with the oscillator strengths [71].

The time-dependent linear-response VMC approach has so far only been applied to
the excitations of the beryllium atom within the Tamm-Dancoff approximation and
with a simple single-determinant Jastrow-Slater wave function [71]. These calculations
represent an interesting proof of principle that multiple excitations of different space and
spin symmetry can be readily obtained after optimizing the ground-state wave function.
A systematic investigation with multi-configurational wave functions is needed to fully
access the quality of the approach, also beyond the Tamm-Dancoff approximation.

1.5.3 Variance-based methods

Variance minimization is a different approach to optimize the wave function compared
to the methods described so far, which allows in principle to optimize excited states in
a state-specific fashion. The target quantity for the minimization is the variance of the
energy:

σ2
v =
〈Ψ|(Ĥ − Ev)2|Ψ〉

〈Ψ|Ψ〉
=

∫
Ψ2(R)(EL(R)− Ev)2dR∫

Ψ2(R)dR
. (1.57)

While the (global) minimum of the variational energy is only obtained for the ground
state, the variance has a known minimum of zero for each eigenstate of the Hamiltonian.
The optimization of the variance can be performed using either a Newton approach
with an approximate expression of the Hessian of the variance [5] or reformulated as
a generalized eigenvalue problem, namely, a linear method for the optimization of the
variance [69]. For excited states, the initial guess of the trial wave function might
however be very important to select a specific state and ensure that the minimization of
the variance leads to the correct local minimum.

More robust state-specific variational principles for excited states can be formulated
so that the optimization of the excited state yields a minimum close to an initial target
energy. A simple possibility is to substitute the wave-function-dependent average energy
in σv with a guess value ω as in

σ2
ω =
〈Ψ|(Ĥ − ω)2|Ψ〉

〈Ψ|Ψ〉
≡ (Ev − ω)2 + σ2

v , (1.58)

as it was done in the early applications of variance minimization on a fixed Monte
Carlo sample [72], where ω was chosen equal to a target value at the beginning of the
optimization and then adjusted to the current best energy. If one updates ω in this
manner, minimizing σω is equivalent to minimizing σv.

Alternatively, minimization of the variance can also be achieved by optimizing the
recently proposed functional Ω defined as

Ω =
〈Ψ|ω − Ĥ|Ψ〉
〈Ψ|(ω − Ĥ)2|Ψ〉

=
ω − Ev

(ω − Ev)2 + σv
, (1.59)
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where ω is adjusted during the optimization to be equal to the current value of Ev −
σv [10,11]. While the functional has formally a minimum for a state with energy directly
above ω + σv, keeping ω fixed would lead to lack of size consistency in the variational
principle [11]. Therefore, after some initial iterations, ω is gradually varied to match
the current value of Ev − σv required to achieve variance minimization. As in the case
of the energy and the variance, this functional can be optimized in VMC through a
generalization of the linear method [10,30].

1.6 Applications to excited states of molecular systems

The status of excited-state quantum Monte Carlo calculations closely parallels the me-
thodological developments that have characterized the last decade as we have outlined
above in the context of wave function optimization. Since the early applications to
excited states, QMC methods were mainly employed as a tool to compute vertical exci-
tation energies and validate results of more approximate methods. Input from other –
sometimes much less accurate – quantum chemical approaches was however then used
for the construction of the wave function, whose determinant component was generally
not optimized in the presence of the Jastrow factor. The success of the calculation was
therefore often heavily relying on the ability of DMC to overcome possible shortcomings
of the chosen trial wave function. This must be contrasted to the recent situation of
VMC having matured to a fully self-consistent method as regards the wave function and
the geometry with a rich ecosystem of tools ranging from basis sets and pseudopotentials
to multi-scale formulations.

One of the first QMC computations of two states of the same symmetry was carried
out for the H2 molecule [73]: the wave function was obtained from a multi-reference
calculation and DMC was shown to be able in this case to correct for the wave function
bias. Over the subsequent years, a number of studies of vertical excitation energies
were carried out with this basic recipe, namely, performing DMC calculations on a given
simple wave function obtained at a lower level of theory [74–83]. Some of these early
excited-state calculations were in fact pioneering as they were applied to remarkably large
systems such as silicon and carbon nanoclusters with more than hundred atoms [74,76,
79]. Given the size of the systems, the choice of excited-state wave function was then
very simple and consisted of a single determinant correlated with a Jastrow factor and
constructed with the HOMO and LUMO orbitals from a density functional theory (DFT)
calculation. Nevertheless, the resulting DMC excitation energies clearly represented an
improvement on the time-dependent DFT values and captured much of the qualitative
physics of the problem. Even though doubts on the validity of this simplistic recipe [82,
83] led researchers to investigate the use of orbitals and pseudopotentials obtained with
different density functionals [79] as well as a multi-determinant description [83], a rather
heuristic approach erring on the side of computational saving characterized excited-state
calculations in this earlier period.

More recently, the development of algorithms for wave function optimizations in a
state-specific or state-average fashion has allowed us to better understand the proper
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Figure 1.7: Convergence of VMC and DMC adiabatic excitation energies for the first and
second excited states of methylene with increasing CAS size. Three levels
of optimization have been used for the wave function: Jastrow, Jastrow and
linear coefficients, and all parameters. Adapted from Ref. [70].

ingredients in an excited-state QMC calculation through the study of simple but chal-
lenging molecules. In particular, it has become apparent that large improvements
in the accuracy of both VMC and DMC excited states can be achieved by optimiz-
ing the determinantal component in the presence of the Jastrow factor at the VMC
level [9,61,64,67,70,84]. For instance, accurate excitations for low-lying states of ethene
can only be obtained if the orbitals derived from a complete-active-space self-consistent-
field (CASSCF) calculation are reoptimized in the presence of the Jastrow factor to
remove spurious valence-Rydberg mixing in the final DMC energies [67]. The analysis of
various small organic molecules reveals that the use of simplistic wave functions such as
a HOMO-LUMO Hartree-Fock or a configuration-interaction-singles ansatz may lead to
significant errors also in DMC [61]. An investigation of the ground and excited states of
methylene shows that the optimization of all variational parameters reduces the depen-
dency of both VMC and DMC on the size of the active space employed for the trial wave
function as shown in Fig. 1.7 [70]. In general, while a minimal requirement is to optimize
the linear coefficients together with the Jastrow factor, the optimization of the orbitals
is highly recommended, especially if one employs a truncated expansion in computing
the excitation energies. Furthermore, evidence has been given that the optimization
of excited-state geometries requires the optimization of all wave function parameters
in order to obtain accurate gradients and, consequently, geometries [63]. Finally, by
construction, linear-response VMC depends strongly on the quality of the ground-state
wave function for the description of excited states and, therefore benefits considerably
from orbital optimization in the ground state [71].

While these and other examples of excited-state QMC calculations clearly illustrate
the importance of using wave functions with an adequate description of static correla-
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Figure 1.8: Planar excited-state geometry of a retinal protonated Schiff base model op-
timized with CASSCF, second-order perturbation theory (CASPT2), and
VMC. Adapted from Ref. [63].

tion and consistently optimized in VMC, they also demonstrate the robustness of QMC
approaches and some of their advantages with respect to standard multi-configurational
methods. In particular, the VMC and DMC excitations are well converged already when
very few determinants of a CAS expansion are kept in the determinantal component of
the wave function [9, 84]. Furthermore, the demands on the size of the basis set are
also less severe and one can obtain converged excitation energies with rather small basis
sets [24, 63, 64]. We note that most of the recent QMC calculations for excited states
have attempted to achieve a balanced static description of the states of interest either
by employing a CAS in the determinantal component or a truncated multi-reference
ansatz where one keeps the union of the configuration state functions resulting from an
appropriate truncation scheme (e.g. the sum of the squared coefficients being similar
for all states). Interestingly, matching the variance of the states has recently been put
forward as a more robust approach to achieve a balanced treatment of the states in the
computation of excitation energies [30,85].

The ability to optimize geometries even in the ground states has been a very recent
achievement for QMC methods, so most QMC calculations also outside the Franck-
Condon region have been performed on geometries obtained at a different level of the-
ory [30, 61, 70, 83, 86–88]. Nevertheless, these investigations have led to very promising
results, showing interesting prospects for the application of QMC to geometry relax-
ations in the excited state, where most quantum chemical methods either lack the re-
quired accuracy or are computationally prohibitive due to their scaling with system size.
For example, QMC was successfully employed to assess the accuracy of various time-
dependent DFT methods in describing the photochemisty of oxirane through exploration
of multiple excited-state potential energy surfaces, also in proximity of conical intersec-
tion regions [86, 87]. Another application demonstrating the very good performance of
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DMC was the study of different conformers of azobenzene in the ground and excited
states [88]. To the best of our knowledge, to date, the only few attempts to optimize
an excited-state geometry via QMC gradients are our studies of the retinal protonated
Schiff base model [24,63] and benchmark calculations on small organic molecules in the
gas phase [89] and in a polarizable continuum model [46]. As shown for the retinal
minimal model in Fig. 1.8, the results are very encouraging as they demonstrate that
the QMC structures relaxed in the excited state are in very good agreement with other
highly-correlated approaches. As already mentioned, the VMC gradients are sensitive to
the quality of the wave function and the orbitals must be reoptimized in VMC to obtain
accurate results. Tests also indicate that the use of DMC gradients is not necessary
as DMC cannot compensate for the use of an inaccurate wave function while it yields
comparable results to VMC when the fully optimized wave function is employed.

Finally, we mention the recent developments of multi-scale methods in combination
with QMC calculations for excited states. Multi-scale approaches are particularly rele-
vant for the description of photoactive processes that can be traced back to a region with
a limited number of atoms, examples being a chromophore in a protein or a solute in a
solvent. While this locality enables us to treat the photoactive region quantum mechan-
ically, excited-state properties can be especially sensitive to the environment (e.g. the
polarity of a solvent or nearby residues of a protein), which cannot therefore be neglected
but are often treated at lower level of theory. Multi-scale approaches are well-established
in traditional quantum chemistry but represent a relatively new area of research in the
context of QMC. First steps in this direction were made by combining VMC with a
continuum solvent model, namely, the polarizable continuum model (PCM) [90]. The
approach was used to investigate solvent effects on the vertical excitation energies of
acrolein [44] and on the optimal excited-state geometries of a number of small organic
molecules [46]. A notable advantage of VMC/PCM is that the interaction between the
polarizable embedding and the solute is described self-consistently at the same level of
theory. This stands for instance in contrast to perturbation approaches which include
the interaction with the environment obtained self-consistently only at the zero-order
level (e.g. CASSCF).

To achieve a more realistic description of the environment, a static molecular me-
chanics environment coupled via electrostatic interactions with the VMC or DMC chro-
mophore was used to describe the absorption properties of the green fluorescent protein
and rhodopsin [91, 92]. The limitations of such a non-polarizable embedding scheme
led to further developments, replacing the static description with a polarizable one in a
so-called VMC/MMpol approach [47]. The force field consists of static partial charges
located at the positions of the atoms as well as atomic polarizibilities. These are used
to compute induced dipoles in equilibrium with the embedded system at the level of
VMC, which are then kept fixed in subsequent DMC calculations. The computation of
the QMC excitation energies can be carried out for two polarization schemes: either the
induced dipoles are determined for the ground state and used also for the excited state
(polGS), or the excitation energy is computed in a state-specific manner as the difference
between the ground- and excited-state energies both obtained self-consistently in equilib-
rium with the respective induced dipoles (polSS). As illustrated in Fig. 1.9, the vertical
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excitation energies of small molecules in water clusters depend strongly on the sophisti-
cation of the embedding scheme. Only the polarizable force field with two separate sets
of induced dipoles for the ground and excited states leads to a very good agreement with
the supermolecular excitation. Again, the QMC results agree with complete-active-space
second-order perturbation theory (CASPT2) which however is found to be rather sensi-
tive to the choice of the active space. The most sophisticated QMC embedding scheme
has so far been realized using a wave-function-in-DFT method and including differential
polarization effects through state-specific embedding potentials [45]. As in the case of
the polSS approach, the use of different potentials in the ground and excited state is
particularly important for excitations which involve large polarization effects due to a
considerable rearrangement of the electron density upon excitation.

Figure 1.9: Energies of the π → π∗ excitation of methylenecyclopropene in vacuum and
embedded in a cluster of water molecules, computed with time-dependent
DFT, CASPT2, VMC, and DMC. The water molecules are described with a
static TIP3P force field and a MMpol approach with no polarization (nopol),
with induced ground-state (polGS) and state-specific (polSS) dipoles, and in
a supermolecular calculation (super). Adapted from Ref. [47].

1.7 Alternatives to diffusion Monte Carlo

In some of the applications we presented, VMC has been shown sufficient to provide
accurate excited-state properties without the need to perform a DMC calculation. The
reason is that the burden and complexity of the problem have now been moved from the
DMC projection to the construction and optimization at the VMC level of sophisticated
wave functions with many parameters. It is therefore natural to ask if there are alter-
natives to DMC, which do not require us to build and optimize complicated many-body
wave functions.
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The Cerperley-Bernu method [93] can in principle be used to compute the lowest-
energy eigenstates and the corresponding relevant matrix elements by constructing a
set of many-body basis states and improving upon them through the application of
the imaginary-time projection operator also used in DMC. The Hamiltonian and over-
lap matrices are computed on these improved basis states during the projection and
the eigenvalues and eigenstates are then obtained by solving this generalized eigenvalue
problem. The method requires however that the fixed-node constraint is relaxed during
the projection, and therefore amounts to an expensive “nodal-release” approach. The
approach has been successfully applied to the computation of low-lying excitations of
bosonic systems [32,93] and has also been used to compute tens of excited states of the
fermionic, high-pressure liquid hydrogen in order to estimate its electrical conductiv-
ity [94].

If we move beyond a continuum formulation of QMC, the auxiliary-field quantum
Monte Carlo (AFQMC) method by Zhang and coworkers [95] represents a very distinct,
feasible alternative to DMC. In this approach, the random walk is in a space of single-
particle Slater determinants, which are subject to a fluctuating external potential. The
fermion-sign problem appears here in the form of a phase problem and is approximately
eliminated by requiring that the phase of the determinant remains close to the phase of
a trial wave function. The method is more expensive than DMC but has been applied to
a variety of molecular and extended systems (mainly in the ground state) and appears
to be less plagued by the phase constraint as compared to the effect of the fixed-node
approximation in DMC. A very recent review of AFQMC and its applications also to
excited states can be found in Ref. [96].

Finally, we should mention another QMC approach in determinantal space, namely,
the full configuration interaction quantum Monte Carlo method [97,98] where a stochas-
tic approach is used to select the important determinants in a full configuration interac-
tion expansion. The method has been described in Chapter X together with its extension
to excited states.
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