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Abstract—The Phylogenetic Likelihood Function (PLF) is one
of the cornerstone functions in most phylogenetic inference tools;
its execution represents the majority of time required to complete
an analysis. This work proposes the acceleration of this function
using reconfigurable hardware accelerators, focusing on system-
on-chips that integrate Field Programmable Gate Array (FPGA)
resources as well as traditional High Performance Computing
(HPC) systems that use FPGA-based accelerator cards. Taking
into account the specific properties of each platform in order
to exploit their processing capabilities, the proposed solutions
provide significant performance gains. The measured acceleration
of PLF function is up to 8x while the overall time to complete
a phylogenetic analysis using the popular RAxML software can
be reduced up to 3.2 times (with respect to a pure software
implementation on a high-end server processor). Compared
to other similar solutions proposed in literature, our systems
perform up to 65% faster.

Index Terms—phylogenetic inference, phylogenetic tree,
RAxML, PLF, phylogenetic likelihood, FPGA, Reconfigurable
hardware, Amazon AWS F1

I. INTRODUCTION

Phylogenetic inference is used in computational biology

to construct phylogenetic trees, or phylogenies, based on

molecular sequence data. A phylogeny is a tree structure

that represents the evolutionary history of a set of species.

The input to a phylogenetic analysis is a multiple sequence

alignment (MSA) that is produced by a pre-processing step

and determines which nucleotides share a common evolution-

ary history. An MSA is a k × m matrix that comprises k
DNA sequences of m nucleotides each. The analysis can be

conducted by applying character-based inference methods such

as Maximum Parsimony [1] or Maximum Likelihood (ML) [2]

on the aligned sequences.

The output of a phylogenetic analysis is an unrooted binary

tree topology. The extant species (for which DNA data can

be sequenced and is available) are assigned to the leaves

(taxa) of such a tree, whereas the inner nodes represent

hypothetical extinct common ancestors. In general, a scoring

function and a tree-search strategy are required to reconstruct

a phylogenetic tree from an MSA. Finding the best-scoring

tree under Maximum Likelihood is known to be NP-hard [3].

The scoring criteria are used to assess how well a specific tree

topology explains the underlying molecular sequence data.

The Phylogenetic Likelihood Function (PLF) represents one

of the most widely used optimality criteria to score and thus

choose among distinct evolutionary scenarios (phylogenetic

trees). Numerous phylogenetic inference tools implement the

PLF, either for standard ML-based optimization (RAxML

[4], GARLI [5], PHYML [6]) or for Bayesian phylogenetic

inference (MrBayes [7], PhyloBayes [8]). In all these tools,

the PLF dominates the execution time, reaching up to 95% of

the total analysis time. Consequently, acceleration of the PLF

function is important to the bioinformatics community.

In this paper we propose the use of reconfigurable hardware

(FPGAs) in order to accelerate the execution of the PLF

function, and thus the overall phylogenetic analysis. The focus

is on the PLF implementation of the widely employed phylo-

genetic inference software RAxML (Randomized Axelerated

Maximum Likelihood) [4]. We propose two systems that exe-

cute the RAxML software on general purpose processors that

are tightly coupled with FPGA fabric. The PLF is implemented

as an FPGA-based co-processor. The first system is realized on

a Xilinx ZCU102 development board [9], which incorporates

a system-on-chip that tightly couples reconfigurable logic

with four general purpose ARM A53 processors. The second

platform employed in this study is the Amazon AWS F1 cloud

instance [10], where FPGA accelerator boards are connected

to Xeon E5v4 processors through PCIe.

In the remainder of this paper, Section II describes the

mathematical foundation to compute the PLF. Section III

discusses relevant previous works. Section IV presents the

proposed system architectures of the two platforms, and Sec-

tion V has the associated experimental results and performance

evaluation. Finally, Section VI concludes this work.
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II. PHYLOGENETIC LIKELIHOOD FUNCTION

RAxML employs the Phylogenetic Likelihood Function

(PLF) as the scoring function for maximum likelihood esti-

mation. The Felsenstein pruning algorithm [2] is the standard

method used for computing the PLF and the overall log

likelihood score of a tree topology. The rest of this section

provides an abstract description of this algorithm.

The algorithm begins by identifying a pair of child nodes

i and j in the given tree for which the likelihood vector at

the common ancestor k(1 ≤ i, j, k ≤ 2n − 2) has not been
computed yet. Given nodes i and j, the second step is the

calculation of the ancestral probability vector entries at k and

to subsequently prune the child nodes from the tree. These

steps are executed recursively (by means of a post-order tree

traversal) until the probability vector at the virtual root vr is

calculated. At that point, the pruning process has transformed

the initial tree to only one node (ancestral probability vector)

that is located at the virtual root of the tree. Phylogenetic trees

under ML are unrooted for mathematical and computational

reasons [2], but a virtual root vr can be placed into any branch
of the tree to evaluate its likelihood score.

To compute the PLF on a given tree, apart from the tree

shape itself, one also has to compute the branch lengths

and the parameters of the statistical nucleotide substitution

model. For DNA data, a model of nucleotide substitution is

provided by a 4 × 4 matrix (a 20 × 20 matrix is used for

protein data) that is usually denoted as Q matrix. The Q
matrix contains the instantaneous transition probabilities (for

infinitesimal relative evolutionary time dt) of a nucleotide A
to change into a nucleotide A, C, G, or T etc. To compute the

nucleotide substitution probabilities for a given branch length

t (t represents the evolutionary time between two nodes in the
tree), one has to compute the following:

P (t) = eQt (1)

This is usually implemented via an eigenvalue/eigenvector

decomposition. Thus, to compute the likelihood on a fixed

tree with given branch lengths and model parameters, one

initially needs to apply the Felsenstein pruning algorithm and

subsequently compute the overall likelihood score of the tree

based on the ancestral probability vector at the virtual root.

Every probability vector entry �L(c) at a position c, with
c = 1...m, contains the four probabilities P (A), P (C), P (G),
P (T ) of observing a nucleotide A, C, G, or T at a specific

site c of the input alignment. The probabilities at the leaves

of the tree for which observed data (DNA sequences) is

available are set to 1.0 for the observed nucleotide charac-

ter at the respective position c (e.g., for the nucleotide A:
�L(c) = (1.0, 0.0, 0.0, 0.0)).

Given probability vectors �Li and �Lj of child nodes i and

j, respectively, each of the four probability values �Lu
C(i), u ∈

N and N = {A,C,G, T}, at location c of the probability

vector �LC that describes the immediate common ancestor C
is computed using the following equation:

�Lu
C(c) =

( ∑

s∈N

Pu→s(tl)×�Ls
i (c)

)×( ∑

s∈N

Pu→s(tr)×�Ls
j(c)

)
,

(2)

where tl and tr are the lengths of the branches that

connect parent node C with child nodes i and j, respectively,
while Pu→s(t) is the nucleotide substitution probability for a

nucleotide u to mutate to a nucleotide s given a branch length
t. The nucleotide substitution probabilities are computed using
Equation (1).

In real-world analyses, the statistical model of nucleotide

substitution is extended by additional parameters to account

for rate heterogeneity among alignment sites, i.e., the biolog-

ical fact that genes evolve at different rates. A widely used

model to describe rate variation among sites in phylogenetic

inference is the Γ model [12], which assumes that rates

over sites are random variables drawn from a Γ distribution,

integrating the log-likelihood over the Γ function. To yield

a computationally tractable solution, this integral is approx-

imated by discretizing the Γ function into typically 4 or 8

discrete rates. Computing the PLF under the Γ model entails

the calculation of Equation (2) independently for each discrete

rate, resulting to the calculation of a probability vector �Lx

per discrete rate per inner node x. When N discrete Γ rates

are used for phylogenetic inference based on DNA sequences,

each comprehensive probability vector entry �Lx(c) contains a
total of N × 4 probability values per genomic location.

When the branch with the virtual root is reached, following

a number of FPA steps, a likelihood score l(c) per site c is

computed based on the probability vector �Lvr at the virtual

root using (3):

l(c) =
∑

s∈N

πs × �Ls
vr(c), (3)

where πs, s ∈ N and N = {A,C,G, T}, are the prior

probabilities (typically referred to as base frequencies) of

observing nucleotides A, C, G, and T at the virtual root. The

final likelihood score of the tree is computed as the sum of the

logarithm of the per-site likelihood scores using Equation 4:

LH =
m∑

c=1

log(l(c)). (4)

It should be noted that state-of-the-art ML inference pro-

grams, such as RAxML [4] (used in this work), deploy a

Newton-Raphson iterative procedure to optimize the branch

lengths and improve the final likelihood score given the tree

topology and the nucleotide substitution model.

III. RELATED WORK

There exist multiple works on FPGA-based accelerators for

PLF implementation. More specifically, in [13] and [14] Mak

and Lam map a PLF implementation with reduced floating-

point precision to reconfigurable logic. The performance tests

reported in [13] and [14] have been conducted on trees with

only 4 leaves (4 input sequences). Hence, scalability beyond

4 species trees is not addressed.
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In [15] Alachiotis et al. present the implementation of

an FPGA-based architecture of the phylogenetic maximum

likelihood (ML) function and compare the performance to an

efficient software (C) implementation on a high-end multi-

core CPU with 16 cores. The initial implementation of the

ML function for trees comprising 4 up to 512 sequences on

an FPGA yields average speedups of a factor 8.3 vs. execution

on a single-core, and is faster than the OpenMP-based parallel

implementation on up to 16 cores. Consequently, Alachiotis et
al., in [16], present an updated architecture that benefits from

the large number of DSP modules available in the FPGA in

order to map the PLF. They validate and assess performance

against a highly optimized and parallelized software imple-

mentation of the PLF that is based on RAxML. Both software

and hardware implementations use double precision floating

point arithmetic. The updated architecture achieves speedups

ranging from 1.6 up to 7.2 compared to a dual-core processor

running the OpenMP-based multi-threaded version of the PLF.

Bakos et al., in [17], propose a co-processor architecture

to accelerate median-based phylogenetic reconstruction for

gene-rearrangement data. They integrated the hardware-based

median computation into the GRAPPA toolset and achieved

an average speedup of 189 over the entire phylogenetic re-

construction procedure. Another work by Zierke and Bakos

presented in [18], uses the MrBayes 3 tool as a framework and

utilizes an FPGA-based co-processor that executes the PLF.

For large datasets, the authors estimate that the accelerated

MrBayes, if run on a current-generation FPGA, achieves a

10× speedup relative to software running on a state-of-the-art

server-class microprocessor. The FPGA-based implementation

achieves its performance by deeply pipelining the likelihood

computations, performing multiple floating-point operations in

parallel, and through a natural log approximation that is chosen

specifically to leverage a deeply pipelined custom architecture.

In [19] Berger et al. presented an accelerator architecture

particularly optimized for 4-state input data (i.e., nucleotide

characters) and described how to efficiently handle n-state

data, with n > 4, as for example in the case of protein

sequences or RNA secondary-structure data. The authors also

proposed a flexible communication mechanism to enable the

widely used software RAxML [4] to offload computation to

the FPGA accelerator, reporting up to 4.3x faster processing

vs. a 256-bit wide AVX-based (Advanced Vector Extensions)

heavily optimized sequential implementation.

A more recent work by Alachiotis et al. [20] utilizes near-
memory computation units (NMUs) within a FPGA-based

computing environment with disaggregated memory to allevi-

ate the data movement problem and improve performance and

energy efficiency when inferring large-scale phylogenies. They

report up to 22x better FLOPS performance and 13x higher

power efficiency (FLOPS/Watt) over the standard accelerator-

as-a-coprocessor model with explicit remote data transfers.

IV. IMPLEMENTATION ON FPGA PLATFORMS

In our work we consider two different FPGA platforms. The

first one is based on Zynq UltraScale MPSoC devices [11]

that integrate in the same chip general purpose CPU cores

and FPGA fabric. Although such devices are primarily aimed

at embedded systems and related applications, recent research

on heterogeneous High Performance Computing systems [21]

proposes their adoption in such environments because of their

high performance to energy efficiency. The second platform

that we examine is a traditional HPC accelerator, i.e., a

high-capacity, high-performance FPGA device with direct-

attached memory in a PCIe accelerator card (in the same

manner as widely used compute accelerators such as GPUs),

connected to a server-grade high performance x86 CPU. The

specific platform that we employ is available through the

Amazon AWS cloud as part of their EC2 F1 instances. In the

subsections that follow, we present the two different platforms

in more detail and outline the specific implementations that

take advantage of the characteristics of each one.

A. Zynq UltraScale+ MPSoC Platform

The first platform is based on a Zynq Ultrascale+ MP-

SoC. The specific board used is the ZCU102 Evaluation

Board [9] that incorporates a Xilinx Zynq Ultrascale+ MPSoC

(XCZU9EG) featuring four Arm Cortex-A53 64-bit proces-

sors tightly coupled with UltraScale+ reconfigurable fabric. It

should be noted that the Zynq MPSoC also contains a Cortex-

R5 dual-core real-time processor and a Mali-400 graphics

processing unit (GPU), however, for the current work these re-

sources are not employed. The Cortex-A53 processors plus the

static logic on the chip are referred to as the Processing System

(PS) while the reconfigurable region is called Programmable

Logic (PL). The board has 4GB of DDR4 memory connected

to the PS and another 512MB directly connected to the PL.

As mentioned above, the PLF dominates the execution time

of the RAxML tool (up to 95% of the total execution time).

As such, this makes it a natural target to try to accelerate

through custom hardware on the PL. The rest of the RAxML

application is executed by the ARM Cortex-A53 processor.

One of the most distinct characteristics of the Zynq MPSoC

is the high degree of integration between the general purpose

CPUs and the accelerators on the device. As such, the FPGA

fabric is connected with up to six high-throughput AXI inter-

faces with the four A53 CPUs and the memory connected to

the PS. Two of these interfaces can be coherent with the caches

of the processors, while the other ports can be connected

to Direct Memory Access (DMA) engines that control data

flow between memory and the PL without requiring processor

intervention. Each port can be configured to be up to 128-

bits wide and streaming modes are also supported. Thus the

effective throughput between main memory/CPU cores and the

programmable logic can be massive while keeping the com-

munication latency at very low levels. The main advantages

of this platform are twofold. First, the data stored in the main

memory are accessible by both the PS and the PL removing

the necessity of multiple copies and data transfers. Second,

the wide stream interfaces allow the implementation of a wide-

datapath parallel stream accelerator architecture since data can

be provided in such a way. The main disadvantage of course is
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Fig. 1. Architecture of the PLF core

the ARM Cortex-A53 processor as the processing unit for all

other tasks, as it is about eight times slower than a state of the

art Intel Xeon processor when executing the RAxML software

(per thread). It should be noted, however, that this drawback

only arises on corner cases of data sets whose processing does

not involve the extended levels of 70% to 95% PLF usage

which are typically observed.

The PLF core was designed using the Vivado HLS 2019.2

tool. The architecture of the PLF core is shown in Fig 1. The

PLF pipeline uses arrays of double-precision floating-point

multipliers that perform all required operations per received

datum in parallel, and relies on logarithmic adder trees to

yield a pipelined datapath. Each multiplier array consists of

N multipliers, where N is the alphabet size (N=4 for DNA).

Initially the interface is automatically set to 64 bits as the

input/output arguments are double precision floating point

numbers. By providing the HLS pipeline pragma, each core

has a deep pipeline which produces a result every 16 clock

cycles, after 114 cycles to produce the first result. This is

because the core requires 16 input values per result, with

one double precision value being read during every clock

cycle. Streaming interfaces are utilized to read/write the data

to the DDR memory. More specifically, two DMA controllers

are utilized, as the core uses two input streams for the left

(L vector) and right (R vector) child node vectors and one

output stream for the result parent vector. Also, a memory

mapped interface is used to provide the core with the values

for the left/right probability matrices as well as the eigenvector

(EV), all of which are initialized prior to the streaming phase.

In order to increase the performance, the streaming interface

was widened to 128 bits from 64 bits. This allows the

utilization of the full width of the PS-PL ports, which required

changes to the software and hardware so that the split/merge

of the data could be done. This way, once full after 92

cycles (vs. 114 cycles in the 64-bit version), the pipeline can

produce a result in 8 (rather than 16) clock cycles, doubling

the processing throughput of the accelerator core.

Initial resource utilization results allow the placement of

four PLF cores inside the PL. The limiting factor though

proved to be the PS-PL bandwidth. As mentioned above,

PS

PLF

MPSoC

DDR
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Fig. 2. Block Diagram of two PLF cores on the ZCU102 MPSoC

TABLE I
RESOURCE UTILIZATION OF TWO PLF CORES ON THE ZCU102

PLATFORM.

Block RAM DSP48E FF LUT
Utilized 19 734 143128 87812
Available 912 2520 548160 274080

Utilization (%) 2 29 26 32

each PLF core requires two DMA controllers in order to read

the data from the DDR memory. The bandwidth required by

each core is at about 7GB/s. The timing results show that

two PLF cores consume the available PS-PL bandwidth when

running at 250MHz. As a result, even though the resource

utilization allows the placement of more accelerators it is

meaningless as the bottleneck is the I/O bandwidth. The top

level block diagram of the system is shown in Fig 2. The

resource utilization for the two PLF cores, along with the

DMA controllers, is presented in Table I.

B. Amazon AWS F1 Instance

The Amazon AWS F1 instances [10] provide remote access

to servers that couple high-performance Intel Xeon processors

with up to eight FPGA accelerator cards connected via PCIe.
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Fig. 3. Simplified view of the topology of the AWS F1 FPGA platform.

The specific instance that we have employed (f1.2xlarge)

offers 8 vCPUs (Xeon E5-2686v4) coupled with 122GB of

main memory and 470GB SSD storage and is connected to a

single FPGA board through x16 PCIe-3.0. The FPGA board

hosts a Xilinx Virtex UltraScale+ VU9P FPGA with 64GB

of on-board DDR4 memory arranged in four independent

memory banks that can be accessed in parallel.

Compared to the Zynq-based platform, in this case the

topology follows a more typical organization (Fig. 3), where

the CPU is connected to the main memory and through PCIe

to the FPGA accelerator card. The CPU has to access data and

orchestrate explicit data transfers to/from the FPGA accelera-

tor. Data can be placed on any of the four available memory

banks and the FPGA can access those memory resources in

parallel. The communication between the CPU and the FPGA

is orchestrated through a runtime environment (Xilinx XRT)

and is programmed using OpenCL calls.

The architecture of the PLF accelerator we designed is based

on the Decoupled Access Execute design paradigm [23], [24].

The main execution pipeline (Execution Unit - EX) is similar

to the one presented in Fig 1, however the inputs and outputs

are handled by separate units, called Access Units (AU) - the

decoupled access-execute conceptual architecture. The overall

system functions as a dataflow streaming pipeline. In total

seven Access Units are employed (two units for the two input

vectors, three units for the R, L and EV matrices, one unit for

the weight scaling vector and one output unit for the result

matrix) and a single wide Execution Unit.

An invocation of the accelerator consists of two steps. First,

the Left- and Right-matrix AUs retrieve the left and right

probability matrices, and the EV AU retrieves the inverted

eigenvector (RAxML computes P(t) matrices based on eigen-

vector/eigenvalue decomposition [4]) from memory and store

them into register files. Then, the two FIFO-based AUs fetch

the APV vectors L vector and R vector that correspond to the

left and right child nodes, and stream them through the PLF

datapath (Fig. 1). This computes Eq. 2, performs multiplication

with the inverted eigenvector, and scales up the results if

needed. The output Parent vector is stored in memory through

a FIFO-based AU. The AUs that prefetch data into register files

do not contain FIFOs to lower resource utilization.

As mentioned above, the FPGA device on the accelera-

tor card has access to four independent channels of DDR4

memory. Each memory channel can be accessed by a separate

memory controller, thus enabling the simultaneous accesses

to all memory channels. The memory controllers allow up

to 512bits wide connections to the FPGA compute resources

through an AXI stream interface. Our design makes use of

two such interfaces in order to transfer the two matrices from

memory to the EX unit and another one to transfer the results

back to memory. A fourth interface to the remaining memory

channel (64bits wide) is used for the R, L and EV vectors as

well as the scaling factors.

Compared to the Zynq MPSoC implementation, the ini-

tiation interval for the execution pipeline is much shorter,

at two cycles, thus making the actual accelerator a very

high performance one. However, since all data have to be

transferred from the host to the accelerator card before being

processed (and similarly results have to be transferred from the

accelerator card to the host after the computation), significant

time is required for I/O operations. Typically, our experiments

demonstrated that the processing time is about half (or even

less) vs. the time required to perform data transfers.

In order to reduce the data transfer to computation time

ratio, we employed a double buffering mechanism taking

advantage of the support provided by the OpenCL and Xilinx

XRT runtime support - thus it does not require any significant

hardware changes, however proper computation scheduling

and synchronization mechanisms have to be implemented in

software. We divide the data that have to be processed in

smaller groups and transfer them to the accelerator group-

by-group. The accelerator processes each data group once

all data belonging to that group are made available. During

computation time, the next group of data is transferred to the

accelerator and thus data transfers and computation overlap.

On the best case scenarios, this approach enables up to

almost 40% reduction in the overall execution time of the

PLF as viewed by the user. A more detailed analysis of the

performance will be provided in the next section.

In terms of hardware resources required, Table II provides

an overview of the device resource utilization. It should

be noted that Table II presents the resources required by

our accelerator and the resources required by the Amazon

Shell (that is, the resources occupied by the Amazon F1

platform including control logic, communication through the

PCIe interface, clocking resources, etc. [22]). The accelerator

operates at a clock frequency of 222MHz.

The resource utilization numbers in Table II indicate the

potential to use more accelerator instances as in the case of

the design in the Zynq MPSoC. However, as mentioned above,

the computation is I/O bound, and this approach would be of

no (further) benefit.

V. PERFORMANCE EVALUATION OF FPGA PLATFORMS

In this section we provide an analysis of the measured

performance of the PLF function in both platforms considered.

Our results are compared with the PLF executed in software on

the application processors of both platforms. The latter form

the baseline with which we evaluate the effectiveness of our

proposed solutions. Finally, we highlight the similarities and
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TABLE II
RESOURCE UTILIZATION OF PLF ON THE VIRTEX ULTRASCALE+ VU9P

FPGA.

Block RAM DSP48E FF LUT
Utilized (Platform) 339 9 330466 222466

Utilized (Accelerator) 30 1448 205274 99104
Available 2160 6840 2363536 1181768

Overall Utilization (%) 17.09% 21.3% 22.67% 27.21%

TABLE III
EXECUTION TIME OF THE PLF FUNCTION ON THE ZCU102 BOARD.
SOFTWARE IS EXECUTED ON THE ARM CORTEX-A53 PROCESSOR. N

REFERS TO THE NUMBER OF ELEMENTS OF THE LEFT AND RIGHT

PROBABILITY VECTORS. ALL TIMES REPORTED ARE IN SECONDS.

N
Hardware PLF

Software PLF
single core dual core

10k 0,0004 0,0002 0,019
20k 0,0007 0,0005 0,038
30k 0,0011 0,0007 0,051
40k 0,0015 0,001 0,071
50k 0,0018 0,0012 0,084
100k 0,0036 0,0025 0,16
200k 0,0072 0,0049 0,31
500k 0,018 0,012 0,78
1M 0,036 0,025 1,5
2M 0,072 0,049 3,1
5M 0,18 0,12 7,8
10M 0,36 0,24 15,5

differences of our solutions with those presented in the related

work section and provide a comparison.

A. Zynq UltraScale+ MPSoC Platform

We measured the execution time of the PLF both in software

running on the Cortex-A53 processor, and on the hardware

accelerators for multiple datasets (ranging from 10k to 10M

elements for the left and right probability matrices). The

reported execution time for the hardware accelerated function

includes all related operations required to compute the PLF,

such as initiations of the DMA engines and data transfers.

Table III provides the execution times of the PLF on the

ZCU102 platform. It can be observed that execution times

increase linearly with respect to the data size. The dual core

implementation provides about 1.5x faster execution times

than the single core PLF. The reason that the performance does

not scale linearly is attributed to the PS-PL I/O capabilities

of the device. Each core requires about 7GB/s of bandwidth

in order to keep the pipeline full, however the device can

provide close to 11GB/s throughput from the four HP ports

at 250MHz. Compared to executing the PLF in software

on the ARM processor, both hardware implementations are

significantly faster, achieving a 43x to 64x acceleration (for

the single and dual core implementations respectively).

B. Amazon AWS F1 Instance

In order to evaluate the performance of our implementation

of the PLF function we setup a set of experiments. As

mentioned above, we employed real-world data for left and

right probability vectors ranging from 10k to 10M elements

and for each data set we performed 100 runs and calculated

the average execution time for the PLF to offset potential

interferences with the OpenCL/XRT runtime environments,

server load, scheduling etc. In addition, for each data set size,

we used a number of different data sets in order to avoid

caching effects, so that we have more realistic measurements.

It should be noted that we considered both single and double

buffering implementations as mentioned in Section IV.B. For

the latter, we experimented with different block sizes (i.e. how

the overall data set is split into blocks) ranging from 4k to 128k

elements. The software version used as reference comparison

is the PLF function implementation in the official RAxML

version 8.2 and we employ the same compiler performance

flags with that version. The software is also executed on the

AWS F1 instance (Intel Xeon E5-2686v4).

Table IV summarizes our results. The execution time mea-

sured is the overall execution time observed by the RAxML

application when the PLF function is called. This means

that it includes all preprocessing steps in order to setup the

call of the accelerator, the transfer of data to and from the

accelerator card and of course the execution orchestration and

actual computation time. As such, the reported times can be

considered exactly equivalent with their software counterparts.

Comparing single and double buffering implementations, it

can be seen that for small sizes of the input vectors the former

provides higher performance. This is because PCIe bandwidth

is better utilized through larger transfers and for small input

data sizes the data transfer times prevail the computation times.

This reverses when input vector sizes become larger and the

increased processing time allows to mask the data transfer of

the next data set. However, the results demonstrate that there is

not a single block size that is able to perform best in all cases.

Therefore, in order to achieve the best overall performance

in all possible scenarios, we propose that a proper buffer

and block selection mechanism is employed in the RAxML

application: for small data sizes, single buffering can be used

and for larger data sizes double buffering with 16k or 32k

element blocks may be employed. It should be noted that

all three cases do not require any change in the underlying

FPGA hardware. Comparing the execution time of the best

accelerator case on the Amazon F1 and the time required to

compute the same function in software, it can be seen that

the accelerator provides 2.3x to 5.2x better performance. The

performance gap widens as the input size increases.

We note from Table IV that the overall execution time of the

PLF function seems rather small and therefore it appears to be

a bad target for hardware acceleration. However, profiling of

actual real-world analysis performed with RAxML reveals that

the PLF function is invoked several hundreds of thousands up

to several million times per run. Thus, the collective amount

of time spent in this function can amount from several minutes

up to several hours, and thus the reported speedups may add

up to hours of wall clock time, per RAxML run in real-world

applications vs. software-only execution.
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TABLE IV
EXECUTION TIME OF THE PLF FUNCTION ON THE VIRTEX VU9P FPGA (AWS F1 INSTANCE). SOFTWARE IS EXECUTED ON THE SAME F1 INSTANCE. N

REFERS TO THE NUMBER OF ELEMENTS OF THE LEFT AND RIGHT PROBABILITY VECTORS. ALL TIMES REPORTED ARE IN SECONDS.

N
Block Size (Double Buffering)

Single Buffering Software PLF
4k 8k 16k 32k 64k 128k

10k 0,0015 - - - - - 0,00097 0,0022
20k 0,0022 0,0026 - - - - 0,0016 0,0044
30k 0,0028 0,0031 - - - - 0,0022 0,006
40k 0,0034 0,0036 0,0045 - - - 0,0028 0,0082
50k 0,0041 0,0042 0,0051 - - - 0,0033 0,0098
100k 0,0074 0,0065 0,0076 0,0095 - - 0,006 0,019
200k 0,014 0,011 0,011 0,016 0,018 - 0,011 0,037
500k 0,038 0,025 0,023 0,026 0,035 0,047 0,028 0,092
1M 0,098 0,052 0,042 0,042 0,053 0,071 0,055 0,18
2M 0,3 0,11 0,079 0,076 0,085 0,11 0,11 0,36
5M 1,56 0,44 0,21 0,17 0,18 0,22 0,27 0,91
10M 3,25 0,93 0,43 0,35 0,35 0,42 0,55 1,83

Fig. 4. PLF Execution time Comparison.

C. Performance Results Evaluation and Comparison with
Related Works

Figure 4 provides a comparative view of the PLF runtimes

for the 100k-10M datasets. The results of the software running

on the Amazon F1 instance are compared with the proposed

hardware accelerators, namely the accelerators on the F1

instance (using single and double buffering) and the single

and dual core implementations on the Zynq UltraScale+.

The accelerator using single buffering on the F1 instance

provides 3.3x faster execution times than the software equiv-

alent function, while using double buffering increases the

performance up to 5.2x. In our data sets, we measured that

the PLF execution time ranges from 50 to 80% of the overall

execution time of the RAxML application (while in literature

cases that raise this up to 95% are reported [19]). The percent-

age of the execution time that is spent on the PLF increases

with the size (N) of the probability vectors. As such, using our

accelerated PLF on the Amazon F1, a complete phylogenetics

analysis through the RAxML application is expected to be

performed from 1.3 to 3.2 times faster.

On the other hand, the single core accelerator on the

ZCU102 board is 5.2x faster than the software PLF and the

dual core implementation increases that further up to 7.7x. As

mentioned above, the baseline for this performance analysis

is the software PLF on the Xeon processor. The reason that

the accelerators on the ZCU102 perform better than the ones

on the F1 instance is that there is no need for explicit data

transfers to/from the accelerator memory, as the PL has direct

access to the PS memory. In fact, in terms of theoretical

peak processing power, the accelerator within the F1 FPGA

is about 2 times faster then the dual core implementation

on the ZCU102, as a result of its wider execution unit and

significantly lower initiation interval.

It should be noted that the software execution time on

the ARM Cortex-A53 processor is not considered. This is

because it is about 8.5 times slower vs. the Intel Xeon of

the F1 instance, making it an inappropriate target for datasets

in which the PLF is not dominant in the overall execution

time. Using the dual core implementation and by taking

into account that the software part will be executed on the

ARM processor, a complete phylogenetics analysis through

the RAxML application is expected to be performed from

4.5 to 1.8 times slower than the Intel Xeon processor on

the F1. However, in corner cases that the PLF execution

covers more than 90% of the overall execution time (such

as those reported in [19]), the dual core implementation

on the ZCU102 can provide up to 1.8x better performance

than a purely software RAxML solution on a high-end Intel

processor. In the ZCU102 MPSoC design the bottleneck is the

CPU and not the accelerator. This demonstrates the potential

of the proposed solution, as future MPSoC implementations

will employ higher performance general purpose CPU cores.

Table V provides comparison results based on VEUPS

(Vector Entry Updates Per Second), a PLF-specific metric

introduced by Berger et al. [19] that represents the number

of ancestral probability vector entries that are computed per

second. As explained by the authors, VEUPS-based com-

parisons are only meaningful under the same number of

states and rate categories. We therefore adapted the VEUPS
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TABLE V
COMPARISON OF CURRENT WORK’S PERFORMANCE WITH PREVIOUS

WORK.

Implementation VEUPS clock frequency
Alachiotis et al. [15] 17.750 284MHz
Alachiotis et al. [16] 25.250 101MHz
Berger et al. [19] 18.385 167MHz

ZCU102 single core 27.777 250MHz
ZCU102 dual core 41.665 250MHz
F1 AWS instance 32.358 222MHz

performance that Berger et al. [19] report, such that it reflects

four rate categories instead of one used by the authors, and

additionally estimate VEUPS performance for the accelerators

presented by Alachiotis et al. [15], [16] based on the reported
operating clock frequency, pipeline latency, initiation interval,

and throughput. The results demonstrate that our solutions

provide the highest performance, improving the state-of-the-

art by up to 65%.

VI. CONCLUSIONS

In this work we presented two platforms based on recon-

figurable hardware that can be used for the acceleration of

phylogenetic analyses. We focus on the most computationally

intensive function of the widely used software RAxML, i.e.,

the PLF, and propose different architectures taking into con-

sideration the specifics of each platform.
Our solutions achieved significant speedups compared to

pure software implementations on high-end Intel Xeon proces-

sors on both cases. The proposed hardware architectures were

only limited by the I/O bandwidth, thus indicating that future

revisions of the platforms can unlock even higher performance

potential. Compared to other competing FPGA implementa-

tions, all our proposed solutions provide significantly better

performance, achieving up to 65% higher VEUPS vs. the

highest performing work reported in literature. In the future,

we will try to mitigate the I/O limitations, especially on F1-

like systems. Possible improvements include integration of

additional functionality on the accelerator in order to reduce

data transfers and caching of data on the accelerator memory.

Also, for platforms that tightly integrate CPU cores and FPGA

fabric, the use of parts that employ higher performing general

purpose processors should be explored.
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