
Software Language Engineers’ Worst Nightmare
Vadim Zaytsev

Universiteit Twente

Enschede, The Netherlands

vadim@grammarware.net

Abstract
Many techniques in software language engineering get their

first validation by being prototyped to work on one particu-

lar language such as Java, Scala, Scheme, or ML, or a subset

of such a language. Claims of their generalisability, as well as

discussion on potential threats to their external validity, are

often based on authors’ ad hoc understanding of the world

outside their usual comfort zone. To facilitate and simplify

such discussions by providing a solid measurable ground,

we propose a language called BabyCobol, which was specifi-

cally designed to contain features that turn processing legacy

programming languages such as COBOL, FORTRAN, PL/I,

REXX, CLIST, and 4GLs (fourth generation languages), into

such a challenge. The language is minimal by design so that

it can help to quickly find weaknesses in frameworks making

them inapplicable to dealing with legacy software. However,

applying new techniques of software language engineering

and reverse engineering to such a small language will not

be too tedious and overwhelming. BabyCobol was designed

in collaboration with industrial compiler developers by sys-

tematically traversing features of several second, third and

fourth generation languages to identify the core culprits

in making development of compiler for legacy languages

difficult.

CCS Concepts: • Software and its engineering → Spe-
cialized application languages;Compilers; • Social and
professional topics → Software maintenance.

Keywords: domain-specific languages, legacy software, lan-

guage engineering, software migration, teaching SLE

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00

https://doi.org/10.1145/3426425.3426933

ACM Reference Format:
Vadim Zaytsev. 2020. Software Language Engineers’ Worst Night-

mare. In Proceedings of the 13th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE ’20), November 16–
17, 2020, Virtual, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3426425.3426933

1 Introduction
Legacy languages designed in the second half of the last

century, are still dominating some domains like the finan-

cial sector, and have ample presence in other highly critical

domains such as insurance, logistics, manufacturing andmili-

tary. Even in the programming community index TIOBE [68]

languages like COBOL (#27), FORTRAN (#30) and RPG (#38)

are constantly looming next to modern freshly designed and

regularly updated languages like Dart (#26), Scala (#29) and

Kotlin (#35). Only a small fraction of the users of such lan-

guages are happy customers deliberately making this tech-

nological choice for its actual benefits, the rest are forced

by circumstances into maintaining business-critical systems

that are too large and complicated to replace, rewrite or

even re-engineer. Many owners of such legacy codebases

invest substantially into their renovation, be it replatforming,

rearchitecting, reverse engineering, language migration or

anything else that is still a viable option for them.

Developers of compilers, debuggers, development environ-

ments, program restructuring tools, fact extractors, testing

automation frameworks, etc, need to be ready to tackle all

kinds of challenges posed by legacy languages. Yet, such

challenges often remain some sort of sacred knowledge for

developers with intimate familiarity with said legacy lan-

guages. Many new techniques are being proposed and pub-

lished, targeting languages for which it is much easier to find

enough open source code for experimenting, enough docu-

mentation for comprehension, and enough freely available

base compilers to extend or compare to. With this project,

we would like to bridge the gap by providing a description

for a lab-made language that exemplifies an entire collec-

tion of issues that make it so challenging to tackle legacy

languages. Inspired by languages like MiniJava [5] and Feath-

erweight Java [33], that are extremely useful for academic

researchers to apply their knowledge and techniques on (see

§ 2 for a more detailed treatment of related work), we are

proposing a new language called BabyCobol. Unlike the

infamous INTERCAL, standing for Compiler Language With
No Pronounceable Acronym, which was specifically designed

72

https://doi.org/10.1145/3426425.3426933
https://doi.org/10.1145/3426425.3426933
https://doi.org/10.1145/3426425.3426933

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

to have “nothing at all in common with any other major

language” [76] and hence falls into the category of uselessly

esoteric languages, BabyCobol was designed to exhibit most

of the actual real life problems encountered in compiling and

migrating legacy languages.

We present the language design across the next few sec-

tions, and then return to the real legacy languages driving

that design in § 6, to reflect in detail which of those languages

inspired which BabyCobol features. § 7 concludes the paper.

To exemplify the look and feel of BabyCobol and to pro-

vide a brief reference to most of its features, we include

Listing 1 with a complete program written in it. The corre-

sponding commentary explains which features are used and

refer to respective sections about them.

A complete and growing language reference of BabyCobol

can be found at https://slebok.github.io/baby. Its design
goals are twofold: to keep the language as small as possible,

and at the same time to insert as many legacy language fea-

tures into it without drastically abstracting from the details

that make them hard to implement. Following the standard

sane principles of good design, we also try tomake it modular

(so that it is sensible to implement only ALTER without LOOP
or only line continuations without figurative constants), but

this always has lower priority since sometimes the hardships

manifest only as feature interactions (like the interaction

between GO TO and PERFORM THROUGH).

2 Related Work
MiniJava [5] is a subset of Sun/Oracle’s Java programming

language [29], restricted for the purposes of teaching com-

piler construction. It is much smaller than actual Java, but

complex enough to expose a number of problems that a com-

piler engineer should be familiar with. As such, it is very

similar in both objectives and spirit to BabyCobol. The lan-

guage is rather successful and has gained popularity among

lecturers teaching compiler construction courses, especially

those based on the book of Appel and Palsberg. The con-

ceptual predecessors of MiniJava are numerous versions of

nameless Pascal subsets used by compiler construction pro-

fessors throughout the 1990s worldwide.

The popularity of Appel and Palsberg’s MiniJava now

overshadowed an earlier initiative with exactly the same

name which developed a simplified extension of a subset of

Java for teaching introductory programming [55]. There has

also at some point been a similar COBOL-centred initiative

called Mini-COBOL [27], published in 1969 as a subset of

COBOL suitable for teaching students programming — its

main design objective was to cover a subset that had the same

behaviour across all available compilers (there are apparently

around 300 dialects of COBOL in use [41]). Either of these

has a goal drastically different from ours, so we list them here

just to avoid confusion caused by their names. Conceptually

these languages are closer to BASIC [37], ABC [26], Logo [1],

perhaps also Scratch [46] and Racket [22].

Featherweight Java [33] is a minimal core calculus for

Java, proposed to facilitate understanding the consequences

of extensions and variations, proposed almost two decades

ago. Featherweight Java has received substantial attention

since then, with a definition of its denotational semantics [65],

small-step operation semantics [23], type-preserving compi-

lation [42], received proposed extensions like Generic FJ [79],
Feature FJ [4], Corecursive FJ [2], Transactional FJ [70], Feath-
erTrait [44],Welterweight Java [52], Middleweight Java [9],
Featherweight Wrap Java [8], and perhaps others.

If implementations of BabyCobol or applications of certain

techniques to it can bemademeasurable in a comparable way,

then we are looking at something approaching the famous

DeCapo benchmarking suite [10]. The point of departure of

the original DeCapo paper was similar to ours: Blackburn

et al. were concerned with ungrounded generalisations of

techniques developed for C and FORTRAN, with respect to

their applicability to Java, and now we are concerned about

applicability of methodologies developed for modern well-

designed languages, to legacy languages. We do not have the

ambition to propose benchmarks that can mean for the SLE

community what POPLMark [6] meant for the PLT commu-

nity, in that sense it falls somewhere between POPLMark

and the expression problem
1
[69, 72], or its modern SLE re-

formulation [43]: an apparent inability of a given technology

to express BabyCobol definitely sends a strong signal about

its inapplicability to problems in legacy software codebases,

and a successful coverage allows for detailed investigation of

the solution to see how much boilerplate had to be produced

and how many corners cut.

3 Syntax
First and foremost, let us focus on the character-level organ-

isation of a typical legacy program.

3.1 Position-Based Syntax (and Semantics)
Indentation-aware languages such as Python [71], Occam [49],

Haskell [30] or Kotlin [12] are quite popular and not as

shunned now as they were some years ago [74]. However, in

the very beginning of the programming language evolution

assigning meaning to input characters based on which posi-

tion within the string they were found, was rather common—

examples include COBOL [61], HLASM [57] or pre-f90 FOR-

TRAN [7]. For example, in COBOL, a non-space character

in column 7 had special meaning, the most common being

* or / signalling a comment, or a space signalling a line of

executable code. Columns 1–6 denote a “sequence number”,

which remains largely unused nowadays, since it outlived its

1
We note here that the expression problem is a well-defined symptom of a

much deeper problem in data abstraction with the gap between the abstract

data types and object-oriented programming [16–18]

73

https://slebok.github.io/baby

Software Language Engineers’ Worst Nightmare SLE ’20, November 16–17, 2020, Virtual, USA

(1) ␣␣␣␣␣␣*␣Example program (27) ␣␣␣␣␣␣*␣Expanded program
(2) ␣␣␣␣␣␣␣IDENTIFICATION DIVISION. (28) ␣␣␣␣␣␣␣IDENTIFICATION DIVISION.
(3) ␣␣␣␣␣␣␣␣␣␣␣PROGRAM-ID. FIB. (29) ␣␣␣␣␣␣␣␣␣␣␣PROGRAM-ID. FIB.
(4) ␣␣␣␣␣␣␣␣␣␣␣AUTHOR. Anonymous. (30) ␣␣␣␣␣␣␣␣␣␣␣AUTHOR. Anonymous.
(5) ␣␣␣␣␣␣␣␣␣␣␣DATE-WRITTEN. 2019-11-01. (31) ␣␣␣␣␣␣␣␣␣␣␣DATE-WRITTEN. 2019-11-01.
(6) ␣␣␣␣␣␣␣DATA DIVISION. (32) ␣␣␣␣␣␣␣DATA DIVISION.
(7) ␣␣␣␣␣␣␣01 WORKING-STORAGE-AREA. (33) ␣␣␣␣␣␣␣01 WORKING-STORAGE-AREA.
(8) ␣␣␣␣␣␣␣␣␣␣05 END PICTURE IS 99. (34) ␣␣␣␣␣␣␣␣␣␣05 LIM PICTURE IS 99.
(9) ␣␣␣␣␣␣␣␣␣␣05 CUR PICTURE IS 9(20). (35) ␣␣␣␣␣␣␣␣␣␣05 CUR PICTURE IS 99999999999999999999.
(10) ␣␣␣␣␣␣␣␣␣␣05 LAST. (36) ␣␣␣␣␣␣␣␣␣␣05 LAST.
(11) ␣␣␣␣␣␣␣␣␣␣␣␣␣09 N LIKE CUR. (37) ␣␣␣␣␣␣␣␣␣␣␣␣␣09 N PICTURE IS 99999999999999999999.
(12) ␣␣␣␣␣␣␣␣␣␣␣␣␣09 N-1 LIKE CUR. (38) ␣␣␣␣␣␣␣␣␣␣␣␣␣09 N1 PICTURE IS 99999999999999999999.
(13) ␣␣␣␣␣␣␣PROCEDURE DIVISION. (39) ␣␣␣␣␣␣␣PROCEDURE DIVISION.
(14) ␣␣␣␣␣␣␣␣␣␣DISPLAY ENTER THE LIMIT (40) ␣␣␣␣␣␣␣␣␣␣DISPLAY "ENTER THE LIMIT".
(15) ␣␣␣␣␣␣␣␣␣␣ACCEPT END. (41) ␣␣␣␣␣␣␣␣␣␣ACCEPT LIM.
(16) ␣␣␣␣␣␣␣␣␣␣MOVE SPACES TO cur last. (42) ␣␣␣␣␣␣␣␣␣␣MOVE SPACES TO CUR. MOVE SPACES TO LAST.
(17) ␣␣␣␣␣␣␣␣␣␣DISPLAY N-1. (43) ␣␣␣␣␣␣␣␣␣␣DISPLAY N1 OF LAST.
(18) ␣␣␣␣␣␣␣␣␣␣SUBTRACT 1 FROM END. (44) ␣␣␣␣␣␣␣␣␣␣SUBTRACT 1 FROM LIM.
(19) ␣␣␣␣␣␣␣␣␣␣MOVE 1 TO N. (45) ␣␣␣␣␣␣␣␣␣␣MOVE 1 TO N OF LAST.
(20) ␣␣␣␣␣␣␣␣␣␣PERFORM PRINT-FIB END TIMES. (46) ␣␣␣␣␣␣␣␣␣␣PERFORM PRINT-FIB LIM TIMES.
(21) ␣␣␣␣␣␣␣␣␣␣STOP. (47) ␣␣␣␣␣␣␣␣␣␣STOP.
(22) ␣␣␣␣␣␣␣PRINT-FIB. (48) ␣␣␣␣␣␣␣PRINT-FIB.
(23) ␣␣␣␣␣␣␣␣␣␣DISPLAY N. (49) ␣␣␣␣␣␣␣␣␣␣DISPLAY N OF LAST.
(24) ␣␣␣␣␣␣␣␣␣␣ADD N-1 TO N GIVING CUR. (50) ␣␣␣␣␣␣␣␣␣␣ADD N1 OF LAST TO N OF LAST GIVING CUR.
(25) ␣␣␣␣␣␣␣␣␣␣MOVE NTON -1 (51) ␣␣␣␣␣␣␣␣␣␣MOVE N OF LAST TO N1 OF LAST.
(26) ␣␣␣␣␣␣␣␣␣␣MOVE CURTON. (52) ␣␣␣␣␣␣␣␣␣␣MOVE CUR TO N OF LAST.

Listing 1. Fibonacci numbers calculated in BabyCobol. The version on the left is written to make most use of problematic

features of BabyCobol, while the version on the right avoids some of them and is thus easier to parse, compile and analyse,

while being functionally equivalent. Lines (1) and (27) contain a comment (§ 3.1), lines (2), (6), (13), (28), (32) and (39) start

separate divisions (§ 3.7), lines (8–9) and (34–38) contain picture clauses (§ 4.1), lines (11–12) — like clauses (§ 4.1), line (8)

defines an identifier with a name equal to a keyword (§ 3.4), lines (12) and (22) declare an identifier and a paragraph with a

dash in their names, line (14) does not use quotes and hence uses default values of three undefined fields (§ 4.4), line (16) relies

on case insensitivity (§ 3.3), lines (15) and (51) execute picture-driven inputs, lines (17), (23), (43) and (49) — picture-driven

output, line (16) uses a figurative constant on targets of different types (§ 4.3), lines (20) and (46) contain an out-of-line PERFORM
statement (§ 5.2) calling the paragraph on lines (22–26) or (48–52), lines (25–26) exploit whitespace insignificance (§ 3.5), lines

(17), (19), (23–26) use unambiguous insufficient qualification (§ 4.2).

usefulness together with the punch card sorting machines.

In FORTRAN, comments were denoted as the first character
of the line being equal to C, while line continuations were
affected by column 6.

For BabyCobol, we mostly follow COBOL conventions:

we skip over the first 6 columns, then treat column 7 as the

indicator of the line status, column 8 serves for starting top

level constructs (divisions, paragraphs, sections — see § 3.7),

columns 12–72 are for regular code and line contents beyond

column 73 are ignored (can be used for short comments,

debug info, etc). Since essentially this makes the language a

mix of a pattern language [3, 77] and a context-free language,

even this feature alone probably already forces the person

implementing a language processor to insert a manually

written purely lexical preprocessor into their pipeline before

the classic scanner or tokeniser.

3.2 Line Continuations
The significance of columns within the line adds a level of

complexity for compiler writers because essentially it leads

to the necessity of adding an extra component before tokenis-

ing in the beginning of lexical analysis or for fine-grained

postprocessing pretty-printed code if the language process-

ing pipeline involves unparsing. However, to truly experi-

ence these hardships, we will need to add line continuations

into the mix.

The basic idea behind line continuations is simple and

straightforward: whenever a line of code becomes too long

(to fit on a punch card), there is a lexical mechanism sup-

ported by all language tools, to spread the contents of de-

sired/conceptual line over several physical lines. There are

essentially two families of line continuation policies, which

we will explain with example of HLASM and COBOL. In

HLASM [11, 57, 78], which is the second generation language

used on IBM mainframes since System/360, the continuation

marker is set on the continued line: adding any nonspace

character on column 72 will cause the line directly following

it, to be concatenated into it. The inconvenience of having

only one fixed place to initiate a line break, is alleviated

by the option of duplicating the splitting symbol at column

74

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

72 leftwards, in which case the entire group is ignored. To

illustrate:

... long strin*
g constant"
is exactly the same as

... long ******
string constant"
We note that this (sub)feature is not just a pleasant addi-

tion/complication, but a necessity: since all leading spaces

are stripped from the continuing line, there is no alternative

way to split lines on a space.

COBOL handles line continuations differently [61]. The

continued line is unaware of it being continued. Instead, the

next line carries a continuation marker that turns it into a

continuing line, and its contents are appended to the previous

line’s contents. The marker is usually a dash in column 7.

There are many subclauses and rules, for instance preventing

line splitting in the middle of certain classes of tokens (e.g.,

== may not be split) and imposing notational restrictions

(e.g., if the split happens in the middle of a string literal, the

continuing string needs to start with a double quote to signal

explicitly to the parser how many of its leading characters

must be skipped). In this case such additional rules are not

necessary: they allow marginally more efficient processing

of tokens within the original compiler, and a slightly nicer

formatting of split strings — the core expressiveness stays

the same, so we do not include them in BabyCobol.

There are two ways in which the latter of the presented

policies is more suitable for BabyCobol. First, placing the

marker on continuing lines is less natural in language pro-

cessing, since it requires lookahead or a comparable infras-

tructure, since we need to peek into the next line in order to

decide on an appropriate action for the current one. Second,

it is easier to distil the core functionality from it, stripped

from all auxiliary features, which is one of the design goals

of BabyCobol.

3.3 Case Insensitivity
Existing programming languages can be roughly classified

into three groups: those that distinguish identifiers that only

differ by their capitalisation; those that treat variant capitali-

sations of the same name as being identical; and those that at-

tach semantic meaning to capitalisation. C, C++, Java, C# and

many others fall into the first category, and there variables

foobar, FooBar and FOOBAR can coexist within the same con-

text. Pascal [75], Forth [51], BASIC [37], COBOL [61, 62], SQL

and many 4GLs are case insensitive and thus treat foobar,
FooBar and FOOBAR as just different spellings of the same

identifier name. Prolog [73], Haskell [30], Rascal [39] and

Go [53] are examples of languages where capitalisation has

semantic meaning. For example, in Prolog variable names

must start with an uppercase letter, and functor names with

a lowercase letter.

Since case insensitivity is still rather common among

legacy languages, and most modern parser generators do

not support it naturally out of the box, we decided to make

BabyCobol case insensitive. However, the next subsection
introduces a little twist to this aspect, preventing simplistic

solutions just indiscriminatingly uppercasing or lowercasing

the entire input with the exception of string literals.

3.4 Keywords ≠ Reserved Words
An internationally popular anecdote shared among develop-

ers in any languages, concerns variations of the following

PL/I code:

IF THEN=ELSE THEN ELSE=IF END;
This is a piece of perfectly working PL/I code since its

keywords are not reserved. In practice there is some variation

among PL/I compilers, and some fail to correctly parse and

compile programs that use keywords as variable names too

liberally, but officially this is what is expected and stated

explicitly in the language documentation [60].

We adopt this language feature for BabyCobol, with one

little adjustment: we demand for BabyCobol keywords to

be uppercased, so that ambiguities only concern identifier

names that are also written in upper case. This differentiation

has been seen in some lesser known DSLs and 4GLs, but

here it fits especially well because it demands the compiler

engineers to treat the case insensitivity and tokenising in

general, very seriously and develop a detailed solution even

if it is painful.

3.5 Whitespace Insignificance
Just like PL/I is known for its non-reserved words example,

the following two pieces of FORTRAN code are similarly

well-known even to non-FORTRAN developers:

DOI=1,10
is a looping construct that runs the subsequent statement 10

times for various values of the loop variable I, while
DOI=1.10

is a simple assignment to a variable called DOI. A little lexical

difference between a dot and a comma leads to a great differ-

ence in their syntactic and semantic interpretation, for which

the parsing step must account. The core problem behind this

is that FORTRAN compilers have complete disregard for

whitespace: spaces and tabs were simply ignored if encoun-

tered in the input program. From the language designers’

point of view this could lead to more readable programs

since programmers could be writing ANYWHERE ON EARTH =
UTC - 12 without inventing workarounds like camelcasing

in Java-like languages, underscores in C-like ones or dashes

in COBOL-like ones. In practice this feature was rarely used

for good reasons, but provided endless potential for ambigu-

ities and mistakes, and in later languages was abandoned by

sacrificing this “natural” style of variable naming. Interest-

ingly, early dialects of BNF and EBNF also allowed spaces

75

Software Language Engineers’ Worst Nightmare SLE ’20, November 16–17, 2020, Virtual, USA

in nonterminal names, and separated adjacent nonterminals

in a sequence with a space. By now almost no grammar def-

inition formalism supports it, everyone switched to more

concise notations where the space serves as a separator in a

sequence.

Again, to prevent simplistic solutions, we introduce one

exception to the rule, and demand spaces around the dash/mi-

nus symbol when it is used as an infix arithmetic operator.

This is an actual rule existing in COBOL [61], which allows

variable names like ACCOUNT-NUMBER and in later versions

also has natural infix expressions for statements like COMPUTE
or EVALUATE. We intentionally do not include COMPUTE since
it conveniently unifies ADD, SUBTRACT, MULTIPLY and DIVIDE
statements, and its lack has a good chance of tempting po-

tential compiler engineers into writing duplicated code for

them. Thus, we decide to allow infix expressions in EVALUATE
expressions and inside conditions of IFs. For instance, one
could write IF ACCOUNT-NUMBER = 0 THEN NEXT SENTENCE
which would mean a comparison of the current value of one

variable ACCOUNT-NUMBER to zero, or IF ACCOUNT - NUMBER
= 0 THEN NEXT SENTENCE, which would do the same to

a difference between values of two variables: ACCOUNT and
NUMBER.

3.6 Lexical Imports
The last lexical feature we will be adding to BabyCobol is

inclusion of one program into another. In COBOL this is

done by means of a COPY directive which literally expands

into contents of the included file. If the result yields a com-

pile error, it is reported at the correct location and file, but

more complex relations between the included file and the

including program are not investigated. Since the inclusion

is done verbatim anyway, there is also an extra clause called

REPLACING which takes two strings and a filename, and re-

places all occurrences of one string with the other, during

expansion. There are two natural ways to use COBOL’s COPY
REPLACING directive, both used relatively often in legacy

code. First, one can prepare special files that are not compil-

able on their own, and use COPY to replace their uncompil-

able parts with new compilable ones, from different places

of the same system. This way, there is some guarantee that

such files will only be used through COPY expansions. The
second way is brute force code reuse: for instance, data struc-

tures residing in a separate files because they are used by

two programs, can be included into another program which

changes the original name prefix. Operating with such files

is very error-prone but exemplifies daily troubles of a main-

frame programmer. Dealing with all these possible errors

and reporting them faithfully and precisely, exemplifies daily

troubles of a legacy language processor developer.

Technically this directive is a workaround because some

COBOL compilers (most notably the original IBM COBOL

compiler for mainframes) support REPLACE BY · · · REPLACE
OFF directives which can be used to transform any program

code on the fly before compiling it, but they do not sup-

port COPY directives when replacement is on. However, it

is problematically enough for compiler constructors to sup-

port such replacements at preprocessing time, and putting a

general framework for them does not seem to provide any

additional conceptual challenges. Thus, in the spirit of keep-

ing BabyCobol minimal, we include one pseudostatement

that expands to the contents of the included file, modulo

explicitly specified verbatim replacements.

3.7 Program Composition
In COBOL, a program consists of several prescribed divisions.
Each division has a number of sections typical only for that

particular division. The PROCEDURE DIVISION consists of

arbitrarily named sections which contain paragraphs, both
sections and paragraphs being both named and callable. A

paragraph consists of sentences, which in turn consist of

statements. This additional level of structural units between
a callable unit (similar to a procedure, a function or a method

in other languages) and a statement of which there can be

only several kinds well-known in advance, is typical for some

legacy languages and delivers a number of complications for

compiler writers as well as for software reverse engineers.

Normally there are four top-level divisions in a COBOL

program: the identification division containing simple para-

graphs for setting PROGRAM-ID as well as optionally the

AUTHOR of the program; the environment division used for

specifying many details about the input/output system, and

setting some global flags; the data division for describing

user-defined types; and the procedure division for executable

code. For BabyCobol, we keep the identification division

in its minimal form, ignore the environment division, nar-

row the data division to two basic data types, and keep the

procedure division practically the same as it is in COBOL.

Statements in Javamust be separated by a semicolon. State-

ments in COBOL do not have to be separated from one an-

other, but they can be separated with the help of a period.

Such sequences of statements between one period and the

next one, are indeed called sentences. There is a special con-

struct NEXT SENTENCE [62] which redirects the execution

to the point right after the next of the current sentence. In

COBOL it is a special subclause of the conditional statement,

but for the sake of avoiding accidental complexity we will

make it an actual statement in BabyCobol.

4 Semantics of Expressions
4.1 Declarations and Data Types
In COBOL and most COBOL-inspired 4GLs the distinction

between a variable and its data type is very thin. More com-

mon than not, the composite type of a variable is defined

together with its declaration, and is only used once. Data in

a type is organised in levels which are explicitly specified

(the numbers do not mean much to the compiler, as long as

76

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

they increase when we descend deeper and increase when

we return — they are crutches replacing proper nesting hier-

archy). Abstracting from most details (DATA DIVISION takes
up 100 pages out of 700 of COBOL’s newest Language Ref-
erence [61, pp.161–260]), we focus on three major features:

picture clauses, occurs clauses and like clauses.

Picture clauses are absolutely dominant and omnipresent

in COBOL code, relatively widely used in PL/I code, and

common to 4GLs (besides the inspiration that 4GLs owe to

COBOL, it is near-trivial to support COBOL’s picture clauses

in a language that compiles to COBOL), yet completely ab-

sent from almost any other programming language in exis-

tence. The necessity of emulating picture clauses in other

languages when a language conversion is performed as a

part of legacy software migration, is one of the major rea-

sons such conversions regularly fail to deliver and satisfy

customers’ expectations [67]. A picture clause is a primitive

type definition which revolves around a given pattern for

storage and displaying value. For instance, if a field VAR is de-
fined as VAR PICTURE IS $999V99, then five decimal places

need to be stored, and each time it is printed, displayed or

otherwise exposed, its leftmost symbol is a verbatim dollar

sign, followed by three digits, then by a decimal dot (or a

comma, depending on the end user’s locale and other config-

uration options), and finally by two more digits. In modern

high-level programming languages the closest analogy to

a picture clause would be an object field with a getter that

formats its contents according to the pattern, and a setter

that parses the provided value according to the same pattern.

There are many tricks and options in specifying a picture

pattern, but for BabyCobol we keep only the following spe-

cial characters (simplified whenever possible, everything is

more complex in COBOL):

• 9 — any digit

• A — an alphabetic character or a space

• X — any single character

• Z — a leading digit, disappearing into space if zero

• S — a sign (+ or -, space treated as a plus)

• V — a decimal separator (usually . or ,)

Any other characters are accepted at their verbatim value.

Any number of consequent characters of the same value

can be replaced with C(N) where C is the character and N
is the number of time it is repeated. Hence, for instance,

999999V99 is the same as 9(6)V9(2), and X(20) is just a

declaration of any string value up to 20 characters long.

An OCCURS clause essentially allows to define arrays:

01 ARRAY OCCURS 20.
03 ELEMENT PICTURE IS 9(15)V99.

After such a declaration, ELEMENT becomes ambiguous and

must be used as ELEMENT OF ARRAY(1) up till and including
ELEMENT OF ARRAY(20).

Finally, like clauses take the following structure:

03 NEW-FIELD LIKE ANOTHER-FIELD.

This allows for NEW-FIELD to reuse the type that was de-

finedwhen ANOTHER-FIELDwas defined. LIKE clauses are ab-
sent fromCOBOL, but quite prominent in PL/I [60], RPG [59],

REXX [19] andmany 4GLs, so we include them in BabyCobol.

Notably, since OCCURS is an additional clause, it is not treated

as an essential part of the type by 3GL and 4GL compilers,

so using a LIKE on an OCCURS type will declare a variable of

a base scalar (“non-occurring”) type, unless the clauses are

combined: X LIKE Y OCCURS 42.
With respect to semantics, it is important to remember

that all data types are decimal position based, not bit based,

so overflows will also happen not at, say, 65535 or 32767, but

at 99999. All overflows are silent.

Arithmetic operations (SUBTRACT, DIVIDE, MULTIPLY and

ADD) may only be performed on atomic fields which pictures

are A/X-free (i.e., not on arbitrary strings, not on arrays, not

on composite data structures). Infix operators that we allow

as first arguments of IF and EVALUATE statements (+, -, *,
/ and **) have the same limitation, except the first one (+)
which is also defined on arbitrary strings. Comparison oper-

ators work symbol per symbol, space-padding the shortest

of the values on the left. All these rules have been inherited

by BabyCobol from COBOL for simplicity reasons.

4.2 Sufficient Qualification
Qualified variable names in COBOL [61], PL/I and most 4GLs

grow long and tiresome for developers to write fully. Instead,

such legacy languages employ a scheme called sufficient

qualification, where only a part of the path towards the field

needs to be communicated to the compiler, the rest is inferred

automatically. For instance, if we have a data structure FOO
which has a child data structure BAR which has a field F,
then F OF BAR OF FOO would be its full qualification. In the

context of a program that does not have any competing Fs
anywhere, just saying F may be enough. In other cases, the

programmer will write F OF FOO to indicate the beginning

and the end of the path, leaving the middle part for the in-

ference, or F OF BAR, leaving the compiler to find the root.

Whenever insufficient qualification causes an ambiguity, the

compiler tries to resolve it from the type information and the

context (for example, in the context of F>0 only expanded

qualifications with numeric picture patterns will be consid-

ered). If all resolution strategies fail, the compilation fails

with an appropriate error message. Insufficient indices to

occurring fields are assumed to be 1s.

4.3 Figurative Constants
COBOL, as well as some other legacy languages, employ

so called “figurative” constants next to normal fixed literals.

A figurative constant is fixed for any given context, but

not fixed in general. For example, MOVE SPACES TO X will
assign twenty spaces to a X(20) typed field, three spaces

to a Z(3) representing a decimal zero, or even go deeper

and populate all lower levels of data similarly with spaces

77

Software Language Engineers’ Worst Nightmare SLE ’20, November 16–17, 2020, Virtual, USA

if X is a compound data structure. Besides SPACES, we keep
LOW-VALUES and HIGH-VALUES and for the sake of simplicity

ignore other figurative constants found in COBOL, such as

ZERO, QUOTE, NULL and ALL [62, p.28]. As can be intuitively

understood by their names, LOW-VALUES and HIGH-VALUES
represent the minimum and the maximum allowable values

for a given type. For example, MOVE LOW-VALUES TO X will

assign it a zero of X PICTURE IS 99 but a value of −99
instead if X PICTURE IS S99.

4.4 Default Values
There are no compiler errors in REXX that complain about

unknown variables. If an undeclared variable is used, it is

considered thereby declared and instantiated with its own

uppercased name (so the default value of ACCOUNT-NAME
would be "ACCOUNT-NAME"). We include the same feature

in BabyCobol. The inferred type of such an auto-declared

variable PICTURE IS X(N), where N is the length of its name.

Coincidentally this also prevents developers from acciden-

tally turning their dash-containing variable names into infix

subtraction expression in many cases, since their default val-

ues are strings, and subtraction is not defined on strings. Yet

again, it does shift the burden to the compiler developers to

incorporate a symbol table lookup into the error reporting

facility to decide whether to report about incorrect white-

space or about attempted string subtraction, because they

mean vastly different things to the end programmer.

4.5 Contractions in Conditions
COBOL has a particularly challenging feature that looks

simple at first glance. Instead of repeating themselves when

writing expressions, developers are allowed to contract them

andwrite IF X = 2 OR 3when theymean IF X = 2 OR X = 3.
Contractions can start at any position, so expressions like IF
X = 2 OR 3 OR > 10 are also allowed and processed correctly.
At the same time, operator priorities work normally and

thus can bind full expressions to contracted expressions that

belong to a different group by contracting. Thus, IF X = 42
OR 3 AND Y < X is the same as IF X = 42 OR (X = 3 AND Y <
X). This behaviour may seem counter-intuitive but has been

confirmed by running test cases with exhaustive coverage on

a mainframe. Parsing such contracted expressions correctly

poses a considerable challenge since the subexpressions need

to both be available in linear succession in case the next one

will need expansion based on its predecessors, and at the

same time must get gathered into a tree structure following

the rules of Boolean and decimal arithmetics. This is well

within any compiler constructor’s capabilities, but is rarely

demanded by non-legacy languages.

5 Semantics of Statements
5.1 Unconditional Transfer of Control
GO TO has been declared worthy to be considered harmful

since 1968 [20]. Even though there was some discussion on

the universal applicability of this judgement and the univer-

sal need to replace all unconditional GO TOs with structural

equivalents [40, 56], claims that they should be used as the

main way of expressing control flows, were considered out-

dated already in late 1980s [36]. However, for a compiler

writer the presence of GO TOs is problematic only if certain

formalisations are used (for instance, big-step operational se-

mantics suffers from it and requires a relatively ugly rewrite

of an otherwise straightforward system of beautiful formu-

lae). At the code generation phase, GO TO remains relatively

painless. Unfortunately, there is another level of complica-

tions, commonly encountered in legacy software and col-

lectively overlooked in papers about harmfulness of GO TO.
Consider the following piece of COBOL code:

EXIT-ON-ERROR.
GO TO EXIT-UPDATE-RECORD.

(To explain the possibly obvious: we declare a new para-

graph and populate it with a single statement of uncondi-

tional transfer of control).

Then, after the following statement is executed from any

part of the same program:

ALTER EXIT-ON-ERROR TO PROCEED
TO EXIT-ROLLBACK-RECORD.

it makes it so that the original piece of code acts as if it

had been written as follows:

EXIT-ON-ERROR.
GO TO EXIT-ROLLBACK-RECORD.

In other words, the ALTER statement redirects an exist-

ing GO TO statement to go to a different place than orig-

inally intended. Self-modification is not entirely uncom-

mon in high-level languages: it is relatively omnipresent

in prototype-based object-oriented programming languages

like JavaScript, and all homoiconic languages like LISP [50],

Clojure [31], Rebol [28], Scheme [66] or Racket [22] allow

free treatment of anything as either data (with decomposi-

tion, mutation, etc) or code (with executability), since their

homoiconicity by definition implies the “code as data” para-

digm. However, this particular combination with a low-level

construct like an unconditional GO TO with an ability to

modify it, is endemic to legacy languages. Hence, it must be

included in BabyCobol.

5.2 Structured Control Statements
COBOL’s PERFORM covers everything all modern program-

ming languages’ looping constructs like for, do and while
can do, and much more, including calling a procedure within

the same program (since originally it was required for a

looping construct to give a label or an address of its target

instead of the actual statement, like for DO in FORTRAN).

78

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

Concentrating such number of concepts and subclauses in

one statement is not sensible even for a language that is in-

tended as a challenge: different variants of the same construct

will just get near-trivially desugared into disjoint interme-

diate representations. Hence, we split COBOL’s PERFORM
into two BabyCobol statements, roughly corresponding to

a simplified version of the in-line perform and the out-of-

line perform. PERFORM in BabyCobol acts like an out-of-line

perform in COBOL [62], calling a procedure (a section or a

paragraph) and returning to continue execution on the next

statement. It supports a particularly problematic way to call

several subsequently written paragraphs as one, which is

known to cause maintenance difficulties for obvious reasons.

LOOP in BabyCobol acts like an in-line perform with one

extra complication borrowed from AppBuilder and other

4GLs: its clauses (like UNTIL or WHILE) do not have to occur

at the beginning or the end of the loop, but instead anywhere

within its body.

5.3 Name-Driven Assignment
Assignments in modern languages are mostly straightfor-

ward, occasionally imposing complex ownership rules as in

Rust [48]. Given the once-off type system of COBOL (§ 4.1),

it is not surprising to find a name-driven deep overlay assign-

ment there. MOVE CORRESPONDING A TO B [62] is a COBOL

statement that goes through all fields of A and maps the

values of all name-matching fields with B to their counter-

parts, discarding the rest. In modern languages this is only

possible through reflection, but there are entire 4GLs like

AppBuilder that are built around the idea of making this

kind of assignment efficiently compilable. We define Baby-

Cobol’s MOVE to do what AppBuilder’s MAP or COBOL’s MOVE
CORRESPONDING does.

5.4 Exception Handling
REXX’s SIGNAL statement [19] and PL/I’s ON units [60] in-

spired us to include error handling into BabyCobol. To keep

it minimal, we only allow one handler for all kinds of run-

time errors. If an exception happens (say, an index goes out

of bounds), the handler is called, after which the execution

continues normally. In that sense, it is closer to algebraic

effects than to Java-style exceptions that can break through

several layers in the execution stack.

6 Inspirational Languages Summary
For size considerations, we cannot include a full table com-

paring each possible BabyCobol statement to its equivalents

in languages of different generations (2GL, 3GLs and 4GLs),

in the paper. Below we briefly report, per language, which of

its constructs are known among industrial legacy engineers

to be challenging, how they were considered for inclusion in

BabyCobol, and whether they ended up in the language, to

document our line of reasoning. In every case claimed equiv-

alence of constructs among languages should be understood

in a broad sense. For example, BabyCobol’s PERFORM P X
TIMES directly translates to literally the same statement in

COBOL, but it will look like DO P I=1,X in FORTRAN (with

an introduction of a temporary variable) and like DO X CALL
P END in REXX (with a combination of two constructs, and

a different idea in designer’s mind about what it is we are

trying to do — X or P). Similarly, BabyCobol’s DISPLAY X in

CLIST is just WRITE X, but in FORTRAN it requires a sepa-

rate FORMAT statement labelled, say, P, after which can come

PRINT P,X. In that case the information of what to put into

the arguments of that FORMAT by a hypothetical BabyCobol-

to-FORTRAN compiler, must come from the knowledge of

the type system.

HLASM [57] (“High Level ASseMbler”), sometimes called

a “second generation language” (2GL) to set it apart from

raw machine code, is the main assembler language for IBM

mainframes (from System/360 up to z15; earlier 1400 series

used SPS and Autocoder, and 700/7000 series used FAP and

IBMAP instead). It exists since 1964 as the Basic Assembler

Language (BAL) and got its current name in 1992 after a

series of incremental changes. For many projects where it is

used, it was chosen not for performance but for simplicity

reasons. We did use HLASM as an example when discussing

line continuations in § 3.2, but ended up not using that much

of the language itself for BabyCobol, even though it contains

almost a thousand instructions and several hundreds macros.

In particular, HLASM instruction EXECUTE was considered
for inclusion: its semantics is to take several bytes from an

arbitrary given place in memory, apply a mask to it and exe-

cute them as code [78]. Even if it is raised from the low level

of assembler, it would mean treating arbitrary data as code —

a feature known as “eval” [54] in mainstream languages such

as JavaScript, PHP, Perl, Python, Ruby, Lua, Forth, as well as

Smalltalk and LISP. It is very problematic for compiler devel-

opers, up to the point when program analysis cannot remove

all evals from a program being compiled, and its compiled

version needs to contain an interpreter for the same language.

Hence, full compilation of eval-containing programs is equiv-

alent to solving higher Futamura projections [24] which is

a theoretically highly nontrivial and practically commonly

unsolvable problem. Our design goal for BabyCobol was to

provide challenges for a compiler constructor, but if these

challenges are impossible to overcome, it defeats the original

purpose.

Mainframe alternatives to HLASM include so-called “third

generation languages” (3GLs — traditional high level ones)

and “fourth generation languages” (4GLs — domain-specific

languages for report processing, database communication,

transaction handling, interfaces, model-based code genera-

tion, etc). COBOL [61] (“COmmon Business-Oriented Lan-

guage”) is a 3GL, one of the oldest high-level computer lan-

guages in existence, and remains one of the most popular

79

Software Language Engineers’ Worst Nightmare SLE ’20, November 16–17, 2020, Virtual, USA

ones even 60 years of its inception. COBOL is also by far

the most commonly encountered programming language in

legacy software, up to the point where even in systems domi-

nated by 4GLs, it is used as the compilation target for 4GLs as

well as a common language for manually written glue code.

Hence, it was the most logical for it to serve as the main foun-

dation for the design of BabyCobol (as well as the inspiration

for its name). COBOL contains 39 statements, out of which 11

ended up in BabyCobol in the most straightforward fashion,

with only superficial simplifications. BabyCobol’s MOVE took

after COBOL’s MOVE CORRESPONDING, a special subclause

of the general assignment statement. BabyCobol’s DISPLAY
combines functionality of COBOL’s DISPLAY and STRING
statements. COBOL’s PERFORM was after lengthy consider-

ations considered overly complex and was split into two

separate statements in BabyCobol: LOOP (usually referred to

as “the in-line perform” among COBOL programmers) and

PERFORM (the “out-of-line” version).

CLIST [58] (“Command List”) is an interpreted impera-

tive 3GL that is still in use on occasional mainframe systems,

even though it is largely inferior to alternatives: its abstrac-

tions are lower level and more leaky compared to REXX, and

its speed of execution is much slower than of any compiled

language. CLIST consists of 31 different statements, most

of which are either way too specific (e.g., LISTDSI) to be

included in BabyCobol, or duplicating existing COBOL func-

tionality (e.g., WRITE and WRITENR do the same as DISPLAY,
SET is just a flipped MOVE and EXIT is a STOP RUN). Yet, CLIST
contributed to BabyCobol in one significant way: its GOTO
statement has an option of using a variable as a target in-

stead of a verbatim label. This is more powerful and concise

than anything DEPENDING ON clause can offer, and thus fits

BabyCobol in two ways: by simplicity of expression and

by problems caused for compiler construction and program

analysis.

REXX [19] (“Restructured Extended Executor”) is a script-

ing and macro 3GL that can be interpreted or compiled, and

could be easily explained by labelling it “the mainframe’s

Perl”. It contains some instructions obviously inspired by

CLIST (e.g., SELECT/WHEN/OTHERWISE), some hiding under

different names (it uses PULL for CLIST’s READ or COBOL’s

ACCEPT, and SAY instead of WRITE or DISPLAY, resp). REXX
also contains an eval-like instruction INTERPRET which is

certainly problematic for compiler constructors, but just like

HLASM’s EXECUTE discussed above, it is too problematic.

Any compiled program with evals will have in the worst case

to include a complete interpreter of the same language. Our

goal for BabyCobol is to make compilation challenging, not

impossible. Another powerful instruction of REXX is PARSE
that can be used to parse standard input pieces, procedure ar-

guments, program metainfo or any arbitrary expression as a

sequence of variables and literals. This is equivalent to a pure

BNF non-recursive parser with variables as nonterminals

and literals as terminals. REXX’s SIGNAL instruction is used

for sophisticated error handling, and since error handling is

an interesting and challenging mechanism that can also in-

terfere with some implementations of control statements and

unconditional transfer, it was included in BabyCobol. There

are 7 different kinds of exceptions that the original SIGNAL
can handle, including even syntax errors in the program, but

in BabyCobol we simplify them to one. The deciding factor

in preferring SIGNAL to COBOL’s and PL/I’s ON units was

simplicity: in REXX it is one instruction that provides one

uniform error handler, while others allow for fine-grained

error handling per statement. Another feature of REXX that

made it into BabyCobol is default variable values. Since in

REXX all variables store strings, it naturally allows unde-

clared variable names to be used as literals, such that SAY
hello prints the value of the variable hello if it is defined
and an uppercase HELLO otherwise.

FORTRAN [7] (“FORmula TRANslator”) is a compiled

general-purpose programming language for solving numer-

ical problems. It has many dialects and survived several

versions that significantly changed both the appearance of

its programs and their treatment. For the purpose of this

project, we focused on the oldest of the publicly available

FORTRAN manuals for the IBM 704 EDPM. It contains many

statements that are way too hard to understand, let alone

implement, for a modern developer, and most of those have

by now lost their relevance altogether. For instance, it has at

least seven output-related statements: FORMAT, PUNCH, PRINT,
WRITE OUTPUT TAPE, WRITE TAPE, WRITE DRUM and END
FILE. Yet, it also has several interesting and challenging in-

structions that are still relevant to interpreting, compiling

and migrating legacy code, and we zoom in here on three of

them. First, there is an additional statement PAUSE occupying
the conceptual space between CONTINUE that simply contin-

ues execution by doing nothing, and STOP which completely

terminates the program. PAUSE stops the program while pre-

serving its state entirely, so the next click on the START

button by the user allows the execution to continue. After

some consideration we decided not to include the PAUSE
statement in BabyCobol, since apparently it is also not used

much in code surviving up to this day. Second, FORTRAN

contains a FREQUENCY statement which is used to provide

hints to the compiler on optimizations of the user code, by

explicitly communicating estimated frequencies of choosing

particular branches at decision points (IFs and DOs). This
feature is too heavyweight for BabyCobol, but it is worth

considering in some form for its possible extensions. Finally,

let us consider FORTRAN’s GO TOs closely. There are three
forms of GO TO in FORTRAN I: the unconditional GO TO, the
computed GO TO and the assigned GO TO. The unconditional
variant is the standard version that just transfers control to

a different location. The computed variant transfers control

to an indexed location from a list and is thus a shorthand

notation for a sequence of IFs with corresponding GO TOs.
The assigned GO TO has such a name because of another

80

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

statement ASSIGN which semantics very closely resembles

COBOL’s ALTER. However, it is written this way [7, p.17]:

ASSIGN 12 TO N
GO TO N, (7, 12, 19)

On one hand, the ASSIGN command is more than a simple

value assignment (which could have taken the form of “N =
12”), since it signals to the compiler that the variable N will
be used as a label name and from that point on cannot be

used in arithmetic expressions. On the other hand, the GO
TO command, which can be very far removed from the actual

target assignment in real code, contains a list of allowed

assignable line numbers, and thus helps the programmer to

read and understand this code, as well as allows the compiler

to statically check all related ASSIGNs against this list. This
subtle point demonstrates the difference between making

the life of a developer difficult (which is definitely the case

with COBOL’s GO TO and ALTER since at the point of change
nothing indicates possible range of altered values) and mak-

ing the life of a compiler developer difficult (by adding more

constraints imposed on seemingly unstructured constructs

in a way that allows compile-time static analysis and error

reporting). Our goal is the latter.

PL/I [60] (“Programming Language One”) is one of the

most complex programming languages in all aspects: the

number of nonterminals in PL/I and COBOL grammars writ-

ten in the same notation, is comparable, but the complexity

is considerably higher (taken as the length of production

rules and the branching of them at ? and ∗-combinators).

The sheer number of terminal symbols is so high that key-

words and built-in function names in PL/I are not reserved

words so that developers still have a chance to call their

variables “MODE”, “NOTE”, “GET” or “PUT”. The semantics of

each statement is often also difficult to grasp and contains

subclauses that behave differently. It is safe to assume that

PL/I covers everything. It contains error handling similar to

REXX but much more complex: it covers 24 different kinds

of them (REXX has 7, BabyCobol has 1), and they can also

be fine-tuned per kind and per statement (with “condition

prefixes”), specifying exactly what the behaviour should be,

whether the debug information should be printed, whether

the implicit system action needs to be taken, which proce-

dure must handle it, and even during the handling itself the

execution can be stopped, reverted, restarted, etc. There are

4 explicitly differently specified variants of PL/I’s DO loop,

some having the complexity of COBOL’s “in-line PERFORM”
with all its ad hoc clauses, while others almost reaching C-

style low-level clarity by communicating which expression

exactly to reevaluate on each iteration (i.e., the REPEAT clause
in DO type 3). PL/I also has built-in facilities for writing multi-

threaded code, which is a problem in almost all other 3GLs

and 4GLs.

4GLs (“FourthGeneration Languages”) were highly praised
in the 1960s through 1980s [47, 63] for being non-procedural

high level specification languages that allow software de-

velopers to write concise yet readable code that is easier to

design, develop, evolve and maintain. Their implementers

were mostly focusing on the conciseness of the code that had

to be written, often overlooking other DSL design principles

that are valued today (developer efficiency, learnability, tool

support, debuggability, etc). In the modern world such lan-

guages are in decline and are commonly seen as legacy [21],

and owners of codebases and portfolios largely relying on

such 4GLs, actively undertake steps towards their retirement,

investing millions in multi-year plans for software mod-

ernisation [38, 67]. Among 4GLs we have looked into CA’s

COOL:GEN [15], IDEAL [14] andVISION:BUILDER [13],

Information Builders’ FOCUS [34], Magic Software’s App-
Builder [45], Software AG’s NATURAL [64], jBASE’s jBA-
SIC [35], and IBM’s Informix [25] and PACBASE [32].

Quite commonly only superficial information is available for

researchers who are not current paying customers of the lan-

guage’ compiler. Sometimes there was barely enough public

information available at the official websites to examine the

list of statements but not their precise nor detailed semantics.

The design of many of these proprietary 4GLs was heavily

inspired by both COBOL and PL/I. For example, AppBuilder

code mostly relies on the MAP statement which is identical to

BabyCobol’s MOVE, but also uses abbreviated PL/I names like

DCL for declarations and PROC for procedures. Its DO loop also
contains FROM, TO, INDEX, BY (but no UPTHRU and DOWNTHRU)
clauses, as well as the WHILE clause which is detachable (it

can occur anywhere within the body of the loop, not just

at the beginning or the end). Yet it still does not reach the

impressive complexity of PL/I’s DO which essentially mixes

four different looping statements into one, each having quite

a number of subclauses [60, pp.212–223]. We have incorpo-

rated this detachable subclause of AppBuilder’s DO/WHILE
into BabyCobol’s LOOP.

7 Conclusion
A simplified version of an EBNF definition of BabyCobol is

provided on Listing 2. The main website supporting Baby-

Cobol, can be found at https://slebok.github.io/baby, it
contains a more complete and growing language reference

with detailed directions, explanations, code examples, etc.

This project is a part of a bigger initiative called SLEBoK,

for Software Language Engineering Body of Knowledge, a

community-wide effort to provide a unique and comprehen-

sive description of the concepts, tools andmethods developed

by the SLE community. It features artefacts, definitions, meth-

ods, techniques, best practices, open challenges, case studies,

teaching material, and other components that would help

students, researchers, teachers, and practitioners to learn

from, to better leverage, to better contribute to, and to better

disseminate the intellectual contributions and practical tools

81

https://slebok.github.io/baby

Software Language Engineers’ Worst Nightmare SLE ’20, November 16–17, 2020, Virtual, USA

Sentence ::= Statement+ .
Statement ::= ACCEPT Identifier+

| ADD Atomic+ TO Atomic (GIVING Identifier)?
| ALTER ProcedureName TO PROCEED TO ProcedureName
| COPY FileName (REPLACING (Literal BY Literal)+)?
| DISPLAY DisplayExpression* (WITH NO ADVANCING)?
| DIVIDE Atomic INTO Atomic+ (GIVING Identifier)? (REMAINDER Identifier)?
| EVALUATE AnyExpression WhenBlock* END
| GO TO ProcedureName (OR ProcedureName)*
| IF BooleanExpression THEN Statement+ (ELSE Statement+)? END?
| LOOP LoopStatement* END
| MOVE MoveExpression TO Identifier+
| MULTIPLY Atomic BY Atomic+ (GIVING Identifier)?
| NEXT SENTENCE
| PERFORM ProcedureName (THROUGH ProcedureName)? (Atomic TIMES)?
| SIGNAL (OFF | ProcedureName) ON ERROR
| STOP
| SUBTRACT Atomic+ FROM Atomic (GIVING Identifier)?

DisplayExpression ::= Atomic (DELIMITED BY (SPACE | SIZE))?
MoveExpression ::= Atomic

| HIGH-VALUES
| LOW-VALUES
| SPACES

WhenBlock ::= WHEN Atomic+
| WHEN OTHER

AnyExpression ::= ArithmeticExpression
| StringExpression
| BooleanExpression

ArithmeticExpression ::= Atomic
| ArithmeticExpression ArithmeticOp ArithmeticExpression

StringExpression ::= Atomic
| StringExpression + StringExpression

BooleanExpression ::= TRUE
| FALSE
| ArithmeticExpression ComparisonOp ArithmeticExpression
| NOT BooleanExpression
| BooleanExpression BooleanOp BooleanExpression

LoopStatement ::= VARYING Identifier? (FROM Atomic)? (TO Atomic)? (BY Atomic)?
| WHILE BooleanExpression
| UNTIL BooleanExpression
| Statement

ComparisonOp ::= = | > | < | >= | <=
BooleanOp ::= OR | AND | XOR

ArithmeticOp ::= + | - | * | / | **
Atomic ::= Literal | Identifier

ProcedureName ::= SectionName | ParagraphName | Identifier
Identifier ::= Name | Name (Index)

Listing 2. Syntax of BabyCobol statements and expressions. We abstract from some understandable details like optional

bracketing of expressions, as well as from complex features discussed in § 3, § 4.2 and § 4.5. There are also many static semantic

details not expressed here: ADD and SUBTRACT are only allowed their second argument to be literals when the GIVING clause is

present; DIVIDE and MULTIPLY may have only one second argument when the GIVING clause is present; end of a sentence

terminates all currently open IFs without any need of matching ENDs, etc.

82

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

and techniques coming from the SLE field. The online lan-

guage manual is written traditionally top-down, and goes

through each of the statement kinds one by one, explain-

ing them in detail. Contrary to that style, in this paper we

reported on BabyCobol from two sides: first by explaining

its features by examples of known problematic constructs,

giving examples from legacy languages (§ 3 – § 5); and then

again by going through the list of popular legacy languages

reflecting on which parts of them were considered for inclu-

sion and which ended up as BabyCobol constructs (§ 6).

By choosing BabyCobol to be a separate language and

not a strict subset of COBOL, we unfortunately forfeit the

way MiniJava and similar projects deal with specifying the

language semantics: by stating that the semantics of the new

language is equivalent to the semantics of literally the same

piece of code in the original language. There are mainly two

reasons for that. First, Java is a great language to make sub-

sets of, since it has one reference implementation which is

freely available, so even if the documentation is unclear, one

can always write a test case and compile it. This is not the

case with COBOL: it has hundreds of dialects with differ-

ent semantics, and most compilers are inaccessible to the

general public anyway, and/or target platforms such as IBM

mainframes, which also require hard to arrange expensive

access. Second, it has been made very clear to us by several

industrial compiler developers that problems of implement-

ing COBOL alone do not do justice at representing all kinds

of possible problems of implementing tools for 2GLs through

4GLs. In particular, even fellow 3GLs like REXX, CLIST and

PL/I come with their own sets of implementation problems

that are not necessarily related to the set of COBOL imple-

mentation problems at all. Hence, we opted for a superset of

a union taken from a collection of problems of COBOL, as

well as all kinds of other legacy languages.

As one of the possible implications, we may have gained

undefined or undesirable features of BabyCobol in places

where semantics of one of its features inherited from one

legacy language, interacts with another feature inherited

from a different legacy language. The feature interactions we

have observed so far — for example, how PERFORM THROUGH
behaviour collaborates with the GO TO behaviour jumping

within the range of paragraphs being performed or outside of

it — were verified as real issues, causing the same problems

in BabyCobol and COBOL, and almost verbatim portable.

We claim that implementing its parser witnessing case

independence, its syntax highlighter witnessing whitespace

indifference and keywords not being reserved, its code com-

pletion for sufficiently expanding qualified names, its code

generator for several vastly different control structures, and

other forms of compilers and compiler-like language pro-

cessing tools, will help researchers to relate to problems of

legacy software handling and train on soothing the Baby-

Cobol before taking on its full grown counterparts. In the

meantime we have started using BabyCobol in teaching grad-

uate students the dark hard side of software evolution and

maintenance, reinforcing the effect with guest lectures given

by practitioners. We are planning to report on our experi-

ences separately, once enough evidence is gathered. Ideally,

we would like to eventually run empirical evaluations inves-

tigating how non-BabyCobol taught junior developers solve

legacy language processing tasks compared to BabyCobol-

taught ones, but the practical feasibility of such a study re-

mains to be determined.

Acknowledgements
The author would like to thank Arthur Michener Peters from

the University of Texas at Austin, who has suggested the

idea of creating such a language at a lunch discussion at

SPLASH’19 in Athens on 21 October 2019. Feedback from at-

tendees of the author’s keynote speech at BENEVOL’19 on 28

November 2019 and the author’s invited talk at PRiML’20 on

6 July 2020, as well as Master of Science students of Univer-

sities of Amsterdam (The Netherlands) and Mons (Belgium),

who attended guest lectures of the author on 9 December

2019 and 4 March 2020, respectively, and all the anonymous

reviewers, was instrumental in leading this paper to its final

form. Special thanks go to Bernd Fischer and other mem-

bers of the IFIP Working Group 2.11 on Program Generation,

who attended a presentation on an earlier version of Baby-

Cobol on 17 February 2020, provided valuable feedback and

produced the first BabyCobol-based tool that generated test

programs from its grammar.

References
[1] Hal Abelson, Nat Goodman, and Lee Rudolph. 1974. LOGO Manual.

Technical Report. MIT. http://hdl.handle.net/1721.1/6226.
[2] Davide Ancona and Elena Zucca. 2012. Corecursive Featherweight

Java. In Proceedings of the 14th Workshop on Formal Techniques for
Java-like Programs (FTfJP), Wei-Ngan Chin and Aquinas Hobor (Eds.).

ACM, 3–10. https://doi.org/10.1145/2318202.2318205
[3] Dana Angluin. 1980. Finding Patterns Common to a Set of Strings.

Journal of Computer and System Sciences 21, 1 (1980), 46–62. https:
//doi.org/10.1016/0022-0000(80)90041-0

[4] Sven Apel, Christian Kästner, and Christian Lengauer. 2008. Feature

Featherweight Java: A Calculus for Feature-Oriented Programming

and Stepwise Refinement. In Proceedings of the Seventh International
Conference on Generative Programming and Component Engineering
(GPCE). ACM, 101–112. https://doi.org/10.1145/1449913.1449931

[5] Andrew W. Appel and Jens Palsberg. 2002. Modern Compiler Imple-
mentation in Java: Second Edition. Cambridge University Press.

[6] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan

Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey

Washburn, StephanieWeirich, and Steve Zdancewic. 2005. Mechanized

Metatheory for the Masses: The PoplMark Challenge. In Proceedings of
the 18th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs) (LNCS, Vol. 3603), Joe Hurd and Thomas F. Melham

(Eds.). Springer, 50–65. https://doi.org/10.1007/11541868_4
[7] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A.

Hughes, L. B. Mitchell, R. A. Nelson, R. Nutt, D. Sayre, P. B. Sheridan,

H. Stern, and I. Ziller. 1956. The Fortran Automatic Coding System for

83

http://hdl.handle.net/1721.1/6226
https://doi.org/10.1145/2318202.2318205
https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1145/1449913.1449931
https://doi.org/10.1007/11541868_4

Software Language Engineers’ Worst Nightmare SLE ’20, November 16–17, 2020, Virtual, USA

the IBM 704 EDPM. Programmer’s Reference Manual. Applied Science

Division and Programming Research Dept., IBM Corporation.

[8] Lorenzo Bettini, Sara Capecchi, and Elena Giachino. 2008. Feather-

weight Wrap Java: wrapping objects and methods. Journal of Object
Technology 7, 2 (2008), 5–29. https://doi.org/10.5381/jot.2008.7.2.a1

[9] G. M. Bierman, M. J. Parkinson, and A. M. Pitts. 2002. MJ: An imperative
core calculus for Java and Java with effects. Technical Report 563.

Computer Laboratory, University of Cambridge.

[10] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosk-

ing, Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar,

Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking

Development and Analysis. In Proceedings of the 21th Conference on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190.

https://doi.org/10.1145/1167473.1167488
[11] Volodymyr Blagodarov, Yves Jaradin, and Vadim Zaytsev. 2016. Tool

Demo: Raincode Assembler Compiler. In Proceedings of the Ninth In-
ternational Conference on Software Language Engineering (SLE), Tijs
van der Storm, Emilie Balland, and Dániel Varró (Eds.). ACM, 221–225.

https://doi.org/10.1145/2997364.2997387
[12] Timofey Bryksin, Victor Petukhov, Kirill Smirenko, and Nikita Po-

varov. 2018. Detecting Anomalies in Kotlin code. In Companion Pro-
ceedings for the ISSTA/ECOOP Workshops, Julian Dolby, William G. J.

Halfond, and Ashish Mishra (Eds.). ACM, 10–12. https://doi.org/10.
1145/3236454.3236457

[13] CA Technologies. 2005. Advantage
tm

VISION:Builder
®
Advantage

tm

VISION:Two
tm

for z/OS Reference Guide r15. B02630-1E, https://
ftpdocs.broadcom.com/cadocs/0/b026301e.pdf.

[14] CA Technologies. 2015. CA Ideal
tm

for CA Datacom
®
Programming

Guide V. 14.02. https://ftpdocs.broadcom.com/cadocs/0/CAIdeal140-
ENU/Bookshelf_Files/PDF/ID1402_Programming_ENU.pdf.

[15] CA Technologies. 2016. 5 Ways DevOps Practices Boost Innovation

on the Mainframe. CS 200-227965, https://docs.broadcom.com/doc/5-
ways-devops-practices-boost-innovation-on-the-mainframe.

[16] Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data

Abstraction, and Polymorphism. Comput. Surveys 17, 4 (Dec. 1985),
471–523. https://doi.org/10.1145/6041.6042

[17] William R. Cook. 1991. Object-Oriented Programming versus Abstract

Data Types. In Foundations of Object-Oriented Languages (REX Work-
shop 1990), J. W. de Bakker, W. P. de Roever, and G. Rozenberg (Eds.).

Springer, 151–178. https://doi.org/10.1007/BFb0019443
[18] William R. Cook. 2009. On Understanding Data Abstraction, Revis-

ited. In Proceedings of the 24th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), Shail Arora
and Gary T. Leavens (Eds.). ACM, 557–572. https://doi.org/10.1145/
1640089.1640133

[19] Michael Cowlishaw. 1990. The Rexx Language: A Practical Approach to
Programming. Prentice Hall.

[20] Edsger W. Dijkstra. 1968. Go To Statement Considered Harmful. Com-
mun. ACM 11 (1968), 147–148. https://doi.org/10.1145/362929.362947

[21] Michael Feathers. 2004. Working Effectively with Legacy Code. Prentice-
Hall.

[22] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram

Krishnamurthi, and Matthias Felleisen. 1997. DrScheme: A Peda-

gogic Programming Environment for Scheme. In Proceedings of the
Ninth International Symposium on Programming Languages: Imple-
mentations, Logics, and Programs (PLILP)) (LNCS, Vol. 1292), Hugh
Glaser, Pieter H. Hartel, and Herbert Kuchen (Eds.). Springer, 369–388.

https://doi.org/10.1007/BFb0033856
[23] J. Nathan Foster and Dimitrios Vytiniotis. 2006. A Theory of Feather-

weight Java in Isabelle/HOL. Archive of Formal Proofs (March 2006).

https://www.isa-afp.org/entries/FeatherweightJava.shtml
[24] Yoshihiko Futamura. 1982. Partial Computation of Programs. In Pro-

ceedings of the RIMS Symposium on Software Science and Engineering, Ei-
ichi Goto, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori

Yonezawa (Eds.), Vol. 147. Springer, 1–35. https://doi.org/10.1007/3-
540-11980-9_13

[25] G2 Crowd. 2018. Informix® software: An Embedded Database

for the Edge and Beyond. https://www.ibm.com/downloads/cas/
NQQNEG7K.

[26] Leo Geurts, Lambert G. L. T. Meertens, and Steven Pemberton. 1990.

ABC programmer’s handbook. Prentice Hall.
[27] P. Giles. 1969. Mini-COBOL. Comput. J. 12 (Aug. 1969), 208–214. Issue

3. https://doi.org/10.1093/comjnl/12.3.208
[28] E. Goldman and J. Blanton. 2000. REBOL Official Guide. McGraw-Hill.

[29] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. 2005. The
Java Language Specification (third ed.). Addison-Wesley.

[30] Kevin Hammond and Stephen Blott. 1989. Implementing Haskell

Type Classes. In Proceedings of the Glasgow Workshop on Functional
Programming (Workshops in Computing), Kei Davis and John Hughes

(Eds.). Springer, 266–286. https://doi.org/10.1007/978-1-4471-3166-
3_18

[31] R. Hickey. 2008. The Clojure programming language. In DLS, Johan
Brichau (Ed.). ACM, 1. https://doi.org/10.1145/1408681.1408682

[32] IBM. 1998. VisualAge Pacbase 2.5. Pacbase Access Facility Refer-

ence Manual. DDPAF000251A, ftp://public.dhe.ibm.com/software/
vapacbase/pdf_e/paf251a.pdf.

[33] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-

erweight Java: a minimal core calculus for Java and GJ. ACM Trans.
Program. Lang. Syst. 23, 3 (2001), 396–450. https://doi.org/10.1145/
503502.503505

[34] Information Builders. 2018. FOCUS for Mainframe and Distributed

Systems Technical Library. http://ecl.informationbuilders.com/focus/
index.jsp.

[35] jBASE. 2020. jBASE Support Documentation: jBase Basic (JBC). https:
//jbase.helpjuice.com/36868-jbase-basic.

[36] Dan Jonsson. 1989. Next: the Elimination of Goto-Patches? ACM
SIGPLAN Notices 24, 3 (1989), 85–92. https://doi.org/10.1145/66083.
66091

[37] John G. Kemeny and Thomas E. Kurtz. 1964. BASIC: A Manual for
BASIC, the Elementary Algebraic Language Designed for Use with the
Dartmouth Time Sharing System. Technical Report. Dartmouth Col-

lege.

[38] Ravi Khadka, Amir Saeidi, Slinger Jansen, Jurriaan Hage, and Geer P.

Haas. 2013. Migrating a Large Scale Legacy Application to SOA:

Challenges and Lessons Learned. In Proceedings of the 20th Working
Conference on Reverse Engineering, Ralf Lämmel, Rocco Oliveto, and

Romain Robbes (Eds.). IEEE, 425–432. https://doi.org/10.1109/WCRE.
2013.6671318

[39] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. Rascal: A

Domain Specific Language for Source Code Analysis andManipulation.

In Proceedings of the Ninth International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE CS, 168–177. https:
//doi.org/10.1109/SCAM.2009.28

[40] Donald E. Knuth. 1974. Structured Programming with Go To State-

ments. Comput. Surveys 6, 4 (1974), 261–301.
[41] Ralf Lämmel and Chris Verhoef. 2001. Cracking the 500-Language

Problem. IEEE Software 18, 6 (Nov./Dec. 2001), 78–88. https://doi.org/
10.1109/52.965809

[42] Christopher League, Zhong Shao, and Valery Trifonov. 2002. Type-

preserving compilation of Featherweight Java. ACM Trans. Program.
Lang. Syst. 24, 2 (2002), 112–152. https://doi.org/10.1145/514952.514954

[43] Manuel Leduc, Thomas Degueule, Eric Van Wyk, and Benoît Combe-

male. 2020. The Software Language Extension Problem. Software and
Systems Modeling 19, 2 (2020), 263–267. https://doi.org/10.1007/s10270-

84

https://doi.org/10.5381/jot.2008.7.2.a1
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1145/3236454.3236457
https://doi.org/10.1145/3236454.3236457
https://ftpdocs.broadcom.com/cadocs/0/b026301e.pdf
https://ftpdocs.broadcom.com/cadocs/0/b026301e.pdf
https://ftpdocs.broadcom.com/cadocs/0/CA Ideal 14 0-ENU/Bookshelf_Files/PDF/ID1402_Programming_ENU.pdf
https://ftpdocs.broadcom.com/cadocs/0/CA Ideal 14 0-ENU/Bookshelf_Files/PDF/ID1402_Programming_ENU.pdf
https://docs.broadcom.com/doc/5-ways-devops-practices-boost-innovation-on-the-mainframe
https://docs.broadcom.com/doc/5-ways-devops-practices-boost-innovation-on-the-mainframe
https://doi.org/10.1145/6041.6042
https://doi.org/10.1007/BFb0019443
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/362929.362947
https://doi.org/10.1007/BFb0033856
https://www.isa-afp.org/entries/FeatherweightJava.shtml
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1007/3-540-11980-9_13
https://www.ibm.com/downloads/cas/NQQNEG7K
https://www.ibm.com/downloads/cas/NQQNEG7K
https://doi.org/10.1093/comjnl/12.3.208
https://doi.org/10.1007/978-1-4471-3166-3_18
https://doi.org/10.1007/978-1-4471-3166-3_18
https://doi.org/10.1145/1408681.1408682
ftp://public.dhe.ibm.com/software/vapacbase/pdf_e/paf251a.pdf
ftp://public.dhe.ibm.com/software/vapacbase/pdf_e/paf251a.pdf
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
http://ecl.informationbuilders.com/focus/index.jsp
http://ecl.informationbuilders.com/focus/index.jsp
https://jbase.helpjuice.com/36868-jbase-basic
https://jbase.helpjuice.com/36868-jbase-basic
https://doi.org/10.1145/66083.66091
https://doi.org/10.1145/66083.66091
https://doi.org/10.1109/WCRE.2013.6671318
https://doi.org/10.1109/WCRE.2013.6671318
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/52.965809
https://doi.org/10.1109/52.965809
https://doi.org/10.1145/514952.514954
https://doi.org/10.1007/s10270-019-00772-7
https://doi.org/10.1007/s10270-019-00772-7

SLE ’20, November 16–17, 2020, Virtual, USA Vadim Zaytsev

019-00772-7
[44] Luigi Liquori and Arnaud Spiwack. 2008. FeatherTrait: A modest

extension of Featherweight Java. ACM Trans. Program. Lang. Syst. 30,
2 (2008), 11:1–11:32. https://doi.org/10.1145/1330017.1330022

[45] Magic Software Enterprises. 1995. AppBuilder. http://www.appbuilder.
com.

[46] John Maloney, Leo Burd, Yasmin B. Kafai, Natalie Rusk, Brian Sil-

verman, and Mitchel Resnick. 2004. Scratch: A Sneak Preview. In

Proceedings of the Conference on Creating, Connecting and Collabo-
rating through Computing (𝐶5) . IEEE Computer Society, 104–109.

https://doi.org/10.1109/C5.2004.1314376
[47] James Martin. 1981. Applications Development Without Programmers.

Prentice-Hall.

[48] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.

In Proceedings of the 2014 ACM SIGAda Annual Conference on High
Integrity Language Technology (HILT’14). ACM, 103–104. https://doi.
org/10.1145/2663171.2663188

[49] David May. 1983. OCCAM. SIGPLAN Notices 18, 4 (April 1983), 69–79.
https://doi.org/10.1145/948176.948183

[50] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P.

Hart, and Michael I. Levin. 1962. LISP 1.5 Programmer’s Manual. MIT

Press.

[51] Charles H. Moore. 1974. FORTH: A New Way to Program a Minicom-

puter. Astron. Astrophys. Suppl. 15 (1974), 497–511.
[52] Johan Östlund and Tobias Wrigstad. 2010. Welterweight Java. In Pro-

ceedings of the 48th International Conference on Objects, Models, Com-
ponents, Patterns (TOOLS) (LNCS, Vol. 6141), Jan Vitek (Ed.). Springer,

97–116. https://doi.org/10.1007/978-3-642-13953-6_6
[53] Rob Pike. 2012. Go at Google. In Proceedings of the Conference on Sys-

tems, Programming, and Applications: Software for Humanity (SPLASH),
Gary T. Leavens (Ed.). ACM, 5–6. https://doi.org/10.1145/2384716.
2384720

[54] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011.

The Eval That Men Do — A Large-Scale Study of the Use of Eval

in JavaScript Applications. In Proceedings of the 25th European Con-
ference on Object-Oriented Programming (ECOOP) (LNCS, Vol. 6813),
Mira Mezini (Ed.). Springer, 52–78. https://doi.org/10.1007/978-3-642-
22655-7_4

[55] Eric Roberts. 2001. An overview of MiniJava. In Proceedings of the
32rd SIGCSE Technical Symposium on Computer Science Education,
Henry MacKay Walker, Renée A. McCauley, Judith L. Gersting, and

Ingrid Russell (Eds.). ACM, 1–5. https://doi.org/10.1145/364447.364525
[56] Frank Rubin. 1987. “Go To Considered Harmful” Considered Harmful.

Commun. ACM 30, 3 (March 1987), 195–196. https://doi.org/10.1145/
214748.315722

[57] SA22-7832-11. 2017. z/Architecture Principles of Operation (twelfth ed.).

IBM.

[58] SA32-0978-00. 1988. z/OS TSO/E CLISTs Version 2 Release 1. IBM.

[59] SC09-2507-10. 2016. Programming IBM Rational Development Studio
for i. ILE RPG Programmer’s Guide. Version 7.3. IBM.

[60] SC14-7285-01. 2011. Enterprise PL/I for z/OS Language Reference Version
4 Release 2 (second ed.). IBM.

[61] SC23-8528-01. 2009. Enterprise COBOL for z/OS Language Reference.
Version 4 Release 2 (second ed.). IBM.

[62] SC23-8529-01. 2009. Enterprise COBOL for z/OS Programming Guide.
Version 4 Release 2 (second ed.). IBM.

[63] Louis Schlueter. 1988. User-Designed Computing: The Next Generation.
Lexington Books.

[64] Software AG. 2018. Facts about Natural for Mainframe.

https://resources.softwareag.com/adabas-natural/2018-3-fs-natural-
en-natural-mainframe-fact-sheet.

[65] Thomas Studer. 2001. Constructive Foundations for Featherweight

Java. In Proceedings of the International Seminar in Proof Theory in Com-
puter Science, International Seminar (PTCS) (LNCS, Vol. 2183), Reinhard
Kahle, Peter Schroeder-Heister, and Robert F. Stärk (Eds.). Springer,

202–238. https://doi.org/10.1007/3-540-45504-3_13
[66] Gerald Jay Sussman and Guy Lewis Steele Jr. 1975. Scheme: An Inter-

preter for Extended Lambda Calculus. Technical Report. MEMO 349,

MIT.

[67] Andrey A. Terekhov and Chris Verhoef. 2000. The Realities of Lan-

guage Conversions. IEEE Software 17, 6 (Nov./Dec. 2000), 111–124.

https://doi.org/10.1109/52.895180
[68] TIOBE. 2019. The TIOBE Programming Community index. https:

//www.tiobe.com/tiobe-index/.
[69] Mads Torgersen. 2004. The Expression Problem Revisited. In Proceed-

ings of the 18th European Conference on Object-Oriented Programming
(ECOOP) (LNCS, Vol. 3086), Martin Odersky (Ed.). Springer, 123–143.

https://doi.org/10.1007/978-3-540-24851-4_6
[70] Thi Mai Thuong Tran and Martin Steffen. 2010. Safe Commits for

Transactional Featherweight Java. In Proceedings of the Eighth In-
ternational Conference on Integrated Formal Methods (IFM) (LNCS,
Vol. 6396), Dominique Méry and Stephan Merz (Eds.). Springer, 290–

304. https://doi.org/10.1007/978-3-642-16265-7_21
[71] Guido van Rossum. 1997. A Tour of the Python Language. In Pro-

ceedings of the 23rd International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS). IEEE Computer Society, 370.

https://doi.org/10.1109/TOOLS.1997.10001
[72] Philip Wadler. 1998. The Expression Problem. Posted on the Java

Genericity mailing list, http://homepages.inf.ed.ac.uk/wadler/papers/
expression/expression.txt.

[73] David H. D. Warren, Luis M. Pereira, and Fernando Pereira. 1977.

Prolog — The language and Its Implementation Compared with LISP.

SIGART Newsletter 64 (1977), 109–115. https://doi.org/10.1145/872736.
806939

[74] Wiki. 2013. Syntactically Significant White-

space Considered Harmful. http://wiki.c2.com/
?SyntacticallySignificantWhitespaceConsideredHarmful.

[75] Niklaus Wirth. 1971. The Design of a PASCAL Compiler. Softw., Pract.
Exper. 1, 4 (1971), 309–333. https://doi.org/10.1002/spe.4380010403

[76] Donald R. Woods and James M. Lyon. 1973. The INTERCAL Pro-
gramming Language Reference Manual. https://www.muppetlabs.com/
~breadbox/intercal-man/.

[77] Vadim Zaytsev. 2017. Parser Generation by Example for Legacy

Pattern Languages. In Proceedings of the 16th International Confer-
ence on Generative Programming: Concepts and Experience (GPCE),
Matthew Flatt and Sebastian Erdweg (Eds.). ACM, 212–218. https:
//doi.org/10.1145/3136040.3136058

[78] Vadim Zaytsev. 2020. Modelling of Language Syntax and Semantics:

The Case of the Assembler Compiler. Proceedings of the 16th European
Conference on Modelling Foundations and Applications in the Journal
of Object Technology (ECMFA@JOT) 19 (July 2020), 5:1–22. Issue 2.

https://doi.org/10.5381/jot.2020.19.2.a5
[79] Tian Zhao, Jens Palsberg, and Jan Vitek. 2003. Lightweight con-

finement for featherweight Java. In Proceedings of the 18th Confer-
ence on Object-Oriented Programming, Systems, Languages and Ap-
plications, Ron Crocker and Guy L. Steele Jr. (Eds.). ACM, 135–148.

https://doi.org/10.1145/949305.949318

85

https://doi.org/10.1007/s10270-019-00772-7
https://doi.org/10.1145/1330017.1330022
http://www.appbuilder.com
http://www.appbuilder.com
https://doi.org/10.1109/C5.2004.1314376
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/948176.948183
https://doi.org/10.1007/978-3-642-13953-6_6
https://doi.org/10.1145/2384716.2384720
https://doi.org/10.1145/2384716.2384720
https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1145/364447.364525
https://doi.org/10.1145/214748.315722
https://doi.org/10.1145/214748.315722
https://resources.softwareag.com/adabas-natural/2018-3-fs-natural-en-natural-mainframe-fact-sheet
https://resources.softwareag.com/adabas-natural/2018-3-fs-natural-en-natural-mainframe-fact-sheet
https://doi.org/10.1007/3-540-45504-3_13
https://doi.org/10.1109/52.895180
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.1007/978-3-642-16265-7_21
https://doi.org/10.1109/TOOLS.1997.10001
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1145/872736.806939
https://doi.org/10.1145/872736.806939
http://wiki.c2.com/?SyntacticallySignificantWhitespaceConsideredHarmful
http://wiki.c2.com/?SyntacticallySignificantWhitespaceConsideredHarmful
https://doi.org/10.1002/spe.4380010403
https://www.muppetlabs.com/~breadbox/intercal-man/
https://www.muppetlabs.com/~breadbox/intercal-man/
https://doi.org/10.1145/3136040.3136058
https://doi.org/10.1145/3136040.3136058
https://doi.org/10.5381/jot.2020.19.2.a5
https://doi.org/10.1145/949305.949318

	Abstract
	1 Introduction
	2 Related Work
	3 Syntax
	3.1 Position-Based Syntax (and Semantics)
	3.2 Line Continuations
	3.3 Case Insensitivity
	3.4 Keywords Reserved Words
	3.5 Whitespace Insignificance
	3.6 Lexical Imports
	3.7 Program Composition

	4 Semantics of Expressions
	4.1 Declarations and Data Types
	4.2 Sufficient Qualification
	4.3 Figurative Constants
	4.4 Default Values
	4.5 Contractions in Conditions

	5 Semantics of Statements
	5.1 Unconditional Transfer of Control
	5.2 Structured Control Statements
	5.3 Name-Driven Assignment
	5.4 Exception Handling

	6 Inspirational Languages Summary
	7 Conclusion
	References

