
A Comparison between Laboratory and Wearable Sensors in 
the Context of Physiological Synchrony 

Jasper J. van Beers 
 Perceptual and Cognitive Systems 

TNO 
 Soesterberg, The Netherlands 

 jasper.vanbeers@tno.nl 

Ivo V. Stuldreher† 
 Perceptual and Cognitive Systems 

 TNO 
 Soesterberg, The Netherlands 

 ivo.stuldreher@tno.nl 

Nattapong Thammasan 
 Human Media Interaction 

 University of Twente 
Enschede, The Netherlands 
n.thammasan@utwente.nl 

 

 

Anne-Marie Brouwer 
 Perceptual and Cognitive Systems 

 TNO 
 Soesterberg, The Netherlands 
 anne-marie.brouwer@tno.nl 

  
  

 

ABSTRACT 
Measuring concurrent changes in autonomic physiological 
responses aggregated across individuals (Physiological 
Synchrony - PS) can provide insight into group-level cognitive 
or emotional processes.  Utilizing cheap and easy-to-use 
wearable sensors to measure physiology rather than their high-
end laboratory counterparts is desirable. Since it is currently 
ambiguous how different signal properties (arising from different 
types of measuring equipment) influence the detection of PS 
associated with mental processes, it is unclear whether, or to 
what extent, PS based on data from wearables compares to that 
from their laboratory equivalents. Existing literature has 
investigated PS using both types of equipment, but none 
compared them directly. In this study, we measure PS in 
electrodermal activity (EDA) and inter-beat interval (IBI, inverse 
of heart rate) of participants who listened to the same audio 
stream but were either instructed to attend to the presented 
narrative (n=13) or to the interspersed auditory events (n=13). 
Both laboratory and wearable sensors were used (ActiveTwo 
electrocardiogram (ECG) and EDA; Wahoo Tickr and 
EdaMove4). A participant’s attentional condition was classified 
based on which attentional group they shared greater synchrony 
with. For both types of sensors, we found classification 
accuracies of 73% or higher in both EDA and IBI. We found no 
significant difference in classification accuracies between the 
laboratory and wearable sensors. These findings encourage the 
use of wearables for PS based research and for in-the-field 
measurements.  
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1 Introduction 
Autonomic physiological responses can provide informative 
insights into an individual’s cognitive and emotional state. When 
aggregated across multiple individuals, group level dynamics 
may be investigated through similarities in their physiological 
activity. This concept is known as physiological synchrony (PS).  

One prevalent domain in which autonomic PS has been 
extensively employed is that of interpersonal interactions [1]. 
Use of PS can also be envisioned in various human-computer 
interactions, such as in competitive multiplayer video games.  
Interest in autonomic PS is gaining traction in part due to the 
rapid development and growing maturity of wearable sensor 
technology [2]-[4] compounded with the possibility to combine a 
myriad of different wearable devices. Moreover, synchrony 
within different physiological modalities could be reflective of 
different processes, such as stress or empathy [1], and may 
provide insight into the mechanisms driving PS. It is suspected 
that PS can be used to measure shared attention [5], where 
shared attention may be an underlying explaining factor of other 
findings such as those by [6] on audience engagement. Attention 
itself plays an important role in learning capabilities [7], [8], task 
performance [9], and social interactions [10]. Jamet et al. [8] 
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demonstrated the benefits of using attention-guiding techniques 
to facilitate learning, resulting in improved performance for 
retention (e.g. memory) based tasks. As such, PS may be of 
interest as a tool to monitor attention continuously and 
unobtrusively in the classroom to assist students with learning 
disabilities, or to improve upon existing teaching methods [11].  

Wearable sensors are typically unobtrusive, affordable, and 
mobile, enabling ‘in-the-field’ research which may provide for 
more realistic insights into natural human behavior. However, 
these benefits usually come at the cost of a diminished signal. 
For instance, the Wahoo Tickr, a wearable used to measure heart 
rate (HR), high frequency HR information is lost due to the low 
sampling rate and on-board processing [12] (In Press). It is still 
unclear what physiological signal aspects are relevant for 
measuring PS and how the limitations imposed by wearables 
influence their ability to measure meaningful affective/cognitive 
PS. Therefore, we chose to directly compare PS obtained through 
both laboratory and wearable sensors. Indeed, there are a few 
studies which compare wearable and laboratory grade 
equipment, such as that conducted by Ragot et al. [13] on 
recognizing emotion. However, these lie outside the domain of 
PS and thus may rely on different signal aspects.  

To directly compare laboratory and wearable equipment, data 
obtained from an experiment described in [5] and [14] were 
used. In this experiment, participants were instructed to listen to 
the same audio track, but to attend to different stimulus aspects 
with the aim of determining the selective attention in groups 
using PS. In [5] and [14], EDA and HR data obtained from 
laboratory equipment (ActiveTwo) were analyzed. During the 
experiment, EDA and HR were concurrently measured with 
wearable sensors (Wahoo Tickr, HR; EdaMove4, EDA). The 
current study elaborates on this experiment and directly 
compares autonomic PS results between wearable data and their 
laboratory counterparts, when subject to the same conditions 
and analysis methods. Therein, we aim to evaluate the feasibility 
of the use of wearables, spanning two physiological modalities, 
in the domain of PS. To the best of our knowledge, this is the 
first study that compares PS from wearable data with PS from 
high-end laboratory equipment. 

2 Methods 

2.1 Participants 
Participants (N = 27, aged between 18 and 48), with no self-
reported problems in hearing or attention, were recruited from 
the research institute’s (TNO) participant pool. All participants 
signed an informed consent form prior to the experiment and 
were given a small monetary reward after the experiment. Data 
of one participant was removed due to failed recordings. The 
study was approved by the TNO Institutional Review Board 
(TCPE) and the TU Delft Human Research Ethics Committee.  

2.2 Materials 
For the laboratory equipment, both EDA and electrocardiogram 
(ECG) were measured via an ActiveTwo system (BioSemi, 

Amsterdam, Netherlands) at 1024 Hz. For EDA, two passive 
gelled Nihon Kohden electrodes were placed on the ventral side 
of the distal phalanges of the middle and index finger on 
participants’ left hand. For ECG, two active gelled Ag-AgCl 
electrodes were placed at the right clavicle and lowest floating 
left rib. Regarding the wearable equipment, EDA was recorded 
through an EdaMove4 (movisens GmbH, Karlsruhe, Germany) at 
32Hz while HR was measured with a Wahoo Tickr (Wahoo 
Fitness, Atlanta, Georgia, USA) at 1Hz. The EdaMove4 was 
attached by two self-adhesive electrodes placed on the palm on 
participants’ left hand. The Wahoo Ticker was fitted around the 
chest of participants after applying gel on its sensors. The 
Wahoo Tickr outputs a filtered HR signal with a minimum 
increment of 1 bpm derived from a measured electrical signal 
and thus does not provide raw inter-beat intervals (IBI). The 
signal resolution (1 bpm) and sampling rate (1 Hz) are 
independent of each other, but the amount of information 
contained in the signal is dependent on both. Thus, the Wahoo 
Tickr lacks high frequency HR information (e.g. respiratory 
sinus arrhythmia - RSA), that are present in the ActiveTwo ECG. 

2.3 Stimuli and Design 
Each participant completed the experiment individually and 
listened to the same audio file. This file was composed of a 66 
min audiobook (a Dutch thriller written by Corine Hartman: 
‘Zure koekjes’) with interspersed auditory stimuli (beeps and 
affective sounds). These short stimuli were randomly ordered 
with intervals between stimuli ranging from 35 to 55 seconds. 
Half of the participants were assigned to attend to the narrative 
(NA) of the audiobook and to ignore all other stimuli. The other 
half of the participants were asked to focus on the short stimuli 
(SSA) and ignore the narrative.  

The affective sounds, of 6 second durations, are taken from the 
International Affective Digitized Sounds (IADS) [15]: a collection 
of acoustic stimuli normatively rated for emotion, valence and 
dominance. Examples include sounds of a crying baby or the 
cheers of a sports crowd. 12 neutral sounds, 12 pleasant sounds 
and 12 unpleasant sounds were elected. Beeps were presented in 
blocks of 30 seconds, with every two seconds a 100ms high 
(1kHz) or low (250Hz) pitched beep. SSA participants were 
tasked with counting the number of high and the number of low 
tones [16]. 27 blocks of sounds were presented. 

2.4 Analysis 
Data processing was done using MATLAB R2018b (Mathworks, 
Natick, MA, USA).  

ActiveTwo EDA measurements were downsampled to 32 Hz. 
For both ActiveTwo and EdaMove4, the phasic component of the 
EDA response was extracted for further analysis using the 
Ledalab toolbox for MATLAB [17]. Studies on EDA typically 
show a certain number of ‘non-responders’ [18], or weak 
responders - participants with a low EDA magnitude and near-
zero phasic response. Weak responders in our study were 
identified through visual inspection by the individual authors of 
the manuscript. Data of these participants were not discarded 
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since the weak responses of these participants appeared to 
contain information pertaining to the shape of the response, 
which may be useful for synchrony. However, the phasic 
responses of the EdaMove4 weak responders were contaminated 
with peaks arising from noise and jitter due to on-board 
processing, distorting the signal shape. Therefore, the full EDA 
traces of the EdaMove4 weak responders were filtered using a 
Savitzky-Golay filter with a three second window and the phasic 
components were recomputed. Since the experiment event 
markers are expressed in the ActiveTwo timeline, we accounted 
for delays between EdaMove4 and ActiveTwo, among others 
arising from on-board processing on EdaMove4. The phasic 
response obtained via EdaMove4 was time corrected through a 
normalized cross-correlation with the phasic response from 
ActiveTwo. Here, the lag maximizing the correlation of the two 
signals is assumed to represent the accumulated delay 
(inconsistent across participants).  

ECG measurements acquired from ActiveTwo were first 
downsampled to 256Hz, then high-pass filtered at 0.5Hz. R-peaks 
of the ECG signal were detected following [19]. The resulting 
semi-timeseries of consecutive IBIs were subsequently 
interpolated and resampled at 32Hz to transform them into a 
timeseries. The Wahoo Tickr HR signal was first upsampled to 32 
Hz, then time corrected through a normalized cross-correlation 
with the ActiveTwo derived HR (i.e. inverse of IBI). The pre-
processed Wahoo Tickr HR was then converted to IBI.  

Regardless of sensor type and physiological signal, inter-
subject correlations (ISC) were determined using a moving 
window, as introduced by [20]. A window of size 15 seconds 
traverses the signal at 1 second increments with Pearson 
correlations calculated over successive windows. The overall 
correlation between two responses is given by the natural 
logarithm of the sum of all positive correlations divided by the 
absolute value of the sum of all negative correlations. 
Classifications were based on the average ISC of a participant 
with all members from the NA group and all members from SSA 
group, excluding the participant in question. Participants were 
classified with the attentional group that they were more 
correlated with (i.e. shared the highest ISC). Paired sample t-tests 
were conducted to determine whether the NA ISC and SSA ISC 
were significantly different within each attentional group for 
EDA and IBI. Chance level classifications were determined 
through surrogate data with 100 instances of randomly shuffled 
attentional group labels. To evaluate if the classification 
accuracies between the laboratory and wearable sensors are 
statistically different, an exact McNemar’s test was used. This 
test is suitable to compare paired nominal data with small 
sample sizes, such as ours [21], [22].  

3 Results 
Figure 1 illustrates that the patterns in ISC are similar between 
the laboratory and wearable sensors, and that overall, within-
group ISC is higher than between-group ISC for both types of 
equipment. Figure 1 also presents results for both NA and SSA 
participants. For EDA, the within-group ISC is significantly 
higher than the between-group ISC for NA participants with the 

EdaMove4 (𝑡(12) = 4.16, 𝑝 = .001) but not for the ActiveTwo 
(𝑡(12) = 0.74, 𝑝 = .476). For SSA participants, within-group 
ISC is significantly higher than between-group ISC for the 
ActiveTwo (𝑡(12) = 4.07, 𝑝 = .002) but not for the EdaMove4 
(𝑡(12) = 1.98, 𝑝 = .072). Regarding IBI, the significance of the 
patterns in group-level ISC are consistent between the 
ActiveTwo and Wahoo Tickr. For SSA participants, the within-
group ISC is significantly higher than the between-group ISC 
(ActiveTwo: 𝑡(12) = 2.27, 𝑝 = .043 ; Wahoo Tickr: 𝑡(12) =

4.75, 𝑝 < .001). Within-group ISC is not significantly higher 
than between-group ISC for NA participants (ActiveTwo: 
𝑡(12) = 2.02, 𝑝 = .066; Wahoo Tickr: 𝑡(12) = 1.38, 𝑝 = .192).  

Table 1 presents the percentage of participants whose 
attentional condition (i.e. NA or SSA) was correctly identified. 
The corresponding chance level classification accuracies are also 
shown in accompanying brackets. For EDA, the classification 
accuracy is significantly above chance for both ActiveTwo 
( 𝑡(99) = 2.39, 𝑝 = .009 ) and EdaMove4 ( 𝑡(99) = 2.91, 𝑝 =

.005). Likewise, the IBI classification accuracy is significantly 
above chance for both ActiveTwo (𝑡(99) = 2.43, 𝑝 = .009) and 
Wahoo Tickr (𝑡(99) = 3.38, 𝑝 = .001). Rather than performing 
worse, wearables tend to outperform their laboratory 
counterparts. EdaMove4 classifies 81% of the participants 
correctly as opposed to 73% with ActiveTwo. Similarly, Wahoo 

 
Figure 1: Within-group and between-group inter-subject 
correlations (ISC) of electrodermal activity (EDA, top) and 
inter-beat interval (IBI, bottom) for both attentional 
groups (NA, left bars; SSA, right bars) derived from 
laboratory (ActiveTwo, left column) and wearable 
(EdaMove and Wahoo Tickr, right column) sensors. Also 
illustrated are connected dots which represent the 
individual participants. Full blue lines indicate higher 
within-group ISC. Dotted red lines denote higher 
between-group ISC. Paired sample t-tests were used to 
determine if within-group ISC are significantly higher 
than between-group ISC (∗ 𝒑 <. 𝟎𝟓,∗∗ 𝒑 <. 𝟎𝟏,∗∗∗ 𝒑 <. 𝟎𝟎𝟏). 
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Tickr classifies 81% of the participants correctly, in comparison 
to 77% with ActiveTwo. However, an exact McNemar’s test 
showed no statistical difference between the classification 
accuracy of ActiveTwo and EdaMove4, 𝑝 = .7266, or between 
ActiveTwo and Wahoo Tickr, 𝑝 = 1.000.  

4 Discussion 
Through this study, we have shown that PS in selective attention 
can be derived from wearable sensors, EdaMove4 and Wahoo 
Tickr, equally well as their laboratory-based counterparts.  

Our results are especially notable for the Wahoo Tickr, given 
its poor resolution (1 bpm) and sampling rate (1Hz). This 
suggests that wearables with lower bitrates may also be 
appropriate for PS-based research, broadening the potential 
applications of autonomic PS. The relatively good performance 
of the Wahoo Tickr could suggest that the very-low to low 
frequency HR (i.e. 0.003 to 0.15Hz) [23] is an influential feature 
for determining synchrony in selective attention. The lower 
frequency components of the ActiveTwo and Wahoo Tickr HR 
traces are mostly coincident, hence, the presence of high 
frequency HR (e.g. due to breathing) could act as ‘noise’ and may 
explain some of the differences in classification performance 
between these sensors. Consequently, future work should 
investigate methods to remove breathing from the ActiveTwo 
data to compare results more directly with the Wahoo Tickr. 
Under conditions of movement, synchrony in HR due to shared 
attention may be strengthened, if the movements are associated 
with shared attention such as in [23], or overshadowed when 
unrelated as seen in [24]. However, any synchrony in HR 
induced by quick breathing pattens, as with [23], will not be 
captured by the wearable sensor used here.  

Differences between EdaMove4 and ActiveTwo can, in part, be 
explained through the ‘weak responders’. In total, there were 
three weak responders for ActiveTwo, two of which were in the 
SSA group, and seven weak responders for EdaMove4, five of 
which were in the SSA group. The large concentration of weak 
responders among the EdaMove4 SSA participants may explain 
the difference in significance of the group-level ISC between 
ActiveTwo and EdaMove4 seen at the top of Figure 1. Phasic 
responses of the EdaMove4 weak responders may have lacked 
some synchrony relevant features (e.g. peaks) which were either 

filtered out or were not present in the initial signal, resulting in 
poorer classification performance. For instance, two participants 
who were weak responders for EdaMove4 but not for ActiveTwo 
were misclassified with EdaMove4 data and correctly classified 
with ActiveTwo data. This misclassification of weak responders 
is not unique to EdaMove4 since ActiveTwo also misclassifies 
some weak responders. In general, weak responders are difficult 
to classify due to a lack of informative features. This lack of 
features may also artificially suppress the magnitude of the 
group-level ISC, leading to unreliable classifications which 
extend beyond these weak responders. To mitigate this, a 
different physiological modality (such as IBI) may be used to 
compliment the classification result. In the current study, all but 
one of the EdaMove4 weak responders were correctly identified 
by the Wahoo Tickr, motivating the use of various modalities to 
augment classification accuracies.   

For participants who were not weak responders, any 
discrepancies in performance between ActiveTwo and EdaMove4 
may be explained by the long recovery time of the EdaMove4 
[12]. We suspect that the long recovery time is due to the large 
adhesive pads of EdaMove4 which impair the evaporation of 
sweat. In this region, the magnitude of the phasic response is 
locally reduced while the noise level remains constant. This 
culminates in a lower signal-to-noise ratio within the affected 
region and mirrors challenges observed with weak responders. 
Moreover, this locally reduced response may artificially inflate 
synchrony since this feature has a large temporal footprint and 
is present across all participants (high chance of overlap between 
participants). Due to this, using EdaMove4 may be limited to 
experiments which aim to measure synchrony across temporally 
sparse events, or that combine various physiological modalities. 

The exact McNemar’s tests show that there is no statistical 
difference in classification accuracy between wearables and 
laboratory equipment when measuring PS in shared attention, 
and the trend is even such that wearables perform better rather 
than worse. Clearly, our findings encourage the use of wearables 
for PS based experiments and for in-the-field research. 
Limitations of this study are that the experiment was conducted 
in laboratory conditions with minimal movement and that only 
two types of wearables were used for comparison. Therefore, it is 
yet unclear as to how appropriate other wearables are for 
computing PS and how suitable wearables in general for more 
active applications. 

5 Conclusion 
The current study indicates that measuring PS in shared 
attention with laboratory and wearable sensors can result in 
similar performance between the two. PS derived from the 
wearable sensors used in this study distinguished between the 
two attentional conditions (NA and SSA) equally well as PS 
obtained from laboratory equipment, in both physiological 
modalities (EDA and IBI). Since wearables are less obtrusive and 
are inherently mobile, these results motivate the use of wearable 
sensors for both in-the-lab and in-the-field measurements, such 
as for measuring PS in an audience during artistic performances 
or students in a classroom.  

Table 1: Overall classification accuracy (in percentage) 
of correctly identified participant attentional 
conditions based on their inter-subject correlations 
(ISC). The chance level values, and associated standard 
deviations, are given in brackets. The corresponding p-
values are also presented. 

 
ActiveTwo Wearables  

(EdaMove4; Wahoo Tickr) 

EDA 
73 (50 ±  10) 81 (52 ±  9) 

𝑝 = .009 𝑝 = .005 

IBI 
77 (50 ±  11) 81 (50 ±  9) 

𝑝 = .009 𝑝 = .001 
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