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Abstract: Magneto-/Electro-encephalography (M/EEG) commonly uses (fast) Fourier transformation
to compute power spectral density (PSD). However, the resulting PSD plot lacks temporal information,
making interpretation sometimes equivocal. For example, consider two different PSDs: a central
parietal EEG PSD with twin peaks at 10 Hz and 20 Hz and a central parietal PSD with twin peaks
at 10 Hz and 50 Hz. We can assume the first PSD shows a mu rhythm and the second harmonic;
however, the latter PSD likely shows an alpha peak and an independent line noise. Without prior
knowledge, however, the PSD alone cannot distinguish between the two cases. To address this
limitation of PSD, we propose using cross-frequency power—power coupling (PPC) as a post-processing
of independent component (IC) analysis (ICA) to distinguish brain components from muscle and
environmental artifact sources. We conclude that post-ICA PPC analysis could serve as a new
data-driven EEG classifier in M/EEG studies. For the reader’s convenience, we offer a brief literature
overview on the disparate use of PPC. The proposed cross-frequency power—power coupling analysis
toolbox (PowPowCAT) is a free, open-source toolbox, which works as an EEGLAB extension.

Keywords: EEG; MEG; fourier transform; cross-frequency coupling; comodulogram; comodugram;
independent component analysis

1. Introduction

1.1. Background

Power spectral density (PSD) calculations using fast Fourier transform (FFT) are ubiquitous
in magnetoencephalography (MEG) and electroencephalography (EEG) analyses. However, this
approach’s drawback is the lack of temporal resolution; hence, sliding window solutions such as
short-term Fourier Transform and wavelet transform become necessary for temporal resolution.

Cross-frequency power—power coupling (PPC) addresses the temporal resolution dilemma by
calculating spectral covariance. When the amplitudes of two oscillations in different frequencies
covaries along with time, PPC occurs. The resulting spectral covariance is a square matrix plot (also
called a comodulogram [1-8] or a comodugram [9-15]. The following examples illustrate two different
types of cross-frequency coupling, the distinction of which is of common interest in EEG and MEG
studies. Imagine two peaks occurring in a PSD plot at X Hz and at Y Hz. Power changes in the two
oscillations causing the two peaks may or may not be correlated. Consider the first case where a PSD
calculated from data recorded on or adjacent to the sensorimotor area shows a mu rhythm with the first
peak within the alpha band and the second harmonic in the beta band (similar to the Greek alphabet

Sensors 2020, 20, 7040; doi:10.3390/s20247040 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0487-2482
https://orcid.org/0000-0002-4062-6679
http://www.mdpi.com/1424-8220/20/24/7040?type=check_update&version=1
http://dx.doi.org/10.3390/s20247040
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 7040 2of 16

letter “p” that has two peaks). However, these twin peaks do not reflect independent processes because
the two oscillations are phase-locked [16]. Consider the second case that a PSD has twin peaks at
the alpha band and at a typical power-line frequency band (50 or 60 Hz). These two PSD peaks
reflect separate processes with no temporal correlation between the sources. Distinguishing these two
cases is essential in interpreting M/EEG PSD data. Evaluating the PSD alone without incorporating
temporal information potentially makes it harder for EEG researchers to correctly identify and evaluate
different processes embedded within the PSD. Use of the PPC to analyze two peak frequencies within
a single PSD helps to interpret the data accurately. However, as far as we know, the PPC has been
under-utilized in the field of M/EEG research. Past PPC publications are sporadic, found in different
fields of electrophysiology, cognitive, and clinical neurophysiology minimal references to each other.
Overall, given PPC’s ability to incorporate temporal information missing from the PSD has been
grossly underutilized and poorly recognized. To address this situation, and before we discuss this
study’s goals, we briefly summarize the literature of PPC from subfields of electrophysiology.

1.2. Mini-Review on History of Power—Power Coupling Analysis

The frequency-by-frequency square matrix plot that represents cross-frequency PPC has been
called comodulogram [1-8], sometimes comodugram [9-15]. The cross-frequency PPC was initially
applied to MEG data from human subjects to define chronic neurological disorders such as Parkinson’s
disease [17,18] and neuropsychiatric diseases including neurogenic pain, depression, Parkinson’s
disease, and schizophrenia, caused by brain thalamocortical dysrhythmia [19]. The cross-frequency PPC
was also measured in LFP data acquired from hippocampus, postsubiculum, and dorsocentral striatum
of behaving rats to identify biologically generated fundamental frequencies [20] and from hippocampus
of locomotor behaving rats to investigate synchrony of delta and theta power [21]. The comodulogram
was also used in qEEG analyses to topographically quantify the temporal synchrony of EEG power
fluctuations between recording sites in order to discover regions where functional homogeneity or
heterogeneity deviate from normal. Clinically significant patterns of the altered functional interactions
were found in epileptic patients after left anterior temporal lobectomies and patients with nearly
complete surgical transection of the corpus callosum [1]. Recently, comodulogram was used to analyze
beta—gamma coupling of field potential recorded in rat motor thalamus during a forced-choice task [2],
broad-band theta couplings of LFPs in rat visual cortex during waking, REM (rapid eye movement),
and non-REM [3], coupling in ripples (140-220 Hz) oscillations of LFP in rat posterior parietal cortex
and midline structure during non-REM sleep following learning [4], and anti-coupling between beta
and high gamma (80 Hz) oscillations of LFPs in rat basal ganglia during controlled movement [5].
Recent articles reported that comodulogram distinguished leader rats from follower rats by showing
different levels of delta—theta coupling of LFPs in right pre-limbic cortices during platform climbing
task [6], identifying three independently varying frequency bands of LFPs in rat frontal cortical areas
during REM, non-REM, and micro-arousal sleep [7], and identified fundamental frequencies of LFPs
in rat medial entorhinal cortex during running [8]. During the early 2000’s, the same technique, now
called slightly differently, comodugram, was used to analyze broad-band frequencies of LFPs recorded
in mouse hippocampus [9,10], theta—gamma coupling of LEPs in rat entorhinal cortex [11], coupling
between ripples (140-220 Hz) and fast gamma (90-140 Hz) oscillations of LFPs in rat hippocampus
recorded during movement [12], coupling between slow and fast gamma oscillations of LFPs in
mouse basolateral amygdala during fear expression [13], and gamma coupling of LFPs between
hippocampus and prefrontal cortex of rats in anesthesia and natural sleep [14]. As for behavioral
relevance, the coupling between theta (4-10 Hz) and low gamma (30-50 Hz) powers of LFPs in rat
hippocampus predicted successful memory retrieval [15]. The analysis of matrix of cross-frequency PPC
was also used in revealing theta—gamma (50-130 Hz) coupling [22] and fundamental frequencies [23]
of LFPs in rat hippocampus. Recent studies on humans reporting cross-regional PPC using EEG [24]
and MEG [25]. Despite the increasing interest in animal studies, particularly in human EEG studies,
the cross-frequency PPC analysis remains underutilized given the potential usefulness and versatility.
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1.3. Goal of the Current Study

The study’s goal is to demonstrate the usefulness of cross-frequency PPC measure within EEG data
analysis, specifically as a post-independent component analysis (ICA) [26-30]. One of the post-ICA
processing challenges is classifying the obtained independent components (ICs). Many applications aim
for automated labeling of the ICs including MARA [31,32], ADJUST [33], FASTER [34], eyeCatch [35],
IC MARC [36], SASICA [37], ICLabel [38], and others [39,40]. Multiple solutions exist because IC
classification is a difficult task. The properties of ICA-decomposed EEG data may be represented by
event-related potential (ERPs), event-related power-spectral perturbation, inter-trial phase coherence
(ERSP and ITC [41]), scalp topography, and dipole locations. Adding different types of EEG property
that carry unique information not represented by these cited measures improves the characterization
of the obtained ICA-decomposed EEG data. Here, we demonstrate that brain, eye, and muscle classes
of ICA-decomposed scalp-recorded signals have characteristic PPC readily visible in comodulograms.
The visible features of PPC provide complimentary temporal information useful for classification and
labeling of ICs. The proposed method is available as a plugin Power—Power Coupling Analysis Tool
(PowPowCAT) (https://sccn.ucsd.edu/wiki/Power-Power_Coupling_Analysis_Tool). The plugin is for a
free, open-source library EEGLAB [42].

2. Materials and Methods

2.1. Data Acquisition and Preprocessing

The EEG data used is from a previously published study on facial familiarity [43]. Twenty-four
paid volunteers participated in the study (mean 21.1 + 1.4 years old, range 20-26, 11 women).
All participants gave written informed consent. All experimental procedures followed the Declaration
of Helsinki. Visual stimuli with three levels of familiarity (self-relevant, familiar, and unfamiliar)
and with two levels of categories (face and cup) were presented. The participant’s task was to judge
the level of object familiarity by pressing one of three buttons as quickly as possible. The stimulus
was presented either unilaterally (to the left or right visual hemifield) or bilaterally (identical images
presented to both visual hemifields). During the task, EEG signals were recorded using the Nihon
Koden EEG 1100 (Tokyo, Japan) with 33 electrodes (AFp9, Fpl, Fp2, Fz, F3, F4, F7, F8, FC1, FC2,
FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6, TP9, TP10, Pz, P3, P4, P7, P8, O1, 02, PO9, PO10,
and Iz), positioned in correspondence with international 10-10 system, at the sampling frequency of
500 Hz, which was later downsampled to 200 Hz. Electrode impedance was kept typically below 5 k().
EEG electrodes were initially referenced to a nose tip, and later, a common average re-referencing
was performed to gain better estimates of reference-independent potentials [44]. An FIR high-pass
filter of 0.5 Hz @ —6dB (transient bandwidth 1 Hz, Hamming windowed) [45] was applied to the
continuous EEG data. Finally, adaptive mixture ICA [46] was performed to obtain 32 ICs from each of
the 24 datasets as it is most efficient among all decomposition methods in reducing mutual information
in the component time courses [47]. For each scalp topography of ICs, which are the column of the
mixing matrix (i.e., the inverse of the weight matrix), the estimated equivalent current dipole was fit
using Dipfit2.2. Dipfit2.2 is a group of functions taken from Fieldtrip Toolbox [48]. It uses a four-shell
spherical head model co-registered to each subject’s electrode locations by warping the electrode
locations to the template head from Montreal Neurological Institute (MNI).

We chose ICA as a preprocessing technique. ICA relies on these three assumptions: (1) Functional
independence of cortical regions should be represented by temporal independence of the local field
potentials; (2) volume conduction (i.e., signal paths from an EEG source to scalp sensors) and signal
mixing process are linear and instantaneous; and (3) the functional mapping of the neocortex is stationary
across the recording. If these assumptions hold, the ICA’s spatial filter produces (1) effective sources
of EEG as temporally maximally independent signals as well as (2) their linear and instantaneous
mixing processes (i.e., volume conduction) that are (3) stationary. The beauty of ICA in application to
scalp-recorded EEG is that ICA solves the spatial problem without requiring any spatial information.
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ICA does not require either electric forward model of the human head or knowledge of scalp channel
locations. Onton and Makeig [30] established the physiological interpretation of ICA on EEG. The only
confirmed case of violation of the nonstationary assumption is traveling wave, which is thought of
as moving EEG sources in the brain. In [30], the authors simulated that a traveling wave spreading
across 3 cm of distance with the speed of 2 m/s oscillating in 10 Hz produces 27 degrees of phase
shift, which is only 7.5% of a single cycle of 10 Hz. They determined that this level of phase shift
could be trivial and regarded as nearly synchronous for ICA. However, traveling waves with larger
scales, such as the one reported by Muller and colleagues [49], would result in failure in applying
ICA. Nonetheless, previous studies on EEG experiments during awake states reported the successful
application of ICA [28-30,50-52].

For the group-level data integration, independent component (IC) clustering using the k-means
algorithm, implemented in EEGLAB STUDY for grouping similar ICs across subjects, after
PCA-dimension reduction was used. The equivalent current dipoles were normalized with moments
and the weight factor was empirically determined as 5. PSD and scalp topography were also
precomputed for each IC, and they were dimension-reduced to 10 for each using PCA. Next, k-means
clustering was applied on the dimension-reduced data feature vectors to categorize 790 ICs into
31 clusters (the number of clusters was based on [53]). Each cluster was examined to label as brain,
muscle, eye, and other noise by visual inspection on PSD, equivalent current dipole locations, and scalp
topography. As a result, 5 of 31 clusters were identified as eye-movement IC clusters for their locations
near the edge of ventral frontal brain regions and for their PSD being relatively high at low frequencies
with no spectral peak; 7 of 31 clusters were identified as clusters associated with muscle artifacts for
their locations outside of the brain or near lower head region and for their characteristic mean spectral
plateau above 25 Hz. Thus, 16/31 clusters were identified as clusters associated with brain activity.
They showed PSD feature of the 1/f characteristic typical in EEG signals sometimes with peaks in the
alpha band (8-13 Hz). Finally, 3/31 clusters were excluded from the analysis as outliers after manually
cleaning the other clusters by gathering cluster-inconsistent ICs due to limitations of the algorithm
in clustering accuracy. Based on this initial classification, we combined each class of clusters to form
aggregated clusters of brain activities (consisting of 380 ICs: mean 15.83 + 3.60 ICs from each subject),
eye movements (consisting of 87 ICs: mean 3.63 + 1.47 ICs from each subject), and muscle activities
(consisting of 213 ICs: mean 8.88 + 3.66 ICs from each subject), and outliers (consisting of 110 ICs:
mean 4.58 + 1.82 ICs from each subject). The cross-frequency PPC of each IC was computed and
studied separately in each class.

2.2. Assessment of Cross-Frequency Power—Power Coupling

On continuous IC time-series data, Short-Term Fourier Transform (STFT) with a 50%-overlapping
1-s sliding window was applied to compute spectrograms using Matlab’s spectrogram function to
generate semi-logarithmically spaced 1-50 Hz divided into 100 frequency bins. Additionally, 20% of
the individual PSD windows were excluded using distance from median values. This manner of
cleaning the data preprocessing is justified in the Discussion section.

The correlation between the power spectrum S(f) at a frequency f; and at another frequency f;
can be calculated using the expression

L(Sc) - S)(i(£) - (1)
corrij = G0 ! @
i0]

where Si(f;) is the PSD at frequency f; in time-window k, S(f;) the averaged PSD at frequency f;
overall sliding windows, o; the standard deviation of the PSD at frequency f;, and k ranges over all
sliding windows.
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To illustrate common patterns in comodulograms in each class, we generated a standardized matrix
from correlation matrices of all ICs in the class. Given that a class contains m ICs, the standardized
correlation at the frequency f; and at another frequency f;, namely z;;, is computed as

@

M is the averaged correlation across all m ICs at the frequency f; and at another

frequency f;, and 0;; is the standard deviation of correlation. The coupling of any frequencies that is
commonly found across ICs in the class is expected to be salient in the standardized matrix.

where corr;;

2.3. Visualizations by Power—Power Coupling Analysis Toolbox (PowPowCAT)

The matrix of correlation coefficients computed from a representative recording is shown in
Figure 1. This figure is a screen capture from our in-house developed PowPowCAT (ver 1.00) graphical
user interface (GUI). In the right large plot, the color scale shows that red indicates positive coupling
(correlation), and the blue indicates negative coupling (anti-correlation). This panel also serves as
an interactive interface to select two frequencies by moving the mouse cursor over the frequencies’
desired combination. The top left panel shows the mean PSD across all 1-s sliding windows, as well as
its standard deviations. The middle left panel shows the vertical profile of the color map on the right
large plot. The bottom left small panel shows the downsampled and normalized time-series of the
PSD of the selected pair of the frequencies. The bottom right small panel shows the scatter plot of the
downsampled data points shown in the bottom left small panel.
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Figure 1. The main window of the toolbox that let users choose the cross-frequency points interactively

by moving the mouse cursor over the right panel: currently, the cursor is pointing to the crossing point
of 10.4 Hz and 30.9 Hz.
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To test the null hypothesis that the power spectra time series of two different frequencies, f;
and f;, are not coupled in the data, non-parametric surrogate data method is supported as it makes
minimum assumptions. It preserves the original data’s statistical properties while generating time
series that are randomized such that any possible nonlinear coupling is removed [54]. It has also
been actively used to test coupling in nonlinear systems in many EEG studies [55,56]. Specifically,
the surrogate data method randomizes time-window k differently for each frequency bin to build
surrogate time-frequency time series and computes surrogate cross-frequency PPC. This process is
repeated 5000 times (default) to produce distributions for the dataset in which the null hypothesis
holds, i.e., the chance-level of the cross-frequency PPC. The original, non-permuted data are then
compared to the surrogate distribution to obtain uncorrected p-values. The significance threshold can
be selected to be either 0.05 or 0.01 after false discovery rate (FDR) correction across all ICs and all
pairs of frequencies. Pixels with non-significant results are masked.

2.4. Clustering ICs Using Comodulogram as Clustering Criterion

To test whether comodulogram is useful for clustering the data, we re-clustered the ICs using their
comodulograms as the clustering criterion (k-means algorithm without PCA-dimension reduction)
to see if the clusters show physiologically meaningful source distributions. The three major classes
of the scalp recorded signals, brain, eye, and muscle classes, have characteristic source distributions.
Brain sources should be localized within the brain; eye sources within the peri-ocular regions; and
muscle sources in the periphery of the anterior, temporal, and occipital regions.

After computing comodulograms of all 790 ICs, the non-redundant parts of the comodulograms
were used as feature vectors. PCA dimension reduction was not applied for this analysis. In performing
the same k-means algorithm, we set the number of clusters to be 8 to give it sufficient degrees of
freedom to represent at least three classes of physiological signals (brain, eye, and muscle) plus noise.
For each resulting cluster, the standardized correlation matrix was calculated from cluster members’
ICs using Equation (2). In addition, the corresponding brain regions were illustrated by calculating
the probabilistic density of the equivalent current dipoles using std_dipoleDensity plugin for EEGLAB
that implemented 3-D Gaussian kernel transformation with full-width half maximum (FWHM) of
20 mm [47].

To test further if the comodulogram-based clustering produced reasonable classifications of data,
we used ICLabel [38] to classify ICs into classes and then evaluated the proportion of ICs classes in each
cluster resulted from comodulogram-based clustering. The ICLabel is an open-source, freely available
plugin for EEGLAB that serves as a state-of-the-art IC classification tool. The classification model was
trained on a large-scale ICs collection using a set of sophisticated features and labels given by human
experts. It provides probabilistic class labels of Brain, Muscle, Eye, Heart, Line Noise, Channel Noise,
and Others, and the highest class-label probability determines the class of that IC. We adopted this tool
to generate the class labels for ICs. Thus, ICLabel served as the operational ground truth generator in
the current study. We examined the percentage of the most prevailing class labels per cluster where
higher probability indicates higher consistency with the operational ground truth. It should also be
consistent with our visual evaluation on standardized comodulogram and probabilistic dipole density.
The percentage of the most prevailing class label per cluster is called consistency level, indicating
consistency between the results from ICLabel and our proposed comodulogram-based clustering.
Moreover, among the total 790 ICs, we calculated the percentage of ICs classified by ICLabel into each
class, regardless of the cluster, to deliver the distribution of classes. We found that the most prevalent
class label is the brain class, and the percentage of this class was 42.5%. We adopted this number as the
chance level of classification for comparison.
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3. Results

3.1. Standardized Comodulograms for Brain, Eye, and Muscle Classes

The grand comodulograms of standardized correlation for brain activity, eye movement,
and muscle activity IC classes are plotted below (Figure 2) to confirm the general impressions.
The strong couplings and the diagonal lines represent self-correlation and should be ignored. The visual
examination of these comodulograms indicates that (1) anti-correlation (i.e., corrjj < 0) was rare.
(2) Differences across the classes are present: In the brain-activity IC class (left), the cross-frequency
PPC was found between 6.5 and 30 Hz, and that in the off-diagonal area was weakly anti-correlated
(see the blue color in the off-diagonal area); in the eye-movement IC class (Figure 2b), it showed
characteristic block-diagonalization on the lower end of the frequencies in 1-9.4 Hz and the higher end
of the frequencies in 23-50 Hz; lastly, in the muscle IC class (Figure 2c), characteristic parallel lines were
observed between 30 and 50 Hz. In visual examination on PSD, such a high-frequency PPC is hard to
find because they do not form a noticeable peak in the frequency domain. To sum, this highest-level
result showed successful distinction at the level of visual inspection among the three classes of the
EEG signals decomposed by ICA.

Cluster: 1 Cluster: 2 Cluster: 3

7

23 42 65 94 13 18 23 30 38 0 23 42 65 94 13 18 23 30 39 S0 23 42 65 94 13 18 23 30 38 S0
(@) (b) ()

Figure 2. Matrices of standardized correlation for the different IC classes showing discernible patterns
across the classes from highest-level analysis, where each of the standardized correlation is color-coded

as represented in z scale: (a) The standardized matrix of brain class shows cross-frequency PPC between
6.5and 30 Hz and well-suppressed off-diagonal couplings; (b) the standardized matrix of eye class
shows block-diagonalization on the lower end of the frequencies in 1-9.4 Hz and the higher end of the
frequencies in 23-50 Hz; (c) the standardized matrix of eye class shows the characteristic parallel lines
between 30 and 50 Hz.

3.2. Representative Comodulogram of Brain Class

Figure 3 shows an example of a representative comodulogram from the brain-class IC (the
equivalent current dipole coordinate was (—43, —4, 27) in Talairach coordinates, localized within left
Brodmann Area 6), its normalized time series of the selected pair (by cursor position on the main
comodulogram plot) of frequencies f; and f;, scatter plot of f; against f;, and the corresponding
equivalent current dipole location. The IC in Figure 3 is the same as in Figure 1. The comodulogram
showed alpha harmonics up to 4th order, though the corresponding PSD showed only 2nd harmonic.
Such a cross-frequency coupled alpha oscillation was reported in the visual experiment known as
resonance effects in the visual cortex [57]. However, as far as we know, this is the first report of 4th order
harmonic of the human alpha-band oscillation. The results demonstrated that the proposed method
allows us to reveal a cross-frequency coupling structure not available for standard PSD by FFT.
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Figure 3. A representative comodulogram of Brain-Class (Subject 20, IC No. 26): (a) the comodulogram;
(b) time series of the cross-frequency PPC of the combinations of the selected frequency bins specified by
the cursor position on the comodulogram; the currently selected pair is 10.7 Hz and 21.3 Hz, and their
correlation coefficient is 0.474; (c) the scatter plot of PSD from individual windows of the selected pair;
(d) the corresponding equivalent current dipole model localized at (—43, —4, 27) in Talairach coordinates,
which corresponds to Brodmann Area 6. Note the isolated islands of the red blobs with the regular
intervals on the log scale, which indicates harmonics that are integer multiples of the fundamental

frequency (i.e., alpha band).

3.3. Representative Comodulogram of Eye Class

Figure 4 shows an example of a representative comodulogram from the eye-class IC (the
equivalent current dipole coordinate was (-1, 72, —5) in Talairach coordinates, localized outside the
brain). The eye-class characteristic is the broad, within-low-frequency coupling (delta and theta bands,
below 9.4 Hz on the plot) that composes a square on the bottom left of the diagonal line. This is in
line with the report that blinks and eye movements generate large electrical activities—relative to
brain-source EEG—within delta and theta frequency ranges but not in the alpha range and above [58].
However, this feature is often hard to distinguish from the EEG signal’s 1/f distribution in PSD.
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Figure 4. A representative comodulogram of Eye-Class (Subject 1, IC No. 1): (a) the comodulogram;
(b) time series of the cross-frequency PPC of the combinations of the selected frequency bins specified

by the cursor position on the comodulogram; the currently selected pair is 2.7 Hz and 5.3 Hz, and their

correlation coefficient is 0.738; (c) the scatter plot of PSD from individual windows of the selected pair;

(d) the corresponding equivalent current dipole model localized at (-1, 72, —5) in Talairach coordinates,

which identified as eye artifact.
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It is hard to distinguish frontal brain component from eye component just by referring to PSD
because of these overlapping features. Comparing the comodulograms of the brain class and the eye
class in Figure 2 and between Figures 3 and 4, it is clear that PPC within the below-theta range is
observed only in the eye class.

3.4. Representative Comodulogram of Muscle Class

Figure 5 shows an example of a representative comodulogram from the muscle-class IC (the
equivalent current dipole coordinate was (72, —10, —6) in Talairach coordinates, localized outside
the brain). The comodulogram showed distinct parallel lines in the beta and gamma frequency
ranges (2040 Hz) as a second harmonic of 10-20 Hz, which is also visible in this class’s standardized
comodulogram in Figure 2. The known fact is that PSD of muscle activity lies below 40 Hz though it
extends to 300 Hz [59]. However, it is the first time to reveal that muscle activity has characteristic
cross-frequency PPC continuously from 10-20 Hz (coupled with 20-40Hz). Figure 5b shows the
time-series of PSD changes at 16.0 Hz and 32.6 Hz, which confirmed a strong correlation (r = 0.504).
To sum, we found a characteristic comodulogram pattern unique to the muscle class.
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Figure 5. A representative comodulogram of Muscle-Class (Subject 3, IC No. 16): (a) the comodulogram;

(b) time series of the cross-frequency PPC of the combinations of the selected frequency bins specified by
the cursor position on the comodulogram; the currently selected pair is 16.0 Hz and 32.6 Hz, and their
correlation coefficient is 0.504; (c) the scatter plot of PSD from individual windows of the selected
pair; (d) the corresponding equivalent current dipole model localized at (72, —10, —6) in Talairach
coordinates, which identified as muscle artifact. Note the broadband second harmonics as a parallel line
between 10 and 20 Hz coupled with 2040 Hz.

3.5. IC Clustering, According to Comodulogram

Figure 6 shows the standardized correlation matrices and the dipole density maps projected
on anatomical images in axial view at different z coordinates in standard MNI space. Our visual
inspection identified Cluster 2 as the brain class for the well-suppressed off-diagonal areas (near blue)
and the frontocentral dipole density distribution. Cluster 5 was also identified as the brain class for the
centroparietal dipole density distribution. However, Cluster 5’s comodulogram showed an increase
of correlations between 10 and 30 Hz, which differs from that of Cluster 2. We concluded that the
comodulogram-based clustering identified (at least) two separate clear brain classes. Cluster 3 and
Cluster 4 showed some brain class evidence due to their weak frontal dipole density distribution, but
they also suggest dipole distribution within the frontal the right temporal areas. Their comodulograms
showed that Cluster 3 is similar to Cluster 2, but Cluster 4’s comodulogram is not. This qualitative
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evaluation concluded that Cluster 3 may consist of many brain sources, while Cluster 4 may consist of
artifacts. Cluster 1 showed a block diagonal comodulogram centered on the low frequency (<9.4 Hz).
From what we learned above, we identified this cluster as the eye class. The dipole density distribution
of the cluster supported this interpretation. Cluster 6, Cluster 7, and Cluster 8 showed block diagonal
comodulograms centered on the higher frequency (above 13, 18, and 4 Hz, respectively). From our
observations above, we identified these clusters as the muscle class. Dipole density distribution also
showed peripheral distributions.

Further, there is a tendency that lower z coordinates are associated with temporo-occipital
distribution, while higher z coordinates are related to frontal distributions. This makes sense in terms
of the scalp electrode locations in which the edge channels tend to pick up muscle potentials. To sum,
the comodulogram-based clustering produced reasonable classifications of the data supported by the
estimated source distributions and their functions.

Cluster: 1 Cluster: 2 Cluster: 3 Cluster: 4 Cluster: 5 Cluster: 6 Cluster: 7 Cluster: 8 7

-40 mm -40 mm
-40 mm

-20 mm

0 mm

20 mm

40 mm

Cluster 1 Cluster2 Cluster3  Cluster4 Cluster5 Cluster 6 Cluster 7  Cluster 8 (b)

Figure 6. The results from comodulogram-based clustering. (a) The correlation matrices standardized
in each cluster and represented in the right-panel z scale. (b) The dipole density maps projected on
anatomical images in axial view at different MNI z coordinates ranging from 0 mm (mm) to 80 mm;
warmer color represents a higher density of equivalent dipoles. The same k-means clustering was
used with the number of clusters specified to be 8. Cluster 2 and Cluster 5 and potentially Cluster 3 as
well were identified as the brain class. Cluster 1 was identified as the eye class. Cluster 6, Cluster 7,
and Cluster 8 were identified as the muscle class. Cluster 4 was not classified to any of these categories,
thus left as uninterpretable noise.

In the test of suitability of using comodulogram-based clustering to classify ICs, we evaluated the
consistency between our interpretation on each cluster as explained above and the majority class of ICs
in that cluster as labeled by ICLabel. Table 1 shows the results. In Clusters 1, 5, and 6, more than 80%
of ICs were classified into a single class, showing the high consistency level between comodulogram
method and ICLabel. All ICs from these clusters are combined to represent 32.7% (258 ICs) of total
ICs. The classes with maximal proportion are also consistent with our interpretation. Meanwhile,
Clusters 2, 4, 7, and 8 show reasonable consistency levels between 0.5 and 0.8, showing moderate
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success. These clusters constitute 60.3% (476 ICs) of total ICs. The majority of ICs in Cluster 2 were
classified into brain class. As we expected, clusters 7 and 8 had most ICs classified as muscle. However,
we considered Cluster 4 as uninterpretable noise. This cluster had many eye ICs, demonstrating the
limitation of comodulogram-based clustering. Nevertheless, this cluster with 30 ICs constituted to
only 3.8% of the total ICs. The remaining ICs in the cluster were approximately evenly classified
into brain, muscle, and eye class, making this cluster inconclusive. The consistent level was limited
to 26.8%, but this cluster constitutes only 7.1% (56 ICs) of the total ICs. To sum up, even simple
k-means can successfully categorize ICs with similar properties into reasonably separate subgroups.
Around one-third of total ICs can be classified correctly with impressive consistency level (all > 82%)
with ICLabel (an SCCN/EEGLAB plugin). The majority of remaining clusters are classified with a
reasonable consistency level (all > 51.5%) than the chance level of 42.5%. We concluded that the results
demonstrate the usefulness of comodulogram PPC for IC classification.

Table 1. Percentage of independent components (ICs) in each class (as labeled by ICLabel to the total
number of ICs in each cluster; note that the clusters were reordered to enhance readability.

a Our Percentage of ICs in Each Class as Labeled by ICLabel Total Number
usters .
Interpretation  prain  Muscle Eye Heart Line Noise Channel Noise Other of ICs
2 Brain 52.5 23.0 1.8 0.0 13.5 0.0 9.2 282
3 Brain 23.2 26.8 16.1 0.0 25.0 0.0 8.9 56
5 Brain 82.0 8.7 0.0 0.0 8.7 0.0 0.7 150
6 Muscle 10.4 83.1 0.0 0.0 2.6 0.0 39 77
7 Muscle 27.6 51.5 22 0.0 52 0.0 13.4 134
8 Muscle 33 53.3 26.7 0.0 10.0 0.0 6.7 30
1 Eye 32 0.0 83.9 0.0 6.5 0.0 6.5 31
4 Noise 16.7 20.0 56.7 0.0 33 3.3 0.0 30
Total 425 31.4 8.6 0.0 10.1 0.1 72 790

4. Discussion

In the present study, we demonstrated the usefulness of cross-frequency PPC analysis on
ICA-decomposed EEG data. We showed that the brain, eye, and muscle classes have their features
in comodulograms. The classification from comodulogram-based clustering was supported by
physiological validity provided by their estimated source distributions and the reasonable consistency
with the results from a standardized IC classification tool (ICLabel).

From the analysis of representative ICs, we found that the proposed method allows us to reveal
a cross-frequency coupling structure unavailable for PSD by FFT. Besides, there exist many unique
characteristics among brain, eye-movement, and muscle activity classes, which have been overlooked
so far. PPC is a unique metric and is an added value for EEG IC classifications. We demonstrated
that comodulogram-based clustering using a simple k-means algorithm yields satisfactory results.
Using more sophisticated supervised/unsupervised learning with fine-tuned PPC calculation is an
easy target toward better IC classification performance.

In this study, we evaluated our classification’s consistency via three methods: first, by comparing
our results with classification labels generated by ICLabel; second, by visual examination of
PPC clustering results; and third, by examining the PPC clustering results using a standardized
comodulogram and the probabilistic dipole density. Our comodulogram-based clustering was judged
against the operational ground truths for the current purpose generated by ICLabel. While label
probabilities calculated by ICLabel are typically very high (mostly > 80%), sometimes the highest
label probability can be no more than 50%. When we examined individual ICs with low label
probability, we often found that comodulogram can inform us more about the ICs with additional
insight. Examples from representative ICs selected from four different subjects are illustrated in
Figure 7. These plots show PSD, the class label suggested by ICLabel with label probability, and the
corresponding comodulogram. In the case of successful prediction in Figure 7a, the Brain class shows
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convincing evidence of the first and second harmonics of alpha rhythm. In contrast, the Muscle class in
Figure 7b has low label probability of 0.391, but the corresponding comodulogram shows clear parallel
lines in the beta—gamma coupling, which is the common pattern we found for the case of muscle class.
The ICLabel-generated label of “Brain” in Figure 7c seems challenged by high-frequency broadband
coupling, which is a unique characteristic of muscle ICs. Finally, comodulogram in Figure 7d clearly
shows the presence of the first alpha harmonic, despite a relatively low label probability of 0.519.
These examples demonstrate that PPC comodulogram can deliver complementary insights about ICs.
It might help improve the classification of ICs, especially when used together with traditional methods,
thus opening new possibilities for better data-driven EEG data classification. A future systematic study
may test this possibility.
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Figure 7. For each column, a class label suggested by ICLabel (top left, below scalp topography), power
spectral density (top right), and comodulogram, i.e., cross-frequency PPC plot (bottom): (a) results from
Subject 1 show the concordance between ICLabel and PPC results; (b) results from Subject 2 show the
occurrence of a parallel line in beta—gamma coupling in possibly an EMG IC which is consistent with the
label from ICLabel despite low label probability; (c) data from Subject 3 led to the discordance between
“Brain” label suggested by ICLabel and comodulogram pattern unique to the muscle class indicated by
the current study; (d) the presence of the alpha harmonics in comodulogram from Subject 4 can boost
the label probability of ICLabel-suggested class label as “Brain” despite the current low likelihood.

Note that any correlation measure is susceptible to the presence of extreme values; data with
non-normal distributions require cautious use of correlational measures [60]. In the current application,
muscle-class ICs showed higher powers and more sporadic activations over time compared with
constant and stationary brain-class ICs. We indeed observed that the intermittent, high-power
muscle activity calculated comodulogram was often unsuccessful. After investigation, we learned
that extensive removal of outliers is essential for successful computation. Using robust statistics,
we empirically determined trimming the top and bottom 10% from the data distribution for data
cleaning resulted in satisfactory outcomes. However, we are dissatisfied this approach provides
neither theoretical nor qualitative solutions to the problem. Future studies must address outliers in
calculating comodulograms.

From our earlier review, we observed cross-frequency PPC had been used more in the animal
electrophysiological studies using LFP. In contrast, we show that the comodulogram measure alone
can classify effective EEG sources into representative physiological categories. This evidence strongly
supports generalization of the PPC within EEG analyses across disparate fields. We await future
studies that will clarify the generative mechanism of the cross-frequency PPC for the physiological
classes (brain, eye, and muscle), sub-categories of the brain (i.e., perceptual, cognitive, behavioral
functions), as well as anatomical regions. Such studies would make PPC electro-physiologically
informed physiologically established measure.
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5. Conclusions

We demonstrated that brain, eye, and muscle classes of ICA-decomposed scalp-recorded
EEG signals have characteristic features in comodulograms of cross-frequency PPC analysis.
The classification based on the comodulogram was supported by physiological validity provided by
the estimated source distribution and the reasonable consistency with the results from a standardized
IC classification tool. The cross-frequency PPC measure is a new, data-driven EEG-IC classifier
capable of exploiting underrepresented univariate single-channel/component time-frequency structure
information. The data processing methods herein and the interactive visualization searching
environment are freely available as open-source Matlab library plugins in EEGLAB [42] to facilitate
researchers’ replication of our analysis.
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