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Abstract—In this study, we propose a fast and accurate
method to automatically localize anatomical landmarks
in medical images. We employ a global-to-local localiza-
tion approach using fully convolutional neural networks
(FCNNs). First, a global FCNN localizes multiple land-
marks through the analysis of image patches, performing
regression and classification simultaneously. In regression,
displacement vectors pointing from the center of image
patches towards landmark locations are determined. In clas-
sification, presence of landmarks of interest in the patch
is established. Global landmark locations are obtained by
averaging the predicted displacement vectors, where the
contribution of each displacement vector is weighted by
the posterior classification probability of the patch that it
is pointing from. Subsequently, for each landmark localized
with global localization, local analysis is performed. Special-
ized FCNNs refine the global landmark locations by analyz-
ing local sub-images in a similar manner, i.e. by performing
regression and classification simultaneously and combin-
ing the results. Evaluation was performed through localiza-
tion of 8 anatomical landmarks in CCTA scans, 2 landmarks
in olfactory MR scans, and 19 landmarks in cephalometric
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X-rays. We demonstrate that the method performs similarly
to a second observer and is able to localize landmarks in a
diverse set of medical images, differing in image modality,
image dimensionality, and anatomical coverage.

Index Terms—Landmark localization, convolutional
neural network, deep learning, classification, regression,
cardiac CT, cephalometric X-ray, olfactory MR.

|. INTRODUCTION

DENTIFICATION of anatomical reference points and

landmarks is a prerequisite for numerous medical image
analysis tasks [1]. These include image registration [2]-[6],
initialization of segmentation methods [7], and computation
of clinical measurements for patient diagnosis and treatment
planning [8]-[13]. While manual identification of anatomical
landmarks might be trivial, it is often tedious and cumbersome
[8], [14]. Fast and accurate automatic landmark localization
methods can replace manual identification and may be espe-
cially helpful when precise localization of multiple landmarks
is required.

Several application-specific automatic landmark localization
methods have been proposed previously, such as methods
combining segmentation of specific structures containing
the landmarks and subsequent local rule-based analysis of
those structures [14]-[16]. More generic localization meth-
ods employ either multi-atlas image registration [6], [17] or
machine learning. In multi-atlas image registration, multiple
atlas images with annotated landmarks are registered to the
image of interest. Subsequently, a voting scheme determines
the location of landmarks. Such approaches are accurate and
robust to limited diversity in the anatomy and image acquisi-
tion, but they are typically time-consuming [6], [17]. Machine
learning provides a faster and more robust alternative.

Conventional ~ machine  learning  approaches  for
landmark localization in medical images are often
classification- [7], [12], [16], [18]-[23] or regression-based
[51, [71, [9], [22]-[26]. Classification-based methods detect
the presence of a landmark in image slices, patches, or voxels.
Classification methods use a hard threshold: the landmark is
either present or absent. Therefore, these methods usually
rely on careful consideration of a final threshold value, which
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may be data and task specific. Regression-based methods
circumvent the use of a hard threshold by outputting a
continuous value [27]. Regression-based methods predict the
displacement or distance to the landmark from image slices,
patches, or voxels.

Similar to many other automatic image analysis tasks,
automatic landmark localization methods have become pri-
marily deep learning-based [28]-[30]. Deep learning methods
outperform conventional machine learning methods in a wide
range of applications [28]. The advantage of deep learning is
that it does not require handcrafting of features.

Several deep learning methods have been proposed
for landmark localization that employ classification.
Yang et al. [31] classified image slices with a convolutional
neural network (CNN) and predicted a landmark location
based on intersecting the classification outputs from all
axial, coronal and sagittal image slices. Zheng et al. [29]
localized a landmark by classifying image voxels with
multi-layer perceptrons, while Arik et al. [32] performed
pixel classification with a CNN to localize landmarks. Xu et
al. [33] localized landmarks with a CNN that classified pixels
based on their relative position (up, down, left or right) to the
landmark of interest. Subsequently, landmarks were localized
by using the obtained pixel-wise action steps.

Deep learning-based methods exploiting regression often
predict heatmaps representing e.g. the distance between evalu-
ated voxels and the landmark of interest [10], [30], [34]-[37].
Landmarks are identified as local or global minima in
these heatmaps. Voxel labels in heatmaps can be seen as
pseudo-probabilities, indicating how close a voxel is located
to a landmark. This makes heatmap regression comparable
with voxel classification without using a hard threshold.
Wolterink et al. [34] employed a CNN containing dilated
convolutions to predict heatmaps indicating landmark loca-
tions. Similar to Wolterink et al. [34], Payer et al. [35] and
O’Neil et al. [30] also proposed methods to predict heatmaps
for automatic landmark localization. Payer et al. [35] used
a CNN that combined local appearance responses of a single
landmark with the spatial configuration of that landmark to all
other landmarks while O’Neil et al. [30] employed a CNN that
analyzed low resolution images and subsequently used a sec-
ond CNN for further refinement. Torosdagli e al. [10] used a
CNN to predict heatmaps representing the geodesic distance
to a segmented organ containing landmarks and subsequently
used a long short-term memory classification network to
localize landmarks placed closely together. Unlike methods
that performed a single task at a time, Meyer et al. [37]
used a multi-task network to determine which landmark was
closest to an analyzed pixel and subsequently predicted the
normalized 2D distance towards that landmark.

Heatmap regression often requires combining a large
number of predictions, for instance via a majority voting
strategy, making it computationally expensive and often time-
consuming. Therefore, a different approach was chosen by
Zhang et al. [38], who used a CNN to predict displacement
vectors indicating the distance and direction from an ana-
lyzed voxel towards the landmark of interest. Subsequently,
the CNN-architecture was expanded with additional layers

Predicted

displacement vectors
Input image

Final
landmark location

Predicted
patch relevance

Fig. 1. The fully convolutional neural network analyzes images in a
patch-based manner, combining regression and classification. The land-
mark is localized by jointly predicting the displacement vector pointing
from the center of each patch to the landmark with regression (R) and by
predicting the presence of the landmark in each patch with classification
(C). The final landmark location is obtained by computing a weighted
average of the predicted displacement vectors, using the obtained
posterior classification probabilities as weights during averaging.

to model correlations between analyzed input patches and
output predicted landmark coordinates. Even though good
results were obtained, predicting landmark coordinates directly
from the image might be prohibited to large and complex
CNN-architectures that model the complex non-linear map-
pings from input image to landmark location.

Besides deep learning-based regression methods that
directly predict landmark locations, regression has also been
used to iteratively determine the landmark locations in an
image [39]-[43]. Aubert et al. [39] used a network to regress
the displacement from an initial input patch, chosen with
a statistical shape model, to the reference landmark. The
landmark position was obtained by iteratively moving the input
patch, using the predicted displacements, until convergence
was reached and the landmark was localized. Li et al. [40]
localized landmarks in an iterative manner and employed a
CNN that predicted the distance along each of the three
coordinate axes from the center of 2.5D patches towards
the landmark of interest while using classification to predict
positive or negative movement along each coordinate axis.
Ghesu et al. [41], Alansary et al. [42], and Al et al. [43]
localized landmarks exploiting deep reinforcement learning to
obtain the optimal search path from an initial starting location
towards the landmark of interest.

In this study, we propose a global-to-local localization
approach, where an initial FCNN predicts the global loca-
tions of multiple landmarks simultaneously, and subsequently
specialized FCNNs refine the final location of each land-
mark. Global multi-landmark localization and subsequent
local single landmark localization are performed in a similar
manner. While previous landmark localization methods used
one approach, either classification or regression, we propose
a patch-based fully convolutional neural network (FCNN)
that performs both classification and regression (shown in
Fig. 1). A patch-based approach provides a computationally
efficient alternative to voxel-based approaches. However, since
patch-based classification is inherently less precise than its
voxel-wise counterpart, we mitigate this by jointly regress-
ing the displacement vectors that point to the location of
the landmark. Conversely, using a regression-only localiza-
tion approach might lead to sub-optimal localization results,
because we postulate that displacement vectors predicted in
image patches farther from the landmark of interest are less
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Fig.2. Schematics of the proposed method for landmark localization. The method employs a global-to-local localization approach with ResNet-based
CNNs. The first CNN provides global estimates of landmarks for the second specialized CNNs that predict final landmark locations. Since the CNNs

are fully convolutional, they can handle input images of any size.

accurate than displacement vectors predicted in image patches
closer to it. This can be mitigated by employing the poste-
rior probabilities from the classification task as weights for
weighted averaging of the displacement vectors. Combining
regression and classification results in a landmark localization
method that is both fast and highly accurate. We show that
our method is generally applicable to a variety of landmark
localization tasks: 8 landmarks in 3D coronary CT angiogra-
phy (CCTA) scans, 2 landmarks in 3D olfactory MR scans,
and 19 landmarks in 2D cephalometric X-rays. Additionally,
we show that our method is able to localize single landmarks
and multiple landmarks simultaneously.

Il. METHOD

We propose an automatic landmark localization method
that employs a global-to-local estimation of landmark loca-
tions (Fig. 2). During global landmark localization, a fully
convolutional neural network analyzes full input images in
a patch-based manner and predicts the location of multiple
landmarks. During subsequent local analysis, the location of
each landmark is refined by an FCNN. The FCNNs employed
for global and local analysis perform simultaneous regression
and classification for a given input patch. In regression, the
FCNNs predict displacement vectors from the center of any
patch to landmarks of interest. The location of each landmark
might be obtained by computing the average of the landmark
locations to which predicted displacement vectors point, but
presumably not all patches are equally important for accurate
localization; i.e. image patches closer to the target landmark
are likely more relevant for accurate landmark localization
than patches farther from the target landmark. Therefore,
simultaneously to regression, classification is performed to
determine the importance of each patch in the landmark
localization. Classification determines the presence of the
target landmark in an image patch and the obtained posterior
classification probabilities are used for weighted averaging of
all predicted displacement vectors.

The global FCNN is based on ResNet34 [44] and it consists
of one convolutional layer with 16 (7 x 7 x 7) kernels
and a stride of 2, which is followed by 4 ResNet-blocks.
One ResNet-block contains 3, 4, or 6 convolutional layer
pairs, where each convolutional layer pair consist of two
convolutional layers with 32, 64, 128, or 256 (3 x 3 x 3)
kernels. In contrast to the original ResNet34 [44], which
contains a strided convolutional layer as first layer in every
ResNet-block, our network contains a pooling layer before the
first and second ResNet-block, which is an average pooling
layer with a size and stride of 2 x 2 x 2 voxels. After
the four ResNet-blocks, the network has two output heads:
one for regression of displacement vectors, and another for
classification of landmark presence. Both output heads are
similar in design. Each head has two 256-node dense layers
and an output-layer, implemented as 1 x 1 x 1 convolutions
[45]. The classification head outputs scalars, one for each
landmark, forced between 0 and 1 by a sigmoid function.
The regression head outputs displacement vectors for each
landmark.

The specialized FCNNs for local landmark prediction are
of similar but smaller design. Each network consists of a
ResNet-block, followed by average pooling, a second ResNet-
block, and the parallel regression and classification heads.
The first ResNet-block consists of two convolutional layers
of 32 (3 x 3 x 3) kernels. Average pooling is done with a
size and stride of 2 x 2 x 2 voxels. The second ResNet-block
consists of two convolutional layers with 64 (3 x 3 x 3) kernels.
Similarly to the global FCNN, the two ResNet-blocks are
followed by two output heads: one for the classification task,
and another for the regression task. All layers use 64 kernels.

Each convolutional layer in the FCNNs applies zero-
padding, and after each convolutional layer, batch normaliza-
tion [46] is applied. To allow application to images of arbitrary
size, 3D feature maps are not flattened but dense layers are
implemented as convolutions with a size of 1 x 1 x 1 voxel
[45]. Throughout a network, rectified linear units (ReLUs) are
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used for activation, except for the regression and classification
output layers. For regression, a linear activation function is
used, and for classification, a sigmoid activation is used to
obtain posterior probabilities between 0 and 1.

The loss function that was optimized during training con-
sisted of two parts: the mean absolute error between the
regression output and reference displacements, and the binary
cross-entropy between the classification output and reference
labels. To ensure that input patches located far from the
landmark have less influence on updates of network parameters
compared to those located close to the landmark, the mean
absolute error is calculated on log-transformed displacement
vectors. As optimization algorithm, Adam with a learning rate
of 0.001 [47] was used.

Since a network is fully convolutional it can analyze input
images of varying size. Depending on its input image the
network outputs a varying number of displacement vectors
and posterior probabilities during global landmark localization.
Due to the network’s average pooling layers and the first
convolutional layer with a stride of two voxels, its outputs are
distributed on a grid, where the grid spacing is defined by the
sum of the number of pooling layers and strided convolutional
layers. With n representing the sum of the number of pooling
layers and strided convolutional layers for the global or local
localization step, this leads to a down-sampling rate of 1/2"
and therefore, a patch size of 2" voxels. Hence, for a given
network, a grid with a grid spacing of 2" voxels is used to
sample patches from an input image.

[1l. DATA

We evaluated the method on three different datasets con-
taining 3D CCTA scans, 3D olfactory MR scans, and 2D
cephalometric X-rays (Fig. 3). The choice of these datasets
was based on the diversity in image acquisition modality (CT,
MR, and X-ray), image dimensionality (2D and 3D), and
anatomical coverage (cardiac, brain, and head).

A. Coronary CT Angiography

The dataset consisted of 672 CCTA scans, which were
acquired in the University Medical Center Utrecht (Utrecht,
The Netherlands) as part of regular patient care. The need for
informed consent was waived by the Institutional Medical Eth-
ical Review Board. ECG-triggered scans were acquired with
a 256-detector row scanner (Philips Brilliance iCT, Philips
Medical, Best, The Netherlands). Tube voltage ranged from
80 to 140k Vp while tube current ranged from 210 to 300 mAs.
Intravenous contrast was administered before acquisition. All
acquired scans had a slice thickness of 0.9 mm with 0.45 mm
spacing. In-plane resolution ranged between 0.29 and 0.49 mm.
In all scans, an expert manually annotated eight clinically
relevant cardiac landmarks: the aortic valve commissures
between the non-coronary and right (NCRC), the non-coronary
and left (NCLC), and the left and right aortic valve leaflets
(LRC), the hinge points (most caudal attachments) of the
left (LH), non-coronary (NCH), and right (RH) aortic valve
leaflets, and the right (RO) and left coronary ostium (LO).
These landmarks can be used to perform clinical measure-
ments in patients undergoing transcatheter aortic valve implan-

(c) Cephalometric X-rays

Fig. 3. Example images with reference annotations. (a) Axial, coronal,
and sagittal slices (rows) from cardiac CT angiography (CCTA) scans of
three different patients (columns), in which the right ostium is indicated
by a red cross. (b) Axial, coronal, and sagittal slices (rows) from olfactory
MR scans of three different patients (columns), in which the center of the
right olfactory bulb is indicated by a red cross. (c) Cephalometric X-ray
of three different patients (columns), in which 19 different landmarks are
indicated by a red cross.

tation (TAVI) [11], [14]-[16]. An expert observer created
manual annotations for the full dataset using the protocol
by Kasel er al. [11]. To determine inter-observer variability,
a second observer annotated 100 randomly selected scans
from the test-set. This same set was used to determine the
intra-observer variability: after one month, the first observer
repeated annotations in the 100 scans. Variability was defined
as the Euclidean distance between the landmark annotations.

B. Olfactory MR

The dataset contained 61 olfactory MR scans, which were
acquired as part of clinical routine in Hospital Gelderse Vallei
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(Ede, The Netherlands). The local ethics committee approved
the study where informed consent was obtained from all
subjects. Scans were acquired with a 3T Magnetom Verio
MRI scanner (Siemens, Erlangen, Germany). To visualize the
olfactory bulbs, a coronal T2-weighted fast spin-echo sequence
was performed (echo time: 153 ms, repetition time: 4630 ms,
field of view: 120 x 120mm). Each scan contained 28 coronal
slices reconstructed to an isotropic in-plane pixel size of
0.47mm and a slice thickness of 1 mm with no inter-slice
gap. In each scan, an expert manually delineated the right
and left olfactory bulb. The center of each manual delineation
was taken as ground truth landmark location.

C. Cephalometric X-Rays

The dataset consisted of 400 publicly available cephalomet-
ric X-rays (lateral cephalograms) from the ISBI 2015 Grand
Challenge in Automatic Detection and Analysis for Diagnosis
in Cephalometric X-ray Images [8]. X-rays were acquired with
a Soredex CRANEX® Excel Ceph machine (Tuusula, Finland)
and Soredex SorCom software (3.1.5, version 2.0), and were
obtained in TIFF format with a resolution of 1935 x 2400
pixels and an isotropic pixel size of 0.1 mm. In all X-rays, two
experienced medical doctors both manually annotated 19 clin-
ically relevant landmarks, which can be used for diagnosis and
treatment planning in orthodontic patients [8], [10]. Following
the challenge protocol, the average of the annotations provided
by both experts was used as ground truth landmark location
[8]. The landmarks were: the sella (1), nasion (L2) orbitale
(L3), porion (L4), subspinale (L5), supramentale (L6), pogo-
nion (L7), menton (L8), gnathion (L9), gonion (L10), lower
incisal incision (L11) upper incisal incision (L12), upper lip
(L13), lower lip (L14), subnasale (L15), soft tissue pogonion
(L16), posterior nasal spine (L.17), anterior nasal spine (L18),
and articulate (L19). The intra-observer and interobserver
variability were determined within the challenge following
Lindner and Cootes [26].

IV. EVALUATION

Evaluation was performed by computing the median Euclid-
ean distance and interquartile range (IQR) between manu-
ally defined reference and automatically predicted landmark
locations.

In addition, following the ISBI 2015 Grand Challenge in
Automatic Detection and Analysis for Diagnosis in Cephalo-
metric X-ray Images [8], success detection rates (SDRs) were
calculated. The detection of a landmark is considered success-
ful when the Euclidean distance between the automatically
localized landmark and its reference location is smaller than a
predefined distance threshold. In our analysis we used 10 dis-
tance thresholds ranging from 0.5 mm to 5 mm. The maximal
distance threshold was defined when 95% of the landmarks
were successfully detected. Intra- and second observer SDRs
were determined in a similar way by using the two annotated
sets. When two annotations of a landmark were within the
distance of the set threshold, the annotation was considered
successful.

V. EXPERIMENTS AND RESULTS

The method was implemented in Python using PyTorch [48]
on an NVIDIA 2080 Ti with 11 GB of memory.

A. Experiments

All datasets were first randomly divided into a training set,
a validation set, and a hold-out test set. Training sets and
validation sets were used to develop the method, while test
sets were used for final evaluation. Note that the test sets were
not used during method development in any way.

1) Coronary CT Angiography: The available set of 672 scans
was randomly divided into 412 training, 60 validation
and 200 test scans. For computational purposes, scans were
resampled to an isotropic voxel size of 1.5 mm?.

The global FCNN was trained for 300,000 iterations,
using mini-batches of 4 randomly sampled sub-images
of 72 x 72 x 72 voxels. The FCNN was evaluated during
training on the entire validation set every 10,000 iterations.
The best performing model was used for subsequent analysis.
A local FCNN was trained using similar settings. However,
the size of the sub-images was chosen based on the dis-
tance errors obtained during localization of landmarks with
the multi-landmark network in the validation set and was
therefore set to 16 x 16 x 16 voxels. Moreover, sub-images
were randomly sampled such that they always contained the
landmark of interest.

Table I lists the obtained median Euclidean distance
errors (last row: Proposed ML) and those obtained by the
intra-observer and second observer (first two rows) per
landmark and for all landmarks together. Median distance
errors obtained with the proposed method range from 1.45
to 2.48 mm for different landmarks, which corresponds to
an error between 1.03 and 1.65 voxels. This is close to
distance errors obtained by the intra-observer which ranged
from 1.43 to 2.68 mm, and the distance errors obtained by
the second observer which ranged from 1.73 to 3.46 mm.
Distance errors obtained for automatic localization of the
coronary ostia were the smallest, with 1.45 mm for the RO
and 1.55 mm for the LO. On average, the processing time per
scan was 0.06 &+ 0.05 seconds. For six out of eight landmarks,
distance errors obtained with the proposed method were lower
than distance errors obtained by the intra-observer annotation.
For three of these six landmarks differences were statistically
significant. For five out of eight landmarks, distance errors
obtained with the proposed method were lower than distance
errors obtained by the second observer. For all landmarks but
the RH, the differences were statistically significant. To pro-
vide further insight in the performance, Fig. 4 shows the SDRs
obtained with the proposed method, while the intra-observer
and second observer SDRs are shown as horizontal lines.
Overall, the SDRs obtained with the method are similar or
better than intra-observer and second-observer SDRs.

Fig. 5 shows vector fields visualizing the predicted dis-
placement vectors for localization of the RO landmark in the
axial viewing plane in six CCTA scans from the test set:
three scans in which the localization error was below 2.5 mm
(top row) and three scans in which the localization error
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TABLE |
MEDIAN (IQR) EUCLIDEAN DISTANCE ERRORS (MM) BETWEEN COMPUTED AND REFERENCE LANDMARK LOCATIONS IN CCTA SCANS OBTAINED
WITH NETWORKS USED FOR MULTI-LANDMARK LOCALIZATION. DIFFERENT TRAINING SETTINGS ARE EVALUATED: REGRESSION OF
DISPLACEMENT VECTORS WITH (RLog) AND WITHOUT (R) LOG-TRANSFORMATION, EMPLOYING THE CLASSIFICATION LAYER (C) OR NOT, AND
PERFORMING ONLY GLOBAL LOCALIZATION (GLOBAL) OR GLOBAL-TO-LOCAL LOCALIZATION (GLOBAL-TO-LOCAL) OF LANDMARKS. THE
PROPOSED METHOD COMBINED GLOBAL-TO-LOCAL LANDMARK LOCALIZATION AND EMPLOYED REGRESSION OF LOG-TRANSFORMED
DISPLACEMENT VECTORS AND THE CLASSIFICATION OUTPUT LAYER (PROPOSED ML). ADDITIONALLY, DISTANCE ERRORS OBTAINED WITH THE
METHOD ADJUSTED FOR SINGLE LANDMARK LOCALIZATION ARE LISTED AS WELL (PROPOSED SL). THE DISTANCE ERRORS OBTAINED BY THE
INTRA-OBSERVER (INTRA-OBSERVER) AND THE SECOND OBSERVER (SECOND OBSERVER), COMPUTED AS THE DISTANCE BETWEEN TWO
ANNOTATIONS MADE BY THE SAME OBSERVER, AND THE DISTANCE BETWEEN ANNOTATIONS MADE BY TWO DIFFERENT OBSERVERS,
RESPECTIVELY, ON A SUBSET OF THE TEST SET ARE ALSO LISTED. RESULTS ARE LISTED PER LANDMARK (NCRC, NCLC, LRC, LH, NCH,
RH, RO, AND LO) AND FOR ALL LANDMARKS TOGETHER (ALL), WITH THE SMALLEST DISTANCE ERROR SHOWN IN BOLD

Aortic valve commissures Aortic valve hinges Coronary ostia
NCRC NCLC LRC LH NCH RH RO LO All

Intra-observer 268 (225) 193 (1.72) 1.96 .07t  2.04 (1.39)* 254 (2.20) 2.56 (2.28)F  1.43 (1.05)  1.88 (1.40)* | 2.06 (1.84)
Second observer | 3.00 (1.23)} 346 (1.45)F 296 (1.13)} 173 (1.32)* 1.96 (1.19)f  1.80 (1.62) 1.78 (1.54)T  2.31 (1.56)F | 2.50 (1.68)*
Global

R 320 2.05F 295 (1.95F 3.08 247F 3.4 2.100F 351 2.04)F 355 2.14F 436 2.92)F 392 2.71)F | 3.44 2.36)
Riog 3.12 (2.06)F  3.12 (2.02)F  3.04 2.09F 249 (1.84) 336 (2.18)F 3.18 (1.7 4.08 2.87)F  4.05 (2.66)F | 3.23 (2.30)¢
C 5.64 (4.13)F 477 2.100F  4.62 237)F 443 2.23)F 469 B.0DF 434 273)F 507 2.67)F  4.64 2.61)F | 476 (2.72)F
R+C 293 (1.96) 2.60 (1.53) 262 (2.54) 273 (134T 331 (1.92)7 3.14 (1.66)t  4.23 2.94)F 372 2.78)F | 3.09 2.1}
Rz + C 272 (1.71) 259 (1.84)  2.60 (1.98) 251 (1.74)  3.08 (1.79)  2.77 (1.70)  2.90 (1.93)  3.31 (2.23) | 2.81 (1.88)
Global-to-local

Proposed SL 1.99 (1.82) 194 (1.32) 1.69 (1.73) 229 (1.46) 2.68 (1.75)% 3.09 (1.82)%  1.48 (0.98)  1.55 (1.02) | 2.03 (1.79)
Proposed ML 1.85 (1.96) 1.80 (1.59)  1.76 (1.67) 240 (1.58)  2.48 (1.72) 2.23 (1.42) 145 (1.20) 155 (0.97) | 1.87 (1.67)

Significance outcome by the Wilcoxon Signed Rank test compared to R + C for the upper part of the table, and the proposed method for
multi-landmark localization (Proposed ML) and the Intra-observer, Second observer, and proposed method for single landmark localization
(Proposed SL) is indicated with * for p<0.05, { for p<0.01, and } for p<0.001.
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Fig. 4. Success detection rates (SDRs) for landmark localization in CCTA scans. The results for the ablation study on the performance of

global multi-landmark localization (Global) are shown for: FCNNs trained for one task, i.e. regression of displacement vectors (R), regression
of a log-transformed displacement vectors (R.og), and classification of patches (C); FCNNs trained for joint regression and classification (R + C)
and joint regression of log-transform displacement and classification (Rjog + C). Furthermore, the results for our proposed global-to-local FCNNs
(Global-to-local) trained for single landmark localization (Proposed SL) and multi-landmark localization (Proposed ML) are also shown. Additionally,
intra-observer and second observer SDRs are indicated by horizontal lines. Results are shown as % over all landmarks.

was above 5.0 mm (bottom row). Larger errors were made
in scans in which anatomical deviation was present, such as
both coronary ostia being located on the left side in close
proximity to each other (Fig. 5 bottom row). This anatomical
deviation occurred in only 0.2% of the scans in the training
set but in 2% of the scans in the test set, which might explain
the error.

2) Olfactory MR: The available set of 61 olfactory MR scans
was randomly divided into 36 training, 5 validation and 20 test
scans. Scans were resampled to an isotropic voxel size of
0.47mm?>. Training settings were similar to those used in
the CCTA experiment, described in Section V-A.1. However,
because scans contained only 60 coronal slices after resizing,
scans were zero-padded in the z-direction. The size of the
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Fig. 5. Vector fields (orange) visualizing the predicted displacement
vectors in the axial plane in six different CCTA scans from the test
set where localization of the right coronary ostium was performed. For
visualization purposes, 3D predicted displacement vectors are shown
as 2D vector fields and the magnitudes of the vectors are rescaled. The
green squares indicate posterior probabilities larger than 0.5, obtained by
the classification task of the network. Reference and computed landmark
locations are indicated with a blue and pink cross, respectively. The
top row depicts scans in which localization errors were below 2.5 mm,
while the bottom row depicts scans in which localization errors were
above 5.0 mm. Images in the bottom row all contain two coronary ostia
which are both located on the left side in close proximity of each other.

100
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20 A

Success Detection Rate (%)

0.5 1
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Distance Threshold (mm)
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Fig. 6. Success detection rates (SDRs) for olfactory bulb localization in
MR scans, obtained with the proposed method. Results are shown as %
over all landmarks present in the test set and are given for eight distance
thresholds ranging from 0.5 mm to 4 mm.

olfactory bulbs ranged between 1.4 and 5.2 mm in-plane, and
between 5.0 and 13.0mm in the z-direction.

The median (IQR) Euclidean distance error between com-
puted landmark locations and reference locations was 0.87
(1.36) mm and 0.90 (0.58) mm for the right and left bulb,
respectively, and 0.90 (0.85) mm when taking both landmarks
into account. Fig. 6 shows the SDRs obtained with the
proposed method. When a distance threshold of 4 mm was
used, 95.0% of all landmarks present in the test set were
successfully detected. The processing time per scan was on
average 0.07 = 0.01 seconds.

3) Cephalometric X-Rays: The 150 cephalometric X-rays
from the training set of the ISBI 2015 Grand Challenge in

automatic Detection and Analysis for Diagnosis in Cephalo-
metric X-ray Images [8] were used for training (140 X-rays)
and validation (10 X-rays). The challenge provides two sep-
arate test sets for evaluation: one set containing 150 images
(Testl), and one set containing 100 images (Test2). To mit-
igate varying image contrast, histogram equalization was
performed on the X-ray images before analysis. Since the
X-ray is a 2D image, we used a 2D version of the net-
work in Fig. 2. Furthermore, because cephalometric X-rays
are large (1935 x 2400 pixels), we also added an average
pooling layer before the third and fourth ResNet-block.
Adding average pooling layers allowed us to enlarge the
receptive field, while keeping a low computational complex-
ity. The network for global localization was again trained
for 300,000 iterations, using mini-batches containing 4 sub-
images of 592 x 592 pixels. For local analysis, mini-batches
containing 4 sub-images of 16 x 16 pixels were used during
training.

Table II lists the median Euclidean distance errors obtained
with the proposed method. Errors range from 0.46 to 2.12 mm
for different landmarks in Testl and from 0.42 to 4.32 mm
for different landmarks in Test2. For both test sets, the best
results were obtained for the localization of L12, which is
the upper incisal incision. As reported by Lindner and Cootes
[26], the mean intra-observer variability for the first and
second observer were 1.73 £ 1.35mm and 0.90 &= 0.89 mm,
respectively, while the mean inter-observer variability was
1.38 £ 1.55mm. When computing the mean distance error
obtained on all landmarks present in both test sets, we obtain
a distance error of 1.35 £+ 1.19mm, which is lower than
the intra-observer variability of the first observer and the
inter-observer variability. As defined by the challenge protocol
[8], we evaluated our method computing the SDRs using four
distance thresholds (2mm, 2.5mm, 3mm, and 4 mm). These
results are shown in Fig. 7. On average, the processing time
per scan was 0.05 &£ 0.009 seconds.

B. Ablation Study

To investigate whether the application of classification
or the log-transform during training is truly beneficial for
accurate landmark localization, we performed an ablation
study with CCTA scans only, assuming results generalize to
other datasets. For this, four additional networks for global
multi-landmark localization were trained. These networks
were trained with or without applying the log-transform with
regression, and with or without using the classification output
layer. For the classification-only network, a final landmark
location was obtained by computing a weighted average of
all predicted landmark locations. To obtain the final landmark
location, the centers of the analyzed patches served as pre-
dicted landmark locations, while the posterior classification
probabilities were used as weights during averaging.

Table I shows that the proposed approach utilizing
joint classification and regression of log-transformed dis-
placement vectors achieved best performance (Rjoz + C).
Regression-only networks obtained smaller distance errors
compared to classification-only networks. The addition of
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TABLE Il
MEDIAN (IQR) EUCLIDEAN DISTANCE ERRORS (MM) BETWEEN THE COMPUTED LANDMARK LOCATIONS AND THE REFERENCE LOCATIONS,
OBTAINED WITH THE PROPOSED METHOD. RESULTS ARE LISTED SEPARATELY FOR THE TWO DIFFERENT TEST SETS: TEST1 AND TEST2.
FURTHERMORE, RESULTS ARE LISTED PER LANDMARK (L1-L19) AND FOR ALL LANDMARKS TOGETHER (ALL)

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Testl 0.51 (0.41) 1.00 (1.25) 1.01 (1.09) 1.62 (1.71) 1.64 (1.64) 0.94 (0.98) 0.70 (0.85) 0.63 (0.70) 0.76 (0.85) 2.12 (1.83)
Test2 0.52 (0.34) 0.57 (1.00) 2.31(1.40) 1.19(1.49) 1.11 (1.06) 2.62 (1.73) 0.58 (0.72) 0.50 (0.47) 0.52 (0.55) 1.68 (1.61)

L11 L12 L13 L14 L15 L16 L17 L18 L19 All
Testl 0.80 (1.26) 0.46 (0.89) 1.13 (0.83) 0.84 (0.58) 0.90 (0.88) 1.23 (1.14) 0.64 (0.64) 094 (1.21) 1.50 (1.78)  0.95 (1.15)
Test2  0.63 (0.87) 042 (0.67) 2.32(0.87) 1.87(1.09) 0.94 (0.64) 4.32(1.47) 0.88(0.81) 1.13(1.19) 1.06 (1.35) 1.07 (1.60)
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Fig. 7. Success detection rates (SDRs) for landmark localization in cephalometric X-rays. SDRs obtained with the proposed method (Proposed)
are shown together with SDRs reported in previous studies. Results are shown as % over all landmarks and are given for four distance thresholds
(2, 2.5, 3, 4mm). Results are shown separately for the two test sets, (a) Test1 containing 150 images, and (b) Test2 containing 100 images, (c) as

well as for both test sets combined.

classification improved both regression-only networks, one
using log-transform and one without it. The log-transform
improved localization performance in the networks performing
regression, with and without classification. When the approach
for global localization utilizing joint classification and regres-
sion of log-transformed displacement vectors is combined
with local single landmark localization (Table I, Proposed
ML), smaller distance errors were obtained compared to
utilizing only global localization. Fig. 4 shows the obtained
SDRs. Better SDRs were obtained by networks performing
joint classification and regression compared to regression-only
and classification-only networks. However, the best results
were obtained when joint classification and regression of
log-transformed displacement vectors were used with a global-
to-local approach.

C. Single Landmark Localization

The proposed method employing joint classification and
regression of log-transformed displacement vectors was evalu-
ated for single landmark localization in CCTA by training one
network for each of the eight cardiac landmarks. Table I lists
the obtained Euclidean distance errors (Proposed SL). With
the exception of localization of the LRC and LH, the network
trained for multi-landmark localization outperformed networks
trained for single landmark localization. However, differences
in performance were only significant for localization of the
NCH and RH. Fig. 4 shows the obtained SDRs. For a distance
threshold of 0.5 mm, the SDR obtained with networks trained
for single landmark localization was slightly better than the
SDR obtained with a network trained for multi-landmark

localization. However, this difference was only 0.6%. For all
other distance thresholds, better SDRs were obtained by the
network trained for multi-landmark localization compared to
networks trained for single landmark localization.

D. Comparison With State-of-the-Art

A number of methods have previously been proposed to
localize anatomical landmarks in medical images.

1) Coronary CT Angiography: Previous methods have been
proposed to specifically localize the aortic valve hinges, the
aortic valve commissures, and the coronary ostia in cardiac
CT scans.

Waecher et al. [15] used pattern matching and reported
distance errors of 1.0+ 0.8 mm and 1.2 +0.6 mm for the right
and left ostium, respectively. Wolterink ef al. [34] used a CNN
to localize the ostia and obtained a mean distance error of
1.84+1.0 mm. However, both methods were tested on small sets
containing only 20 [15] or 36 [34] scans that might not have
contained the anatomical deviation which was present in our
test set comprising of 200 CCTA scans. Removing eight scans
from our test set that show severe anatomical deviation (the
right ostium located on the left side, the left ostium located
on the right side), or cases where a stent is present in the
pulmonary arteries, improves results for localization of the
coronary ostia from 2.03 & 3.05mm to 1.75 + 1.84 mm.

For the aortic valve commissures and the aortic valve
hinges, the proposed method obtained mean distance errors
of 233 &£ 1.90mm and 2.61 £+ 1.44mm, respectively.
Zheng et al. [16] exploited voxel classification with land-
mark specific probabilistic boosting trees and reported
mean distance errors of 2.17 £ 1.31mm, 2.09 £+ 1.18 mm,
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TABLE IlI
MEDIAN (IQR) EUCLIDEAN DISTANCE ERRORS (MM) BETWEEN COMPUTED AND REFERENCE LANDMARK LOCATIONS FOR EIGHT LANDMARKS IN
CCTA SCANS. LANDMARKS WERE AUTOMATICALLY LOCALIZED WITH THE METHODS BY ALANSARY et al. [42], PAYER et al. [35], AND WITH THE
PROPOSED METHOD (PROPOSED). METHODS LOCALIZE EITHER SINGLE LANDMARKS (SL) OR MULTIPLE LANDMARKS SIMULTANEOUSLY (ML).
RESULTS ARE LISTED PER LANDMARK (NCRC, NCLC, LRC, LH, NCH, RH, RO, AND LO) AND FOR ALL LANDMARKS TOGETHER (ALL)

Method | NCRC NCLC LRC LH NCH RH RO LO \ All
Alansary et al. [42] SL | 3.35 (2.38)F 3.35 (2.38)F 3.35 (2.62)F 3.35 (1.55)% 3.67 (2.38)F 3.67 (2.03)F 3.35 (2.14)F 2.60 (2.18)F | 3.35 (2.38)}
Payer et al. [35] SL |2.30 (2.03)F 270 (1.89)f 3.06 (2.85)f 2.45 (1.80)* 2.72(1.57) 2.82(1.50) 2.03 (1.51)F 2.69 (2.32)F | 2.55 (1.90)F
Proposed SL | 1.99 (1.82) 1.94 (1.32) 1.69 (1.73) 229 (1.46) 2.68 (1.75) 3.09 (1.82) 1.48 (0.98) 1.55 (1.02) | 2.03 (1.79)
Payer et al. [35] ML | 1.79 (1.39) 1.77 (1.52) 1.90 (1.80) 2.12 (1.39) 2.50 (1.68) 2.28 (1.36) 1.30 (1.01) 1.59 (1.17) | 1.90 (1.54)
Proposed ML | 1.85(1.96) 1.80 (1.59 1.76 (1.67) 2.40 (1.58) 248 (1.72) 223 (1.42) 1.45(1.20) 155 (0.97) | 1.87 (1.67)

Significance outcome by the Wilcoxon Signed Rank test compared to the proposed method is indicated with * for p<0.05, § for p<0.01, and
1 for p<0.001. Comparisons are made between methods performing single landmark localization (SL) or methods performing multi-landmark

localization (ML).

and 2.07 £ 1.53mm for the aortic valve commissures, the
aortic valve hinges, and the coronary ostia, respectively. Land-
marks were localized in in C-arm CT scans with a voxel size
ranging between 0.70 and 0.84 mm.

Elattar et al. [14] applied a local rule-based approach and
combined results obtained for localization of the aortic valve
hinges and the coronary ostia in 40 CCTA scans with a
voxel size varying from 0.44 to 0.9mm. The analysis led
to a mean distance error of 2.81 £ 2.08 mm. Al and Yun
[9] also combined results obtained for localization of all
eight landmarks in 71 CCTA scans using cross-validation and
obtained a mean distance error of 2.04 & 1.11 mm. Voxel sizes
of used CCTA scans were not reported. Computing the same
measure, the mean distance error obtained for localization of
the eight cardiac landmarks, we obtained a distance error of
2.36 £ 1.24mm.

These aforementioned methods have been developed and
tested on different CCTA datasets than used in our work.
Hence, a comparison between the results should only be used
as an indication of the performance. To enable a direct com-
parison of our methods with previous work, we have tested the
very recently proposed methods by Alansary et al. [42], who
employ reinforcement learning and localize a single landmark
at the time, and Payer et al. [35], who employ heatmap
regression to localize either a single landmark or multiple
landmarks jointly, on our data. For this, we used code made
publicly available by the authors.! 2 The results are listed in
Table III. The Wilcoxon Signed Rank test was used to test for
significance. Results show that our method performing single
landmark localization significantly outperformed the method
proposed by Alansary et al. [42]. Furthermore, we signifi-
cantly outperform the method proposed by Payer et al. [35]
when trained for single landmark localization. When com-
paring our method for multi-landmark localization with the
multi-landmark localization proposed by Payer et al. [35], dif-
ferences in performance are not significant.

On average, the processing time per scan was 0.29 4 0.56
seconds for the method proposed by Alansary ef al. [42], and
0.42 4+ 0.13 seconds and 0.49 4 0.28 seconds for the method

1 https://github.com/amiralansary
2https://www. github.com/christianpayer

TABLE IV

MEDIAN (IQR) EUCLIDEAN DISTANCE ERRORS (MM) BETWEEN

COMPUTED AND REFERENCE LANDMARK LOCATIONS FOR THE RIGHT
AND LEFT OLFACTORY BULB IN MRI. LANDMARKS WERE

AUTOMATICALLY LOCALIZED WITH THE METHODS BY ALANSARY et al.
[42], PAYER et al. [35], AND THE PROPOSED METHOD (PROPOSED).
METHODS LOCALIZE EITHER SINGLE LANDMARKS (SL) OR MULTIPLE

LANDMARKS SIMULTANEOUSLY (ML). RESULTS ARE LISTED PER

LANDMARK (RIGHT BULB, LEFT BULB) AND FOR BOTH BULBS
TOGETHER (BOTH BULBS)

Method | Right Bulb Left Bulb | Both Bulbs
Alansary et al. [42] SL 1.28 (1.46) 1.44 (1.42)% | 1.41 (1.42)1
Payer et al. [35] SL 1.67 (1.48)* 1.38 (2.22) 1.55 (2.00)f
Proposed SL 0.93 (0.74) 0.99 (0.94) 0.95 (0.94)
Payer et al. [35] ML | 0.91 (1.06) 0.76 (1.01) 0.89 (0.97)
Proposed ML | 0.87 (1.36) 0.90 (0.58) 0.90 (0.85)

Significance outcome by the Wilcoxon Signed Rank test compared to
the proposed method is indicated with * for p<0.05 and 1 for p<0.01.
Comparisons are made between methods performing single landmark
localization (SL) or methods performing multi-landmark localization
(ML).

proposed by Payer et al. [35] for single landmark localization
and multi-landmark localization, respectively. On average, the
processing times per scan for our method were 0.04 £ 0.01
and 0.06 £ 0.05 seconds for single landmark localization and
multi-landmark localization, respectively.

2) Olfactory MR: To the best of our knowledge, no land-
mark localization methods have been evaluated for local-
ization of the olfactory bulbs in MRI. To compare our
proposed method with state-of-the-art landmark localization
methods, we have evaluated the publicly available meth-
ods by Alansary et al. [42] and Payer et al. [35] as for
the landmarks in CCTA (see section V-D.1). Results are
listed in Table IV. Comparing our method for localization
of one olfactory bulb per scan, we significantly outperform
other methods performing single landmark localization. The
difference between methods performing localization of both
olfactory bulbs simultaneously was not significant. On aver-
age, the processing time per scan was 0.78 £ 1.53 seconds
for the method proposed by Alansary et al [42], and
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0.38 £ 0.003 seconds and 0.44 + 0.25 seconds for the method
proposed by Payer et al. [35] for single landmark localiza-
tion and multi-landmark localization, respectively. For the
proposed method, the processing time per scan for single
landmark localization and multi-landmark localization were
0.07 £ 0.008 and 0.07 £ 0.01 seconds per scan, respectively.

3) Cephalometric X-Rays: Previous methods have been
proposed to localize landmarks in cephalometric X-rays.
Ibragimov ef al. [18], Lindner and Cootes [26], and
Urschler et al. [22] all employed conventional machine
learning, while Arik ef al. [32] and Payer et al. [35] both
proposed a CNN to localize landmarks in cephalometric
X-rays.

Fig. 7 shows a comparison between the SDRs obtained in
previous studies and the SDRs obtained with the proposed
method. Payer er al. [35] reported the percentage of outliers.
Hence, for comparison with our results, we reformulated their
results into SDRs. For all distance thresholds, our method
obtained better SDRs compared to those obtained in previous
studies.

Reported processing times for the method proposed by
Lindner and Cootes [26], Urschler et al. [22], and Payer et al.
[35] were 5, 56, and 2 seconds per scan, respectively. However,
for the proposed method, the processing time for localization
of all landmarks was on average 0.05£0.009 seconds per scan.

V1. DISCUSSION

An automatic method for anatomical landmark localization
in medical images has been proposed. The method employs
global-to-local analysis where initially a fully convolutional
neural network predicts the locations of multiple landmarks
simultaneously. Subsequently, specialized FCNNs refine the
global landmark locations. For global multi-landmark localiza-
tion, an FCNN analyzes 2D or 3D images of arbitrary size in a
patch-based manner. For every patch in an image, regression
is used to predict displacement vectors that point from the
center of the patch to landmarks of interest. Simultaneously,
classification is used to predict the presence of landmarks of
interest in each image patch. The global landmark locations
are obtained by a weighted average of the displacement vectors
predicted by regression, using posterior probabilities predicted
by classification as weights. Subsequently, specialized FCNNs
refine the global landmark locations by analyzing a local
sub-image around each landmark in a similar manner, perform-
ing regression and classification simultaneously and combining
the results.

The method was evaluated using three different datasets,
namely 3D CCTA scans, 3D olfactory MR scans and 2D
cephalometric X-rays. Results demonstrate that the method
is able to localize landmarks with high accuracy in medical
images differing in modality, dimensionality and depicted
anatomy. Results obtained for the localization of the aortic
valve commissures, the aortic valve hinges, and the coronary
ostia in CCTA are comparable with the intra-observer vari-
ability and second observer performance. Previous methods
analyzed images at higher resolution and reported slightly
better results. However, these methods have been developed
and tested on different CCTA datasets than used in our work

and therefore, a comparison between the results should only be
used as an indication of the performance. Ideally, landmarks
would be localized in the native resolution. However, due to
hardware limitation, we have resampled the scans prior to
analysis to reduce the image resolution. It is worth noting that
memory limitations prohibited analysis of complete images at
the native resolution. Hence, hardware limitations require par-
titioning of images during inference for analysis at a resolution
close to the native resolution. Our preliminary experiments
showed that increasing the image resolution had a negative
impact on the performance when analyzing complete images.
However, addressing the hardware limitations and analyzing
scans with a higher resolution will probably lead to lower
distance errors in mm.

Using the CCTA dataset, we have shown that joint regres-
sion and classification improves upon classification-only. For
the classification-only networks, landmarks were localized by
computing a weighted average of the predicted landmark
locations. For this, the center of analyzed patches were consid-
ered the predicted landmark locations while the classification
output, i.e. posterior probabilities, served as weights during
averaging. A different approach for the final decision could
also be considered. For example, only the center of the patch
with the highest classification probability could have been
taken into account or only patches with a posterior probability
higher than a threshold could have been used. However, the
ability of the classification-only network to precisely localize
a landmark will always be limited by its patch-size. A deeper
neural network that could perform voxel-based classification
could therefore be more precise compared to a patch-based
classification network. Nevertheless, a voxel-based classifi-
cation network would demand balancing of the data during
training due to a high class imbalance between landmark
and background voxels. Furthermore, voxel-based analysis
is more computationally demanding compared to the here
proposed patch-based classification network. Since landmark
localization is typically a prerequisite for subsequent, more
complex medical image analysis [1]-[13], localization speed
may be important.

Additionally, we have also shown that joint regression
and classification improves upon regression-only landmark
localization. For regression-only methods, the final landmark
location was predicted by computing the average over all
landmark locations obtained with the predicted displacement
vectors. Hence, independent of their distance to the land-
mark, all patches contributed equally. Inspection of the results
showed that predictions from patches far from the landmark
of interest resulted in larger distance errors compared to
those made from patches close to the landmark of interest.
Hence, equally weighting all predictions resulted in larger
distance errors compared to joint classification and regression.
With joint regression and classification, such errors were
mitigated by weighting the displacement vectors using the
posterior probabilities obtained from classification. Namely,
patches farther from the landmark of interest received lower
posterior probabilities, thereby reducing the influence on the
final landmark prediction. Employing a log-transform for dis-
placement further improved localization. This is likely caused
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by the nature of the log-transform under the influence of the
mean absolute error loss during training; i.e. during training,
prediction errors from patches close to the landmark of interest
are more heavily penalized than predictions from patches far
from the landmark of interest.

Networks trained for multi-landmark localization obtained
slightly better results compared to networks trained for single
landmark localization in CCTA. However, no statistically
significant difference between the two approaches was found,
indicating that our proposed method could be used for single-
as well as for multi-landmark localization.

Visual inspection of the results obtained with our proposed
method on the CCTA dataset showed that larger Euclidean
distance errors were obtained in images in which anatomical
abnormalities were present, such as the right ostium being
located on the left side of the patient. Training the network
with more images that depict these types of anatomical devia-
tion or modeling of these anatomical deviations by exploiting
data augmentation, such as elastic transformations of images,
could be beneficial to increase the variation in the dataset and
ultimately improve localization.

In contrast to previous work that required segmentation of
the aorta [14]-[16], the here proposed method does not require
any prior segmentation steps. Moreover, during inference, the
method analyzes complete images and thus it is capable of
localizing target landmarks in large 3D image volumes with
high speed. As demonstrated by the results, direct learn-
ing from the data without preprocessing steps incorporating
knowledge about the anatomy leads to accurate localization
of the eight cardiac landmarks. When comparing with recent
methods [35], [42], our method outperforms results obtained
by Alansary et al. [42] and Payer et al. [35] in the localization
of single landmarks. Furthermore, our method performs on
par compared to the method proposed by Payer et al. [35] for
multi-landmark localization.

Contrary to earlier approaches, the here proposed method
can be used for both single and multi-landmark localization.
Furthermore, our method is able to localize landmarks faster
compared to competing methods. For pre-operative applica-
tions or offline tasks, such as the initialization of segmentation
methods [7], localization speed might be less important but
for real-time applications, such as intra-operative applications,
speed may be crucial [6]. For landmark localization in both
test sets of the cephalometric X-ray challenge, our proposed
method outperformed previous methods, having an error close
to the variability between the two observers.

VIl. CONCLUSION

We have shown that the proposed method is able to localize
landmarks in 2D and 3D medical images of arbitrary size,
acquired with three different imaging modalities and depicting
different anatomical coverage. The method localizes multiple
or single landmarks with high accuracy and speed, making it
suitable for application in studies including a large number of
images or real-time localization.
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