ExpReal: a Writing Language and System for Authoring Texts in
Interactive Narrative

Nicolas Szilas
TECFA-FPSE
Université de Genéve
Geneve, Switzerland
nicolas.szilas@unige.ch

ABSTRACT

As interactive narratives, by definition, change according to the
user’s choices (dynamic story), so do the dialogue utterances by the
characters. Writing all possible utterances manually faces scaling
problems. This motivates the use of natural language generation
techniques. We present ExpReal, a surface realizer and templating
language that allows authors of interactive narratives to write flex-
ible and enriched templates while maintaining control over their
use. Templates are automatically selected based on author-specified
conditions relating to the world state (e.g. characters’ emotions) or
the current task at hand. ExpReal has been developed to support at
least three languages (English, French and Dutch).

CCS CONCEPTS

« Computing methodologies — Natural language generation;
Language resources; Discourse, dialogue and pragmatics.

KEYWORDS
text generation, interactive narrative, templates, authoring

ACM Reference Format:

Nicolas Szilas, Ruud de Jong, and Mariét Theune. 2020. ExpReal: a Writ-
ing Language and System for Authoring Texts in Interactive Narrative. In
International Conference on the Foundations of Digital Games (FDG 20), Sep-
tember 15-18, 2020, Bugibba, Malta. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3402942.3402949

1 INTRODUCTION

Current adventure video games feature characters acting and talk-
ing with each other via vivid animations and well-crafted dialogues,
but the user’s influence on the story is limited [9, 14, 18]. Highly
interactive narratives are computer-generated and react to the user,
who plays the role of one of the main characters in the story. In the
most interactive cases — dealt with by this paper —, both the global
storyline and all the actions of the characters fully depend on the
user’s actions. Here, the generated events are calculated in real-time
as a structure that would contain, for example, a type of action, a
character doing the action, and objects involved in the action. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FDG °20, September 15-18, 2020, Bugibba, Malta

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8807-8/20/09....$15.00
https://doi.org/10.1145/3402942.3402949

Ruud de Jong
TECFA-FPSE
Université de Genéve
Geneve, Switzerland

ruud.dejong@unige.ch

Mariét Theune
Human Media Interaction
University of Twente
Enschede, The Netherlands
m.theune@utwente.nl

structures then need to be further processed to produce a text in
natural language, serving either as textual description of the action
or as characters’ dialogue lines. This two-step generation process
is common to very different approaches such as character-based
planning [2], rule-based forward simulation of narrative acts [15],
broad autonomous agents [6], and even machine learning based ap-
proaches [16]. Because the first step is the biggest challenge in the
field of Interactive Narrative, the second step tends to be neglected.
However, the quality of resulting text is essential in the final user
experience. One cannot imagine a game such as the TellTales games
without the colorful language used by the characters.

In the context of generated narratives, converting a structured
description of an action into surface text requires a specific techno-
logical module called a ‘surface realizer’. The quality of the final
text depends on the technical characteristics of this module — the
linguistic processing it can accomplish — but also on the human-
crafted content that it takes as input: vocabulary, style, idiomatic
phrases, etc. And finally, the quality of the texts depends on the
ability of the linguistic module to let the authors express themselves
with the tool. In this context, the surface realizer has to satisfy two
constraints:

o Genericity: it must be able to cover with a limited number
of abstract structures a large amount of specific realizations,
in order to avoid writing a myriad of specific cases.

o Authorability: it must allow authors to express themselves
by building, choosing and tuning well-designed sentences,
with colored language, appropriate to the situation.

These two constraints are often contradictory: the second one is
usually satisfied when an author works very closely with the con-
crete linguistic material, choosing the phrases and the words, while
the first one asks for abstraction and generalization. Between the
two extreme approaches that cover either one or the other con-
straint [12], that is classical Natural Language Generation tech-
niques (based on linguistic processing) and canned text (whole
sentence written for each distinctive case, with some empty slots to
be filled when necessary) we propose a trade-off solution. ExpReal
is a surface realizer and templating language that allows authors
of interactive narratives to write flexible and enriched templates
while maintaining control over their use.

2 RELATED WORK

SimpleNLG is a widely used surface realizer, originally for English
[8], that has been adapted to multiple languages and offers users
direct control over the realization process, including operations
such as word ordering and inflection. It was designed as a simpler
and more efficient alternative to other surface realizers, but its use

https://doi.org/10.1145/3402942.3402949
https://doi.org/10.1145/3402942.3402949

FDG ’20, September 15-18, 2020, Bugibba, Malta

still requires programming skills, which limits its accessibility to
authors of interactive narratives. To make SimpleNLG more accessi-
ble, Caropreso et al. [1] created a graphical tool that allows authors
to enter a sentence, indicate its variable parts, and select genera-
tion options such as pronoun gender and verb tense. SimpleNLG
then generates a list of sentences resulting from all valid variable
combinations. User tests showed that using the system was faster
and more enjoyable than manual authoring of game texts.

Templates are commonly used for dynamic text production in
games and interactive narratives. For example, character dialogue in
Versu [7] is based on text templates marked up with their social and
emotional effects. The interactive fiction (IF) system Curveship [11]
allows authors to create templates with markers for the execution
of various advanced linguistic functions. Unlike other, arguably
more popular IF systems such as Inform 7 and TADS 3, Curveship
uses a two-step generation process as described in Section 1. This
allows for narrating the same events in different styles.

Another approach to ‘authorable’ text generation uses context-
free grammars (CFGs): sets of rewrite rules that are recursively
expanded. Expressionist [13] offers a graphical authoring interface
for specifying CFGs with application-specific markers that can be
used for generating in-game texts during game play. Improv [5] also
uses grammars for in-game text generation, but Improv does not
have a strict separation between simulation and text generation.
Both Expressionist and Improv were inspired by Tracery [3], a
popular tool for writing CFGs using a simple syntax.

ExpReal, presented in this paper, shares the aim of combining
genericity and authorability with the systems presented above. Exp-
Real has most in common with the narrator component of Curve-
ship [11] in its approach and functionality. Important differences
are ExpReal’s use of SimpleNLG in combination with templates,
and its multilinguality: ExpReal currently works in three languages
and can be extended to other languages with moderate effort.

3 REQUIREMENTS

The very first requirement of any surface realizer for interactive
narrative is that it generates correct sentences. This typically cor-
responds to grammatical correctness, but can also be applied more
loosely to colloquial language. In both cases, any breach in the
language’s norm would sound odd and must be avoided.

Although a surface realizer necessarily deals with some sort of
processing (due to the genericity constraint), we introduce the key
requirement that authors enter text (the authorability constraint).
This text cannot be plain canned text, but should include additional
information: annotations, tags, slots, formatting, etc. There is no
first need for a custom authoring tool to enter this enriched text;
authors can, for example, use a spreadsheet for that purpose.

A third requirement is variability. Contrary to adventure games,
interactive narratives use the same action types repeatedly, either
with the same variables or different variables. In both cases, if the
system repeatedly generates the exact same expression, the user
perceives it as mechanical and unnatural. For example, if a character
invites another character to perform an action, she could initially
say: “Marion, would you mind sitting down?” If this action is re-
peated, the user does not expect to read exactly the same sentence,
but another formulation such as “Please, have a seat my dear”

Szilas, et al.

When authoring text for interactive narrative, genericity and
authorability often conflict: the author is not happy with a generic
formulation and wants a specific more adequate text, which con-
tradicts the genericity constraint. Solving this contradiction is the
fourth requirement: the system should allow both generic and spe-
cific texts so the author can use a proper level of specificity.

Correctness, readability, variability and variable specificity con-
stitute the four requirements for a surface realizer suited to inter-
active narrative. In the next sections, we will describe ExpReal, an
Expressive Realizer designed to meet these requirements.

4 DESCRIPTION OF EXPREAL

4.1 Overview

The input for ExpReal consists of predicates, composed of a predi-
cate symbol and a list of arguments: a general form that typically
covers the actions and events that constitute a narrative. An exam-
ple input is AskHowToAchieve(Lili,Paul,BeAtOpera), corresponding
to the action of Lili asking Paul how he plans to spend the night
at the opera. Arguments are either generic or typed according to a
list of predefined typical narrative-related elements: person, thing,
place, task and goal. An argument can also contain a list of indi-
vidual elements, coded as a string: "[ej,e2,....en]". In addition to
predicates, ExpReal also receives context information. The context
contains the enunciation context, that is who is the speaker and
who is the addressee, as well as application-specific information,
such as the emotion of the speaking character.

As output, ExpReal generates a list of one or more texts (utter-
ances). This is a list instead of just one string, because in some
applications, the text corresponding to an action or event needs to
be segmented in different parts. Our use cases involve embodied
characters that may utter the first part of the text, then perform a
specific gesture, and finally utter the second part of the text.

ExpReal is parameterized for each application with the authored
data (the content) and the language to be used for generation. Three
languages are currently covered: English, French and Dutch. The
author specifies the content in a spreadsheet, with each row cor-
responding to a template set: an element to be transformed into
text, as shown in Figure 1. All output languages are included in
the same row in the spreadsheet, which simplifies translation and
coherence checking. Templates can be written for elements of any
size: sentences, parts of sentences, but also sequences of utterances
by multiple characters. They can be nested, meaning that templates
can be used to realize the variable parts inside other templates.

The next subsections explain how the authors would fill the
spreadsheet, that is they detail the authoring language underlying
ExpReal. We made an effort to make this language readable for non
computer experts, and as close as possible to natural language.

| A B | c | D [& |
1 |#Element #Condition #English #French #Dutch
2 |askToDo can you $task? pourrais-tu $task ? kun je Stask?

Figure 1: Authoring spreadsheet structure.

ExpReal: a Writing Language and System for Authoring Texts in Interactive Narrative

4.2 Template authoring

Templates are stored in a comma-separated values (CSV) file us-
ing semicolons (;) as separator, allowing for simple editing using
Microsoft Excel, LibreOffice Calc or even simple text editors like
Notepad. The input file requires five columns, see Figure 1. The
first contains the names of the variables such as predicate types,
character names and argument names. The second column is used
for conditions (see Section 4.3). The last three columns contain the
template in English, French and Dutch, respectively. These tem-
plates can include variables that are then replaced by the predicate’s
argument, person names or nested (sub)clauses.

A single template can contain multiple utterances from different
speakers. We use em dash (—) or double en dashes (—-) as markers
to delineate the point where the speaker and listener swap roles.

4.3 Conditions

To fulfill the variable specificity requirement from Section 3, each
template can be associated with a condition, entered in the con-
dition column (see Figure 1). The condition specifies the cases in
which the template can be used. Typically, one adds constraints on
variable values. For example, the template ‘ |I could go to the
circus with %Lili!|’ corresponds to the predicate Informinten-
tion(speaker, listener, task, goal), but only if the task is ‘goToCircus’.
This is ensured by the condition ‘\$task=goToCircus’.

The ‘=" and ‘1= operators denote equality and non-equality. In
case the argument is a list of elements, one can also test if the list con-
tains an element or not by using the containing and non-containing
operators ‘>’ and ‘!>’. Several of these elementary conditions can
be included in the same cell, separated by commas, to specify the
conjunction (AND operator) of each elementary condition.

For a given predicate, there can be several template lines with
various conditions, or without any conditions. Template selection
is done as follows. First, all templates for other predicates are re-
moved, as well as all templates with unmet conditions. Then, the
template with the highest specificity (largest number of conditions)
is chosen or one is randomly picked if multiple templates have
equally high specificity. This randomness answers the requirement
of variability, particularly when considering the case of multiple
variables and embedded templates. Conditions can also be added
for simple elements. For example, a character may be called Paul in
general, but “dad” when the speaker is his son.

The specificity rule can be overridden using so-called ‘overriding
variables’, prefixed with ‘@’. In one of our use cases (Section 5),
an overriding variable is used to discriminate menu text from the
actual utterance. We used the variable ‘@userChoice’ and included
the condition ‘@userChoice=true’ for the menu texts, ensuring that
these templates will always be selected for generating menu texts.

4.4 Linguistic Processing

The processing of the templates is performed in two steps: variable
resolution and surface realization. In the first step variables are
resolved, see Figure 2. This results in templates that consist of either
the final text, or canned text enhanced with so-called ‘grammatical
blocks’. Grammatical blocks are slots within the template within
{} braces. They are used to mark parts of the text that require
further surface realization, such as inflection or pronominalization

FDG ’20, September 15-18, 2020, Bugibba, Malta

(replacing names or other referring expressions by pronouns such
as “he” or “she”). Grammatical blocks contain a name and a value.
The value is the variable or word requiring realization. The name
is one of the grammatical roles according to the internal structure
of the surface realizer, namely ‘subject’, ‘verb’, ‘object’, ‘indirect
object’ or ‘complement’. The value can range from a basic word (e.g.
the verb “be”, see Example 1) to a larger noun phrase (Example 2).
In the latter example, the abstract formulation can result in various
output sentences, depending on the context of enunciation, such

» o«

as: “Olivia is with Julia tonight”, “You are with Julia tonight”, “She

» o«

is with you tonight”, “I am with her tonight”, etc.

Please, %giveMeSomething.

+
giveMeSomething = give me {object: jacket = %julia}

variable resolution

Flease, give me {object: jacket = Ygjulia}.

surface realization

Please, give me Julia's jacket.

Figure 2: Steps of linguistic processing.

{verb: be} (1)
{subject:%Olivia} {verb:be} with {object: %Julia} tonight. (2)
Additional features of the grammatical blocks include ownership
and adjectives. Ownership describes the factual ownership of the
noun, e.g. “my jacket” vs. “Julia’s jacket”, see Example 3. Adjectives
can be added in front of the noun or right after (especially in French,
see Example 4). Grammatical blocks also implement a referring
expression generator, which replaces the blocks with pronouns if
doing so improves the natural flow of the dialog, according to the
algorithm described by McCoy & Strube [10].
It’s {object: big red jacket < %julia} (3)
C’est {object: la grande |veste| rouge < %julia} (4)
Surface realization, the second step in the linguistic processing
resulting in the final output, is done with the help of SimpleNLG-
NL [4], a trilingual extension of the bilingual SimpleNLG-EnFr
[17], capable of handling English, French and Dutch. Its API is
simple yet sufficiently powerful for our use cases. As ExpReal’s
templates are a mix of canned text and slots, SimpleNLG-NL is not
used for determining word order, but only for inflection and other
morphological transformations.

5 USE CASES

Currently, ExpReal is being used in two different applications, the
Alzheimer Care Trainer and Feline. The following descriptions of
these applications should provide an indication (though not a limit)
of the types of practical use cases for the system.

The Alzheimer Care Trainer is a personalized 3D simulation of
interactions with an Alzheimer’s patient that can act as an online
training tool for caregivers. The user (the caregiver) walks through
scenarios they might encounter in real-life with the person they
care for and can choose their own path through the interactive
narrative. ExpReal is used to generate the text inside the characters’
speech bubbles. This text depends on the personalization variables

FDG ’20, September 15-18, 2020, Bugibba, Malta

and the current situation in the game. ExpReal also generates texts
on the menu buttons that depend on the game state. It is called by
the parent narrative engine, which determines the possible choices
of the user and the reactions of the simulated patient (Figure 3).

Figure 3: Screenshot of the Alzheimer Care Trainer. In the
sentence “OK, I will sit on the chair, no problem”, “sit on the

chair” is inserted dynamically (slot mechanism).

Feline is a testbed for evaluating how players experience interact-
ing with an interactive narrative. It involves a story about a young
male who has invited a female friend to spend the evening, while
his parents want him to baby-sit his young sister (Figure 4). In the
sentence “Inform Dad that you have the intention to invite Julia
for a drink to spend a nice evening with her”, “her” is the result
of an automatic calculation of anaphoric expressions and pronoun
generation, while “Julia”, earlier in the sentence was not replaced
by a pronoun. The templates are: “Inform {indirectobject: $listener}
that [you have the intention to $task [to $goal”, “invite {object:%Julia}
for a drink” and “spend a nice evening with {object:%]Julia}”.

Tell Dad that you want to spend a nice evening with Julia
Inform Dad that you have the intention to invite Julia for a drink to spend a nice evening with her

Figure 4: Screenshot of Feline.

6 CONCLUSION

Starting from the concrete needs of dialogue writing in interactive
narratives, we designed and implemented ExpReal, a text engine
that embeds a number of advanced language generation features,
but within an authorable framework. Successfully integrated into
two different applications, ExpReal has proved to be usable by
authors and developers. The key is to work at the level of the
authored text, adding some processing cues within the written

Szilas, et al.

content itself, only when necessary. Yet, we are aware that some
complex sentences (like Example 2) become less readable by regular
authors. To improve usability, future work includes refining the
syntax to make it more accessible where possible, and exploring the
possibility to generate output examples during the writing phase.

ExpReal is open source under the Apache 2.0 license, and is
available on GitHub.!

ACKNOWLEDGMENTS

This research was carried out partially within the POSTHCARD
project, funded by the European AAL programme (aal-call-2017-
045). POSTHCARD is being made possible by ZonMW under project
number 735170004. This research was also supported by the Swiss
National Science Foundation (project #166243).

REFERENCES

[1] Maria Fernanda Caropreso, Diana Inkpen, Shahzad Khan, and Fazel Keshtkar.
2012. Template Authoring Environment for the Automatic Generation of Narra-
tive Content. Journal of Interactive Learning Research 23, 3 (2012), 227-249.
Marc Cavazza and Fred Charles. 2005. Dialogue Generation in Character-based
Interactive Storytelling. In Proceedings of the First Artificial Intelligence and Inter-
active Digital Entertainment Conference. 21-26.

Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: An Author-

Focused Generative Text Tool. In International Conference on Interactive Digital

Storytelling. 154-161.

Ruud de Jong and Mariét Theune. 2018. Going Dutch: Creating SimpleNLG-NL.

In Proceedings of The 11th International Natural Language Generation Conference.

Association for Computational Linguistics (ACL), 73-78.

[5] Bruno Dias. 2019. Procedural Descriptions in Voyageur. In Procedural Storytelling

in Game Design, TX. Short and T. Adams (Eds.). CRC Press.

[6] Jodo Dias, Samuel Mascarenhas, and Ana Paiva. 2011. FAtiMA Modular: Towards

an Agent Architecture with a Generic Appraisal Framework. In Workshop on

Standards in Emotion Modeling. Leiden.

Richard Evans and Emily Short. 2014. Versu — A Simulationist Storytelling

System. IEEE Transactions on Computational Intelligence and Al in Games 6, 2

(2014), 113-130.

Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A realisation engine for practical

applications. In Proceedings of the 12th European Workshop on Natural Language

Generation (ENLG 2009). 90-93.

Michael Mateas and Andrew Stern. 2003. Integrating plot, character and natural

language processing in the interactive drama Facade. In Proceedings of Technolo-

gies for Interactive Digital Storytelling and Entertainment.

[10] Kathleen F. McCoy and Michael Strube. 1999. Generating anaphoric expressions:
pronoun or definite description?. In Proceedings of the Workshop on The Relation
of Discourse/Dialogue Structure and Reference. 63-71.

[11] Nick Montfort. 2011. Curveship’s automatic narrative style. In Proceedings of the
International Conference on the Foundations of Digital Games, FDG ’11. 211-218.

[12] Ehud Reiter. 1995. NLG vs. Templates. In Proceedings of the Fifth European
Workshop on Natural-Language Generation (ENLGW-1995).

[13] James Ryan, Ethan Seither, Michael Mateas, and Noah Wardrip-fruin. 2016. Ex-
pressionist: An Authoring Tool for In-Game Text Generation. In 9th International
Conference on International Digital Storytelling (ICIDS 2016). 221-233.

[14] Nicolas Szilas. 1999. Interactive Drama on Computer: Beyond Linear Narrative.
In Narrative Intelligence - Papers from the 1999 AAAI Fall Symposium. 150-156.

[15] Nicolas Szilas. 2007. A Computational Model of an Intelligent Narrator for
Interactive Narratives. Applied Artificial Intelligence 21, 8 (2007), 753-801.

[16] Pradyumna Tambwekar, Murtaza Dhuliawala, Lara] Martin, Animesh Mehta,
Brent Harrison, and Mark O Riedl. 2019. Controllable Neural Story Plot Genera-
tion via Reward Shaping. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence (IJCAI 19). 5982-5988.

[17] Pierre-Luc Vaudry and Guy Lapalme. 2013. Adapting SimpleNLG for Bilingual
English-French Realisation. In Proceedings of the 14th European Workshop on
Natural Language Generation. 183-187.

[18] Peter Weyhrauch. 1997. Guiding Interactive Drama. Ph.D. Dissertation. Carnegie
Mellon University.

[2

—

B3

=

4

flaas’

7

—

[8

[

[

—

Uhttps://github.com/rfdj/ExpReal

	Abstract
	1 Introduction
	2 Related work
	3 Requirements
	4 Description of ExpReal
	4.1 Overview
	4.2 Template authoring
	4.3 Conditions
	4.4 Linguistic Processing

	5 Use Cases
	6 Conclusion
	Acknowledgments
	References

