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Abstract. This paper introduces the statistical model checker FIG 1.2,
that estimates transient and steady-state reachability properties in sto-
chastic automata. This software tool specialises in Rare Event Simulation
via importance splitting, and implements the algorithms restart and
Fixed Effort. FIG is push-button automatic since the user need not define
an importance function: this function is derived from the model speci-
fication plus the property query. The tool operates with Input/Output
Stochastic Automata with Urgency, aka iosa models, described either
in the native syntax or in the jani exchange format. The theory backing
FIG has demonstrated good efficiency, comparable to optimal importance
splitting implemented ad hoc for specific models. Written in C++, FIG
can outperform other state-of-the-art tools for Rare Event Simulation.

1 Introduction

In formal analysis of stochastic systems, statistical model checking (smc [33])
emerges as an alternative to numerical techniques such as (exhaustive) proba-
bilistic model checking. Its partial, on-demand state exploration offers a memory-
lightweight option to exhaustive explorations. At its core, smc integrates Monte
Carlo simulation with formal models, where traces of states are generated dy-
namically e.g. via discrete event simulation. Such traces are samples of the states
where a (possibly non-Markovian) stochastic model usually ferrets. Given a tem-
poral logic property ϕ that characterises certain states, an smc analysis yields
an estimate γ̂ of the actual probability γ with which the model satisfies ϕ. The
estimate γ̂ typically comes together with a quantification of the statistical error:
two numbers δ ∈ (0, 1) and ε > 0 such that γ̂ ∈ [γ − ε, γ + ε] with probability δ.
Thus, if n traces are sampled, the full smc outcome is the tuple (n, γ̂, δ, ε).

With this statistical quantification—usually presented as a confidence in-
terval (ci) around γ̂—an idea of the quality of an estimation is conveyed. To
increase the quality one must increase the precision (smaller ε) or the confidence
(bigger δ). For fixed confidence, this means a narrower ci around γ̂. The number
of traces n is inversely proportional to ε and to the ci width, so smc trades
memory for runtime or precision when compared to exhaustive methods [5].

This trade-off of smc comes with one up and one down. The up is the capa-
bility to analyse systems whose stochastic transitions can have non-Markovian
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distributions. In spite of gallant efforts, this is still out of reach for most other
model checking approaches, making smc unique. The down are rare events.
If there is a very low probability to visit the states characterised by the prop-
erty ϕ, then most traces will not visit them. Thus the estimate γ̂ is either (an
incorrect) 0 or, if a few traces do visit these states, statistical error quantifi-
cation make ε skyrocket. To counter such phenomenon, n must increase as γ
decreases. Unfortunately, for typical estimates such as the sample mean, it takes
n > 384/γ to build a (rather lax!) ci where δ = 0.95 and ε = γ

10 . If e.g. γ ≈ 10−8

then n > 38400000000 traces are needed, causing trace-sampling times to grow
unacceptably long. Rare Event Simulation (res [24]) methods tackle this issue.

The two main res methods are importance sampling (is) and importance
splitting (isplit). is compromises the aforementioned up, since it must tamper
the stochastic transitions of the model. Given that the study of non-Markovian
systems is a chief reason to use smc, FIG, a statistical model checker specialised
in res, implements isplit. To deploy an efficient implementation, however,
both importance sampling and splitting require expert knowledge. The novelty
of FIG lies on its automatic derivation of the importance function (and thresholds
and splitting values) required by isplit. This derivation exploits the model and
property under study, resulting in a push-button application of res for smc.
Outline. The way in which FIG approaches res is explained in Sec. 2. Its model
and properties input syntax are presented in Sec. 3. Finally, Sec. 4 mentions some
features of FIG 1.2, before ending the paper with the briefest experimental display.
Related work. Other statistical model checkers offer res methods to some
degree of automation. Plasma Lab implements automatic is [18] and semiau-
tomatic isplit [21] for Markov chains. Its isplit engine offers a wizard that
guides the user to choose an importance function. The wizard exploits a lay-
ered decomposition of the property query—not the system model. Via apis,
the isplit engine of Plasma Lab could be extended beyond dtmc models.
SBIP 2.0 [22] implements the same (semiautomatic, property-based) engine for
dtmcs. SBIP offers a richer set of temporal logics to define the property query
in. Cosmos [1] and ftres [26] implement importance sampling on Markov
chains, the latter specialising in systems described as repairable Dynamic Fault
Trees (dfts). All these tools can operate directly on Markovian models, and
none offers fully automated isplit. Instead, the smc tool modes [5] supports
non-Markovian probability distributions and is much closer to the capabilities
of FIG, offering a similar degree of automation. As a matter of fact, all core res
algorithms in modes were inspired in or motivated by the theory behind FIG. On
the one hand, FIG is restricted to fully-stochastic iosa models, whereas modes
can also cope with nondeterminism (e.g. in Markov automata) using the LSS
algorithm [10, 5]. On the other hand, using the batch means method, FIG can
estimate steady-state properties, which modes cannot currently do. Moreover,
FIG 1.2 implements basic functionality to tailor importance functions for dfts.

Previous versions of FIG have been used for scientific experimentation and
research: the theory of [6] was first implemented and exercised with FIG 1.0; and
FIG 1.1 was presented in [2], and last used in an extended journal version of [5].
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2 Rare Event Simulation

res methods make more traces visit the rare states that satisfy a property ϕ (the
set Sϕ), to reduce the variance of smc estimators. For a fixed budget of traces
n, this yields more precise cis than classical Monte Carlo simulation (cmc).

FIG implements importance splitting: a main res method that can work on
non-Markovian systems without special considerations. isplit splits the states
of the model into layers that wrap Sϕ like an onion. Reaching a state in Sϕ from
the surface is then broken down into many steps. The i-th step estimates the
conditional probability to reach (the inner) layer i+ 1 from (the outer) layer i.
This stepwise estimation of conditional probabilities can be much more efficient
than trying to go in one leap from the surface of the onion to its core [20].

Formally, let S be the states of a model with initial states S0 and rare states
Sϕ. isplit works on a partition

⊎M
i=0 Si = S , where Sϕ = SM . To estimate the

probability γ = Prob(Sϕ |S0), each conditional probability γi = Prob(Si |Si−1)
is estimated separately via cmc. Then simply γ̂ =

∏M
i=1 γ̂i ≈

∏M
i=1 γi = γ.

This approach is correct, i.e. it yields an unbiased estimator γ̂ n→∞−−−−→ γ.
However, it is efficient iff ∀Mi=1 . γi � γ, which depends on how the Si layers
where chosen. For this, an importance function f : S → R>0 and thresholds
`i ∈ R>0 are defined: then Si = {s ∈ S | `i 6 f(s) < `i+1}, where `0 = 0,
and Sϕ are the states with highest importance, i.e. f(s) > `M . The efficiency of
isplit is thus delegated to the choice of {`i}Mi=1 and the importance function f .

These choices are the key challenge in isplit [20]. Theoretical developments
assume f is given [12, 8], and applications define it ad hoc via (res and domain)
expert knowledge [30, 27]. Yet there is one general rule: importance must be
proportional to the probability of reaching Sϕ. Thus for s, s′ ∈ S , if a trace
that visits s′ is more likely to observe a rare state, one wants f(s) 6 f(s′). This
means that f depends both on the model M and the property ϕ that define Sϕ.

FIG, an smc tool, exploits the formal definitions of M and ϕ to derive f and
{`i}Mi=1 so as to reflect this rule. For this, FIG runs bfs from Sϕ on the (invert-
ed) transitions of M. This computes the number-of-transitions distance from each
state to Sϕ. The heuristic importance function of FIG, f?, is the inverse of this
distance, stored as an array the size of S . To avoid the state explosion FIG works
on modular formalisms, deriving local f?i for the Mi whose parallel composition
forms M. f? is an aggregation of these functions, e.g. adding the f?i of every Mi

with variables in ϕ. Details are in [2] and also in [5], where the difference with
the (later) implementation in modes is that FIG uses the dnf of ϕ.

f? is solely based on the number-of-transitions distance. Stochastic behaviour
of M omitted by f?, such as probabilistic labels in the transitions, is captured in
the thresholds `i. For this, FIG runs short simulations that start from S0. Say K1
out of N simulations visit states with importance i1 > i0 = f?(S0). Then, 1 out
of e1 =

⌈
N
K1

⌉
simulations are expected to reach threshold `1 = i1. Next, repeat

this procedure starting from states with importance i1 to choose `2 and e2. Etc.
Such threshold-selection algorithms (see Sec. 4) are fully described in [4].

Thus, just from M and ϕ, FIG enables isplit by computing f? and {`i, ei}Mi=1.
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3 Modelling formalism and input languages
IOSA. FIG models are Input/Output Stochastic Automata with urgency [11].
In iosa, continuous variables called clocks sample random values from arbitrary
distributions (pdfs). As time evolves, all clocks count down at the same rate.
The first to reach zero can trigger events and synchronise with other modules,
broadcasting an output action that synchronises with homonymous input actions
(iosa are input-enabled). Actions can be urgent, where urgent outputs have
module M1

fc,rc : clock;
inf,brk : [0..2] init 0;
[fl!] brk==0 @ fc -> (inf’=1)

& (brk’=1);
[r??] brk==1 ->(brk’=2) & (rc’=γ);
[up!] brk==2 @ rc -> (inf’=2)

& (brk’=0)
& (fc’=µ);

[f!!] inf==1 -> (inf’=0);
[u!!] inf==2 -> (inf’=0);

endmodule

Code 1: iosa module in FIG 1.2

maximal progress. iosa can thus be nondeter-
ministic: to allow simulation, [23] gives condi-
tions to ensure determinism modulo weak bi-
simulation. iosa variables are clocks, integers,
or Booleans. Constants can also be floats and
have global scope (variables are module-local).
FIG offers array variables and can get e.g. “a-
random/the-smallest value.” Code 1 shows the
guarded command language of FIGmodels. Dec-
orators ?/! tell an action is input/output, e.g.

fl!. Double decorators (r??) are for urgency. Non-urgent outputs can be sent only
on clock expiration ([fl!]· · · @ fc ->). A clock can sample random values (fc’=µ).
JANI. Besides its native input syntax, FIG 1.2 reads models written in the jani
exchange format [7]. Model types supported are ctmc and a subset of sta that
matches iosa, e.g. with a single pdf per clock and broadcast synchronisation.
FIG also translates iosa to jani as sta, to share models with tools such as the
Modest Toolset [16] and Storm [13]. This is used in Sec. 4 for comparisons.
Properties. FIG estimates the probability with which input properties

P( q2>0 U q2==8 )
S( q2>=8 )
S[9:999]( q2>=8 )

endproperties

Code 2: Property
queries in FIG

models satisfy temporal logic formulæ. A formula is specified
as a (transient or steady-state) property query in the model
file. Transient properties in FIG correspond to the pctl-like
query P=? in prism [19]: e.g. the first property in Code 2
asks the probability of assigning value 8 to variable q2 before
it takes a value 6 0. Steady-state properties in FIG correspond to the unbounded
csl-like query S=? in prism: e.g. S(q2>=8). For steady-state estimations FIG
implements batch means [9]. The initial (discarded) transient simulation time,
and the batch time, can be heuristically computed by the tool. These values can
also be given by the user—in Code 2, the last property specifies 9 and 999 resp.

4 FIG 1.2 showcase
The Finite Improbability Generator is written in C++14 and is available at https:
//git.snt.utwente.nl/buddece/fig under the gnu gplv3. FIG is built in modules
across three categories: simulation engines, importance functions, and thresholds
builders. Engines are nosplit, restart, and sfe, which resp. run cmc, restart
(rst [31]), and Fixed Effort (fe [14]) simulations. The latter two are isplit
algorithms: fe was described in Sec. 2, and works for transient properties; rst
also works for steady-state analysis (steady-state via fe requires regeneration

https://hitchhikers.fandom.com/wiki/Infinite_Improbability_Drive
https://git.snt.utwente.nl/buddece/fig
https://git.snt.utwente.nl/buddece/fig
https://choosealicense.com/licenses/gpl-3.0/
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theory [15], seldom applicable to non-Markovian models and unsupported by
FIG 1.2). rst and fe work with an effort e. fee means e simulations are ran in
a layer Si. rste means e− 1 clones are spawned when a simulation up-crosses
a threshold `i. Omitting e makes FIG 1.2 use respectively fe8 or rst3.

A res run yields a random value r ∈ [0, 1] of unknown distribution, so
FIG computes standard clt confidence intervals with Student’s t-distribution
quantiles. r has a Bernoulli distribution only for transient properties estimated
with cmc: FIG can then use Wilson score intervals [32]. Floating-point precision
loss is reduced by using the logarithm of r and of the number of runs.

FIG reads or computes importance functions. Option --adhoc takes as manda-
tory argument a function on the variables of the iosa modules. Instead, --amono
automatically builds f? on the parallel composition of all modules, and --acomp
builds a local f?i per iosa module—see Sec. 2. For --acomp, FIG takes an optional
argument to aggregate all local f?i into one global f?. This can be an associa-
tive binary arithmetic operator, or a custom function on the names of the iosa
modules. By default, f? is computed as the sum of all local functions. Option
--dft 0 indicates that the model is a fault tree: FIG then builds specialised local
importance functions for certain modules, e.g. basic events and pand gates.

Two algorithms in FIG 1.2 can compute the thresholds and efforts {`i, ei}Mi=1.
Sequential Monte Carlo [8, 6] (seq, option -t hyb) is characterised by one effort
for all regions Si, set with -g e. Instead, Expected Success [4] (es, -t es) deter-
mines each effort ei per Si region. By default FIG 1.2 uses -e restart -g 3 -t hyb.
Other customisable options are the rng, its seed, the floating point precision,
and a timeout. Mandatory arguments for FIG invocation are the model and prop-
erties file, the simulation type (--flat for cmc, or --adhoc/amono/acomp for res),
and a stop criterion (either time, or confidence and precision of the ci).
Experimental demonstration. We display the capabilities of FIG via three
experiments. First, we show how isplit implemented in FIG 1.2 is as automatic
but more efficient than cmc to estimate rare properties. Second, we test the
degree to which f? in FIG can approximate optimal importance functions chosen
ad hoc for some models. Third, we compare FIG and its closest competitor: modes.
All these experiments can be reproduced via the artifact freely available in [3].

We test different configurations of engines, efforts, and thresholds. For each
configuration we run simulations until some timeout. This yields a ci with preci-
sion 2ε for confidence coefficient δ = 0.95. The smaller the ε, the narrower the ci,
and the better the performance of the configuration (and tool) that produced it.

First, we analyse repairable dfts with warm spares and exponential (fail),
normal (repair), and lognormal (dormancy) pdfs. Using cmc, fe8,16,32 and
rst3,4,6 we estimate the probability of a top level event after the first failure,
before all components are repaired, in trees with 6, 7, and 8 spares (the small-
est iosa has 116 variables and > 2.5 e 37 states). For isplit we used seq
thresholds with --dft 0 --acomp and no arguments, i.e. as automatic as cmc.

With a 20 min timeout, each configuration was repeated 13 times in a Xeon
E5-2683v4 CPU running Linux x64 4.4.0. The height of the bars in the top plot
of Fig. 1 is the average ci precision (lower is better), using Z-scorem=2 to remove
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Fig. 1: ci precision. Top: dfts (transient). Bottom: queues (steady-state).

outliers [17]. Whiskers are standard deviation, and white numbers indicate how
many runs yielded not-null estimates. Clearly, res algorithms outperform cmc
in the hardest cases: less than half of cmc runs in DFT-8 could build (wide) cis.

Second, we estimate the steady-state overflow probability in the last node
of tandem queues, on a Markovian case with 2 buffers [29], 3 buffers [28], and
a non-Markovian 3-buffers case [30]. We study how FIG—using --amono, seq,
and rst3,4,5,7,9—approximates each optimal ad hoc function and thresholds of
[29, 28, 30]. Experiments ran as before: the bottom plot of Fig. 1 shows that FIG’s
default (rst3 with seq, legend “AUTO 3”) is always closest to the optimal.

Third, we compare FIG and modes in the original benchmark of the latter [5].
We do so for fe-seq, rst-seq, rst-es, using each tool’s default options.
We ran each benchmark instance 15 min, thrice per tool, in an Intel i7-6700
CPU with Linux x64 5.3.1. The scatter plots of Fig. 2 show the median of the ci
precisions. Sub-plots on the bottom-right are a zoom-ins in the range [10−10,10−5].

An (x,y) point is an instance whose median ci width was x for FIG 1.2 and y
for modes netcore-3.0.150, single threaded. A point over the solid diagonal line
means FIG built a narrower ci. A point on the upper boundary means that modes
built no cis in all runs. Dotted diagonal lines indicate cis twice as wide. Fig. 2
shows that both tools perform similarly, with a slight trend in favour of FIG.
This could be caused by modes operating on jani sta (translated from iosa
by FIG): modes must assign values to variables and then compare them to clocks.

Albeit modes is multi-threaded, these experiments ran on a single thread to
compare both tools on equal conditions. On the other hand, FIG also estimates
the probability of steady-state properties, for which there is no support in modes.

10 -16 10 -12 10 -8 10 -4
10 -16
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10 -8

10 -4

to

to

Fixed Effort (seq)

10 -16 10 -12 10 -8 10 -4
10 -16
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restart (seq)

10 -16 10 -12 10 -8 10 -4
10 -16

10 -12

10 -8

10 -4

to

to

restart (es)

oilpipes database tandem-queue open-closed-queue queue-with-breakdowns

Fig. 2: ci precision of FIG (x-axis) vs. modes (y-axis): medians of 3 runs × 15 min
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