
The Dynamic Fault Tree Rare
Event Simulator

Carlos E. Budde1(B) , Enno Ruijters2 , and Mariëlle Stoelinga1,3

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{c.e.budde,m.i.a.stoelinga}@utwente.nl

2 BetterBe, Enschede, The Netherlands
mail@ennoruijters.nl

3 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. The dynamic-fault-tree rare event simulator, DFTRES, is
a statistical model checker for dynamic fault trees (DFTs), supporting
the analysis of highly dependable systems, e.g. with unavailability or
unreliability under 10−30. To efficiently estimate such low probabilities,
we apply the Path-ZVA algorithm to implement Importance Sampling
with minimal user input. Calculation speed is further improved by selec-
tive automata composition and bisimulation reduction. DFTRES reads
DFTs in the Galileo or JANI textual formats. The tool is written in Java
11 with multi-platform support, and it is released under the GPLv3. In
this paper we describe the architecture, setup, and input language of
DFTRES, and showcase its accurate estimation of dependability metrics
of (resilient) repairable DFTs from the FFORT benchmark suite.

1 Introduction

Our modern societies depend heavily on complex electro-mechanical systems,
making it essential to ensure that such systems are reliable. An industry-standard
technique to assess reliability is fault tree analysis. However, an unavoidable bot-
tleneck of this technique is that exact analysis becomes too memory-intensive for
complex dynamic fault trees (dfts [6]). Alternatively, Monte Carlo simulation
can be used to statistically estimate the likelihood of undesired events such as
system failure. Although constant in memory usage, this approach takes unac-
ceptably long times to converge when a system failure is rare, i.e. highly unlikely.
An effective solution then is to use rare event simulation (res [15]).

This paper presents 1: a statistical analysis tool for dfts that applies
Importance Sampling (IS [10]). IS is one of the most efficient approaches to per-
form res analyses, and allows to drastically speed up accurate estima-
tions of rare failures in repairable dfts. Whereas most res techniques rely on
expert input, allows a fully automatic application of IS [18].

1 Available at https://github.com/utwente-fmt/DFTRES.

This work was partially funded by NWO project 15474 (SEQUOIA).

The original version of this chapter was revised: Reference 5 has been corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-59854-9 21

c© Springer Nature Switzerland AG 2020, corrected publication 2020
M. Gribaudo et al. (Eds.): QEST 2020, LNCS 12289, pp. 233–238, 2020.
https://doi.org/10.1007/978-3-030-59854-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59854-9_17&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-5855-5282
http://orcid.org/0000-0001-6793-8165
https://github.com/utwente-fmt/DFTRES
https://doi.org/10.1007/978-3-030-59854-9_21
https://doi.org/10.1007/978-3-030-59854-9_17


234 C. E. Budde et al.

Related Work. Various tools exist to analyse dfts, see [19]. The model checker
Storm [11] offers a dft front-end. Storm produces exact results through model
checking, requiring the full state-space, and does not support repairs. Other
tools for rare event simulation of automata include Plasma Lab [12], where the
user must manually parameterise the model, and [2] and modes [3], which
implement a res method other than IS, less suited to analyse dfts.

Previous versions of were experimentally evaluated in [18] and [9],
where it was called “FTRES.” In Sect. 3 we mention new features that have been
implemented ever since, most prominently weak-bisimulation reduction during
initial automata composition, and so-called forcing for time-bounded properties.

Organization of the Paper. After some background in Sect. 2, we explain the
operation and structure of in Sect. 3, and show its performance in Sect. 4.

2 Rare Event Simulation for Fault Trees

Fig. 1. A repairable DFT

Fault trees are an industry-standard graphical formal-
ism for reliability analysis [19]. A (dynamic) fault tree
models possible failures of a system by decomposing
it into basic events, denoted by circles and represent-
ing elemental failure causes of components, and gates,
denoted by various symbols and representing how fail-
ures interact and which combinations of smaller fail-
ures lead to system failure. Figure 1 shows an exam-
ple: the top AND-gate (G1) means that both G2 and
A must fail for the system to fail. G2 is a SPARE -gate, meaning that B and its
spares S1 and S2 must fail; but the spares cannot not fail before they are used.
Insp denotes a periodic simultaneous inspection and repair of all basic events.

When basic events are decorated with failure probabilities or rates, it is
possible to compute numerical resilience metrics of the system. These include
reliability, the probability that the system remains functional until some given

Fig. 2. The overall structure of



DFTRES 235

“mission time,” and also (for systems with repairable components) availability,
the average fraction of time that the system is functional.

For large fault trees, particularly with complex dynamic gates describing
time-dependent failure effects or with complex repair policies, exact numerical
analysis becomes infeasible due to time and memory exhaustion. Such systems
may still be analyzed using Monte Carlo simulation, at the expense of requiring
many simulation runs for high accuracy, particularly when the event of interest
(system failure) is highly unlikely.

addresses this problem using Importance Sampling with the Path-
ZVA algorithm [14]. This IS scheme effectively adjusts the failure rates to make
system failures more likely, performs simulation runs, then corrects for the
adjusted failure rates to estimate the original failure probability. This allows
for high-accuracy estimations in relatively few simulation samples [18].

3 DFTRES

Fig. 3. (Extended) Galileo for Fig. 1

The architecture of is de-
picted in Fig. 2: a fault tree in
the widely-used Galileo format
[9,11,17,20] (e.g. Fig. 3) is trans-
lated into a network of automata
by DFTCalc [1], and input into

. Alternatively, a network
of automata in jani format [4]
can be input directly. then performs several optimizations to reduce the
state-space, generates (a part of) the composed state-space, and performs (IS)
simulations to estimate numeric metrics such as system reliability. The automata
and composed system can also be output for analysis by other tools.

begins its analysis with an optimization stage (new since [9]): tran-
sitions of the automata that cannot synchronize are removed and all automata
are reduced modulo weak bisimulation. Further, so-called don’t care optimization
is performed by collapsing and discarding groups of states without observable
behavior. Pairs of automata with a small composed state-space (by default at
most 256 states) are composed and reduced again, and this process is repeated
until no more compositions can be made.

Finally, to compute relevant metrics, simulation is performed using IS,
namely the Path-ZVA algorithm [14] and, (new since [9]) for time-bounded
properties, forcing [13]. Supported metrics are reliability (time-bounded or
-unbounded reachability) and availability (steady-state probability). Mean time
to failure (expected reward) can also be estimated, but not using IS. Simulation
runs are sampled, in parallel on multi-core systems, until a specified time bound
or simulation number is reached, or a desired relative or absolute estimated error
is reached. Results are presented as (by default) 95% confidence intervals (cis)2.
2 While every effort is made to provide accurate confidence intervals, their coverage can

fall considerably below 95% due to the extreme probability distributions involved [8].



236 C. E. Budde et al.

is released under the GPLv3, and is cross-platform due to its imple-
mentation in Java, without run-time dependencies. It requires only a Java com-
piler and Make [7] to build. Galileo input is provided by DFTCalc, which is sup-
ported on Linux and Mac. is designed to be easily extensible to additional
input formats and IS schemes. ’s command-line interface provides many
options, but typically requires only the model file, property, and desired accu-
racy. For instance, “java -jar DFTRES.jar -a --relErr 0.05 model.dft”
estimates availability (-a) to a relative error of 0.05. More examples can be
found in an artifact prepared for experimental reproduction [5].

4 Experimental Evaluation

We estimated the (un)reliability and (un)availability of four repairable
dfts from the FFORT benchmark [17]: Cabinets-2-2, FTPP-2-2-repair,
HECS-2-2-repair, and RBC. All experiments ran in an 8-core Intel® i7-6700
with 24 GB RAM. The results are shown in Fig. 4.

Fig. 4. Experimental results

We estimated the system unreliability (i.e. the probability that the system
fails before) mission times 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. We built
95% cis for 5% relative error: Fig. 4b shows how the unreliability decreases
exponentially—from right to left—as a function of the mission time. Figure 4a
plots the runtime needed for ci with 5% accuracy. Unlike traditional simulation,
runtime is almost independent of the value being estimated. Instead, the model
structure and complexity is the primary factor affecting analysis time, mainly
governed by the length of the shortest path(s) to a rare event.

Figure 4c shows unavailability analyses. We let estimations run for 0.5, 1, 2,
5, and 10 min, and measured the relative width of the resulting ci. With longer
runtime builds more accurate, narrower intervals: the precision improves

https://dftbenchmarks.utwente.nl/other/fault_trees/cabinets/cabinets.2-2.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/ftpp/ftpp.2-2-repair.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/hecs/hecs_2_2_2_4.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/rbc/rbc.dft


DFTRES 237

approximately as the square root of time, which can be explained by observing
that the standard error of the mean decreases as the square root of the number
of samples.

In [5] we provide an artifact to easily reproduce our experiments. It runs
in Debian-based Linux distributions, such as the virtual machine available at
https://figshare.com/articles/tacas20ae ova/9699839.

References

1. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2 27

2. Budde, C.E.: FIG: the finite improbability generator. TACAS 2020. LNCS, vol.
12078, pp. 483–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5 27

3. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 1–22 (2020). https://doi.org/10.1007/s10009-020-00563-2

4. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

5. Budde, C.E., Ruijters, E., Stoelinga, M.: The dynamic fault tree rare event
simulator: experimental replication package (2020). https://figshare.com/articles/
software/The Dynamic Fault Tree Rare Event Simulator/12235889, https://doi.
org/10.6084/m9.figshare.12235889.v2

6. Dugan, J., Boyd, S.B.M.: Fault trees and sequence dependencies. In: Annual
Proceedings on Reliability and Maintainability Symposium, pp. 286–293 (1990).
https://doi.org/10.1109/ARMS.1990.67971

7. Feldman, S.I.: Make - a program for maintaining computer programs. Softw. Pract.
Exp. 9(4), 255–265 (1979). https://doi.org/10.1002/spe.4380090402

8. Glynn, P.W., Rubino, G., Tuffin, B.: Robustness properties and confidence interval
reliability issues. In: Rubino and Tuffin [16], pp. 63–84. https://doi.org/10.1002/
9780470745403.ch4

9. Hartmanns, A., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: TACAS. LNCS, vol. 11429, pp. 69-92. Springer (2019). https://
doi.org/10.1007/978-3-030-17502-3 5

10. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995). https://doi.org/10.1145/
203091.203094

11. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. arXiv e-prints arXiv:2002.07080 (2020). https://arxiv.org/
abs/2002.07080

12. Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theor. Comput. Sci. 649, 1–24 (2016). https://doi.org/
10.1016/j.tcs.2016.08.009

https://figshare.com/articles/tacas20ae_ova/9699839
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/s10009-020-00563-2
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://figshare.com/articles/software/The_Dynamic_Fault_Tree_Rare_Event_Simulator/12235889
https://figshare.com/articles/software/The_Dynamic_Fault_Tree_Rare_Event_Simulator/12235889
https://doi.org/10.6084/m9.figshare.12235889.v2
https://doi.org/10.6084/m9.figshare.12235889.v2
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1002/9780470745403.ch4
https://doi.org/10.1002/9780470745403.ch4
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1145/203091.203094
https://doi.org/10.1145/203091.203094
http://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1016/j.tcs.2016.08.009
https://doi.org/10.1016/j.tcs.2016.08.009


238 C. E. Budde et al.

13. Nicola, V.F., Shahabuddin, P., Nakayama, M.: Techniques for fast simulation of
models of highly dependable systems. IEEE Trans. Reliab. 50(3), 246–264 (2001).
https://doi.org/10.1109/24.974122

14. Reijsbergen, D., de Boer, P.T., Scheinhardt, W., Juneja, S.: Path-ZVA: general,
efficient and automated importance sampling for highly reliable Markovian sys-
tems. ACM TOMACS 28(3), 22:1–22:25 (2018). https://doi.org/10.1145/3161569

15. Rubino, G., Tuffin, B.: Introduction to rare event simulation. In: Rubino and Tuffin
[16], pp. 1–13. https://doi.org/10.1002/9780470745403.ch1

16. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
Wiley, Hoboken (2009). https://doi.org/10.1002/9780470745403

17. Ruijters, E., et al.: FFORT: a benchmark suite for fault tree analysis. In: ESREL,
pp. 878–885 (2019). https://doi.org/10.3850/978-981-11-2724-3 0641-cd

18. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliab. Eng. Syst. Safety 186, 220–231 (2019). https://
doi.org/10.1016/j.ress.2019.02.004

19. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

20. Sullivan, K.J., Dugan, J.B.: Galileo user’s manual & design overview, v2.1-alpha
(1998). www.cse.msu.edu/∼cse870/Materials/FaultTolerant/manual-galileo.htm

https://doi.org/10.1109/24.974122
https://doi.org/10.1145/3161569
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1002/9780470745403
https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm

	The Dynamic Fault Tree Rare Event Simulator
	1 Introduction
	2 Rare Event Simulation for Fault Trees
	3 DFTRES
	4 Experimental Evaluation
	References




