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Abstract

Based on the deal-by-deal principle, we propose preference indices as

a starting point for the analysis of rational choice. They specify how

good acts are as a deal. Thus, the recognition of reference points

in Prospect Theory is interpreted as a crucial step towards modeling

rationality, to be extended to a degree of goodness level for all acts, in

order to reflect context dependency in a more refined way. We show

how this leads to an uncomplicated syntax for updating, reconciling

familiar concepts in dynamic choice theory. A representation theorem

characterizes the weakly decomposable preferences in our framework.

We also describe a relaxation of gain-loss separability in Prospect

Theory, by a refinement of comonotonicity, to bring it closer to our
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framework. Furthermore, we show that S-shaped probability weight-

ing can be explained as an artefact under betweenness for binary lot-

teries, and conclude that rationality comes nearer to behavioral evi-

dence than generally believed.

Keywords: reference point, updating, prospect theory, status quo

bias, dynamic consistency, betweenness, consequentialism, probabil-

ity weighting, rank dependent utility, Choquet integral,
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1 Introduction

Rationality of choice is a contentious issue, for good reasons. Besides the

complexity of real world decisions, there is the fundamental philosophical

problem of rationalizing the arguments for rationality, spiraling off eventually

into questions about free will and the meaning of life, if not the universe.

At best, we can formulate conditional statements that take some elementary

principles of rationality for granted, for the time being, agreeing with (Gilboa,

2015) that sorting out these principles is essentially a matter of ongoing

discussion.

One of these rationality principles is that we should be indifferent to

different ways achieving exactly the same prospect on final wealth. It is

the cornerstone of Prospect Theory (PT), the best-known behavioral model

for decision making, to recognize that we do not choose this way, but take

changes as carriers of value, rather than end states (Kahneman and Tversky,

1979). Whereas we should dryly aggregate changes with respect to a fixed

status quo reference point, we adjust it time and again. Concretely, we

should not discriminate between a low bonus followed by a lottery with gains,
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and a high bonus followed by a lottery with losses, when their net result is

the same.1 This marks the farewell of behavioral modeling to rationality,

confirmed again in Kahneman et al. (1991): “the important notion of a

stable preference order must be abandoned in favor of a preference order

that depends on the current reference level.”

We take the opposite standpoint, and welcome the recognition of reference

points as an important step towards rationality. Rather than seeking some

justification in our self, e.g. in how we expect to actually experience the

consequences (Tversky and Kahneman (1991)), we emphasize the awareness

of the other, and argue that it is primarily due to alertness, game-theoretic

robustness, decision making on the qui vive. Our viewpoint is based on the

following three considerations.

1. A move of nature is not a contract. We stay close to the mathemati-

cal starting point of PT, and model objects of choice as uncertain or risky

prospects with monetary outcomes, to which a decision maker (DM) assigns

a value that represents her preference ordering. We also stick to the original

definition in Kahneman and Tversky (1979) of a prospect as a contract, but

we are more keen on keeping it at that: one contract as the natural unit of

1 For future reference, we summarize this example in Kahneman and Tversky (1979).

In an experiment, they compare two situations: in Problem 11, first receiving a bonus of

1000, and then making a choice between (A) a lottery with 50% chance winning 1000, or

(B) a gift of 500, and in Problem 12, first receiving a bonus of 2000, and then making a

choice between (C) a loss of 1000 with 50% probability, or (D) a sure loss of 500. They

find that “the majority of subjects chose B in the first problem and C in the second”,

while, “when viewed in terms of final states, the two choice problems are identical”. They

conclude: “The apparent neglect of a bonus that was common to both options in Problems

11 and 12 implies that the carriers of value or utility are changes of wealth”.
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choice, and a contract is not a windfall gain or loss, not a move of nature.2

So we take a starting point in deals as the natural objects of choice - the

deal-by-deal principle for short. By their nature as agreement, they leave no

doubt about the difference between a bonus and a lottery as two seperate,

or one aggregated deal.

2. Deals require alertness. The role of a counterparty at the human level,

not only persons, but also companies, markets, and governments, changes

the perspective rigorously. The DM has more urgent questions than what

the options would do to her end state, since there are intentions of others in

play: who is supporting the choice set, how, why? What would correspond

to no agreement? Is that an option? If not, how come? What, in fact, are

my current rights and obligations, how exactly does each option on the menu

change that, in each state?

Somewhat confusingly, this alertness is the least relevant for gifts. A

gift as deal does not change existing rights, it does not make you alert, it

improves the status quo, perhaps you ask why but anyhow you gratefully

accept it - very much like a windfall gain, in fact it is one.3

For losses, it is the opposite. As windfall, a loss of $500, or a loss of $1000

2This is not without loss of generality, but a choice set of at least two options for the

DM somehow relies on a mutual agreement on rights and obligations with a counterparty,

deals for short, to effectuate the chosen option, in case it deviates from nature’s move in

the state that obtains. We assume that the deal aspect in each outcome can be, and has

been, isolated from what nature does in each state.

3It is perhaps no coincidence that the classic examples on floating reference points all

involve gifts before choice: a stranger offering amount X as a gift (Markowitz, 1952), a

bonus (cf. footnote 1), a mug (Kahneman et al., 1991) - so that the distinction between

deals and moves of nature need not be addressed. Note how Markowitz recognizes the

relevance of context by the word ‘stranger’.
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with 50% probability (cf. Problem 12 in footnote 1), may hardly affect your

wealth anyhow, but if ‘a stranger’ would offer you the choice between both,

insisting that the option $0 indeed does not belong to it, you may call the

police. It breaks existing rights, it makes you alert, if not anxious. Obviously,

this is not intended in Problem 12, and the options must be perceived as

influenced by windfall losses, somehow, but context is missing to identify the

deal-aspect in the prospect.

In general, deals require alertness, since there are intentions of others at

play. There is the danger of deliberate repitition by others, when our decision

rule is flawed (a point emphasized in e.g. Peters and Gell-Mann (2016)). A

small step in the wrong direction already counts. We call this loss alertness.

At the upside, which we could call gain alertness, it is for instance about

recognizing win-win situations, and a feeling for how much a counterparty

will give in if you try. Our point is that alertness is not a concession to

rationality, but the reflection of rationality at the level of human interaction.

3. Advanced, not primitive. So we argue that it is not the bounded rational-

ity of multiple selves that shifts reference points, but the rationality of being

aware of the other, and his intentions (qui vive, in the literal and historical

sense). We view it as a high-level human skill, emerging from social interac-

tion, to enable but also control game theoretic behavior, so as to sublimate

competing or even opposite intentions into deals.

This requires an antenna to discern good from bad at a distance, different

from the anticipation of what will taste good or bad. But isn’t it exactly the

cornerstone of PT, that we cannot explain behavior without such a reference

point? Is its high level not the reason that it is so elusive, so hard to model

as intrinsic reference point (O’Donoghue and Sprenger, 2018)? And that it

is problematic to fathom it by deeper introspection on how you will actually
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perceive your future wealth, since it is directed outward?

We think it should not be suppressed in a normative model, but embraced,

as reflection of rationality beyond that of maximizing a fixed objective in

terms of individual final wealth.

Of course it must have its biases, like our visual perception has - we

should not trust it blindly, but it is not primitive. Moreover, it is no longer

valid to identify a bias by pointing at a deviation from standard rationality.

This strange asymmetry, of being quite diffuse about actual rationality in

real life, but at the same time pinning down so many biases so accurately,

has gone. In particular, we view loss aversion, the endowment effect, and

reluctance to trade, primarily as status quo wisdom, rather than bias. For

example, when trading at a stock exchange, we intuitively set the reference

points at a wide bracket around the small bid-ask spreads that arises as

the intersection of the context-dependent wide brackets of all participants.

That is not a concession to rationality, it is rationality. It is not costly, only

hypothetically costly under a rigid objective that we deliberately decline.

To summarize the argument, we draw a parallel with physics. It is as if

the alertness for mutual intentions generate attracting and repelling magnetic

forces, locally much stronger than the individual gravity of a good prospect on

final wealth. It is the achievement of behavioral decision theory, to observe a

DM carefully in a narrow frame, rotate the frame in several ways, in order to

measure the working of this gravity accurately, but only to discover that there

are other forces in play that are surprisingly structured. We argue, however,

that it is not twisted gravity, but the magnetism of human interaction, for

which we have such a strong compass. It directs to the North, regardless

windfalls from the East or West. Time and again one could rightfully elicit

the distinct preference for one point at the arctic circle, but only to discover
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that it moves.

Our reasoning is far from compelling, as announced already in our open-

ing sentence. It is not a matter of syntax and logic, to compare rationality at

different levels of reasoning. We think, however, that the arguments for not

excluding full rationality outside the standard paradigm are strong. In the

discussion of Heuristics and Biases versus Natural Decision Making (Kah-

neman and Klein, 2009), they ‘fail to disagree’ that there is room for skilled

heuristics when an environment has a sufficient degree of predictability, and

there is sufficient opportunity to learn the regularities. The environment of

human interaction we refer to is highly complex, but has structure, and we

are naturals. Furthermore, in our framework we allow the compass itself to

determine the strenght of its signal, with no signal as limiting case.

The rest of this paper aims to provide a more indirect argument for

this viewpoint: it works. Embracing a deal-specific reference point as ra-

tional, simplifies the logic of rational choice. It is precisely the compass that

‘solves’ long-standing controversies on updating, isolation, and aggregation,

by pulling context-dependent complexity outside the model. We gain further

confidence from the fact that in the framework we propose, eventually, we

only have to combine some classic, well-established elements at the center of

Decision Theory. Rational choice is of all time.

1.1 Outline

First, we refine the reference point in PT to a degree of goodness (dog)-

function, more or less as the utility hill in the seminal paper of van Praag

(1991) on welfare theory, but interpreted differently. We call the combination

of an ordering and a compatible dog-function a preference index, and take

starting point in conventional regularity axioms.
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The cornerstone of our framework is a three-fold update principle:

Machina’s rule (Machina, 1989) for conditional value when there was coun-

terfactual exposure (embedded updates), the fixed point update rule, also

known as Pires’ rule (Pires, 2002), when there was not (free updates), and

intra-deal stability of the degree of goodness.

By a sensitivity axiom we characterize well-definedness of updates, and

by a third we ensure that values are in the range of their updates. We claim

that updating in the corresponding class is intuitive, respects the stick-to-

your-choice principle, and satisfies model-closedness.

Based on an additional cross link between the dog-function and the order-

ing, namely that emdbedded updates only depend on the degree of goodness

of a deal, besides of course on the sub-act itself, we arrive at a representation

result, mathematically close to the weak-decomposability representation in

Grant et al. (2000), and to betweenness under law-invariance.

Finally, we take a closer look at PT from our perspective, and address two

issues. Firstly, it is not closed under fixed point updating, but we find a relax-

ation of gain-loss separability that restores it, corresponding to a two-sided

centered Choquet integral. Our third axiom, however, remains problematic

for capacities. Secondly, the S-shaped probability weighting in PT is more

fundamentally challenged by the observation that precisely this type also

arises as an artefact in the betweenness class for binary lotteries. We con-

clude that normative models get closer to behavioral evidence than generally

believed.
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2 Preference indices and loss alertness

Objects of choice are acts of the form f : Ω → X, with Ω a finite outcome

space, and X a finite interval [x∗, x
∗] ⊂ R of monetary outcomes. The set of

all acts is denoted by A(Ω, X), or simply A. If an act f has f(ω) = c ∈ X on

Ω, it is called a constant (act), and then we use the symbol c also for f . The

interval [min f,max f ] is denoted as range(f), so range(c) = {c} for c ∈ X.

For event E ⊂ Ω, the act gEf is the act with outcomes g(ω) on E and f(ω)

in Ē, the complement of E.

Acts are interpreted as specification of deals, with f(ω) the amount to

receive (if positive) or pay (if negative) if end state ω obtains. We hence

insist on taking 0 as the zero outcome. In particular, the zero deal 0 is an

agreement not to pay or receive.

We consider a DM who has a preference index on acts in A, formally

defined as follows.

Definition 2.1 A preference index is a pair (V,Γ) consisting of a value func-

tion V : A → X and a degree-of-goodness (dog) function Γ : A → [−1, 1],

satisfying V (c) = c for constant acts c, and Γ(f) = Γ(V (f)). The function

γ : X → [−1, 1] defined by γ(c) = Γ(c) is called the corresponding status quo

reference function (sqrf), and we also write (V, γ) for (V,Γ).

The value function V represents the purely ordinal part of the preference, by

the equivalence f % g if and only if V (f) ≥ V (g). The sign of Γ(f) defines

the character attributed to f as a deal: good when positive, ok when zero,

bad when negative; absolutely good or bad at the extremes. We sometimes

refer to γ, induced by the dog-function Γ, as the nose of the preference.

She adopts a preference index in line with her taste, belief, and perception

of the inital state. This may include existing rights and obligations, possibly
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leading to a crisp status quo reference point f0 ∈ A, at which Γ crosses zero

steeply. Her perception of the status quo can also be much more vague, when

the context only provides rough indications for a reference point, reflected in

Γ being flat, or even constant.

Also her taste for outcomes may be shaped by the initial state, for instance

by loss aversion with respect to f0, exactly as in PT (in which f0 would be

renamed 0). However, aversion in Γ and V are in principle independent: the

DM may value acts according to their expected values, under subjective or

objective probabilities, hence exhibit no loss aversion, but still have a strong

aversion against any act with mean below that of f0. To discern the latter

type from loss aversion, we call it loss alertness, for which, intuitively, one

can take as measure the steepness of γ at the left of V (f0). Of course, loss

aversion may also align with loss alertness, to reflect that any outcome below

f0(ω) must be compensated by a large gain wrt to f0 in other states.

Preference indices may hence reflect sensitivity with respect to three types

of reference points: 0 as the absolute boundary between to receive and to pay,

the certainty equivalent c = V (f) of an act marking the balance point be-

tween the relatively good and bad side of a deal, and the certainty equivalent

c0 = Γ(f0) of ok-deals for the boundary of good and bad deals.

How and in which order V and Γ amalgamate from the DM’s taste for

outcomes, belief about states, and compass for the quality of deals, is beyond

our scope, and rather a topic of descriptive modeling. We concentrate on the

rationality of the resulting preference index, taking a starting point in the

following standard axioms for its ordinal part.

Definition 2.2 V is the class of value functions that are continuous and

monotone. G is the class of preference indices (V,Γ), with V ∈ V. P is the

class of preference orderings %, represented by V ∈ V. The classes V, G and
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P are called regular.

So the class P consists of preference orderings % on A that are continuous,

complete, transitive, and monotone (strictly on constants c), having certainty

equivalent function V in V , i.e., f ∼ c if and only if V (f) = c. The one-to-

one correspondence allows us to freely switch between the level of preference

ordering and valuation in our exposition, and also write (%, γ). A regular

preference index (V, γ) has γ continuous and non-decreasing.

There is some redundancy in V and Γ, for reasons explained later on.

When the induced nose γ is strictly increasing, V can be reconstructed from

Γ, since they represent the same ordering. In general, however, both elements

are needed to specify the ordering and degree of goodness of deals.

We believe our starting point provides a useful stepping stone from stan-

dard rationality towards alternative approaches, such as e.g. the aformen-

tioned approach of Klein, and Hausman’s view on preference orderings as

‘total comparative evaluations’, ‘more cognitive, more like judgments, than

are desires’ (Hausman, 2012), perhaps even towards the more radical ‘fast and

frugal heuristics’ approach in Gigerenzer (2006). The conventional regularity

properties of V are fully respected by Γ, while Γ still provides an interface

to subtle, context dependent considerations per decision. This combination

brings an extra dimension to the synthesis proposed in Aumann (2019), rely-

ing mainly on the difference between usual and exceptional, or even contrived,

contexts.

3 Updating

In this section we address the question, how to update a preference index

(V,Γ) when an event E ⊂ Ω obtains. We discern two principles as defining
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property for two different types of update of the ordinal part V . Both princi-

ples are well-known, but their distinction and reconciliation is less common,

and therefore we present them in parallel, together with a third principle for

the degree of goodness Γ.

In fact, we distinguish two conditional states related to an event E. First,

the initial state i extended only with the information that E obtains, state

i;E for short. Secondly, the state i; f ;E she is in, when she agreed on coun-

terfactual exposure f outside E, after i, but before E obtains. Concretely,

this applies to cases with initial choice set of the form {gEf, hEf}, and the

DM agreeing on this choice set, with the option still to choose in case E

obtains - exactly as in the Allais and Ellsberg paradoxes.4

Let %E and %fE denote the preferences of the DM in respectively i;E

and i; f ;E, the notation for V and Γ is analogous. We adopt the following

defining principles for these updates, to which we refer as resp. the free and

embedded update in E.

Axiom 1 (Update principle) For all events E ⊂ Ω and acts f, g, h ∈ A:

a. If gEc � c, then gE �E c, and if gEc ≺ c, then gE ≺E c

b. If gEf � hEf , then gE �fE hE, and if gEf ≺ hEf , then gE ≺fE hE

c. The degree of goodness is not affected by the event that obtains.

This indeed defines the updates of regular preference orderings, under the

following sensitivity conditions, just characterizing their uniqueness.

4Our framework accommodates both positions: with acts and lotteries viewed as deals,

the Allais and Ellsberg preferences are explained by our model; as moves of nature, no

longer, since then Γ is irrelevant. Both positions can be maintained, since the paradoxes

concern only gifts, exactly the angle of view where this important distinction becomes

invisible, as argued in the introduction.
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Axiom 2 (Sensitivity) For all events E ⊂ Ω and acts f, g ∈ A:

a. There exists unique c ∈ X such that gEc ∼ c

b. There exists unique r ∈ X such that gEf ∼ rEf .

Axiom 2b amounts to strict monotonicity in all outcomes. The formula-

tion we use is also valid when updating would be restricted to events in a

subset of 2Ω. We call c the fixed point value of gE, and r the replacement

value of sub-act gE in the encompassing act gEf . Updating now readily

follows from the principles in Axiom 1.

Lemma 3.1 Consider a preference ordering % in P that satisfies Axiom 2.

a. Axiom 1a defines its free update %E by the fixed point update rule

gE ∼E c :⇔ gEc ∼ c with c ∈ X, (3.1)

b. Axiom 1b defines its embedded update %fE by the replacement rule

gE ∼fE r :⇔ gEf ∼ rEf with r ∈ X (3.2)

c. Axiom 1c then defines the free and the embedded update of Γ by the

intra-deal stability rule

ΓfE(gE) = Γ(gEf) and ΓE(gE) = Γ(VE(gE)). (3.3)

The updates are regular.

The proof is straightforward. It is also easily verified that refining an update

on E to an update on E ′ ⊂ E results in the same as directly updating from

Ω to E ′, both for free and embedded updates.5

5This compatibility property is closely related to the commutativity property in Gilboa

and Schmeidler (1993). Compatibility of free updates is also addressed in Roorda and

Schumacher (2013, Prop. 4.6) (also for a continuous time axis) and Roorda and Schumacher

(2016, Prop. 6.7) (for the class of variational preferences).
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The fixed point update rule (3.1) is also known as Pires’ rule (Pires, 2002),

whereas in Eichberger et al. (2007) it is called conditional certainty equivalent

consistency, but it has never been recognized as central aspect of a universal

‘non-consequential’ update rule, to our knowledge. The replacement rule

(3.2) is Machina’s update rule (Machina, 1989), also known as the f -Bayesian

update rule in in the context of ambiguous beliefs (Gilboa and Schmeidler,

1993). In Halevy (2004) it is interpreted as resolute choice.

The update principle (3.3) is straightforward: don’t blame nature. What-

ever event obtains, if an initial deal was ok, the remaining sub-act is still ok

- it is part of the deal, so to speak. More generally, nature does not affect

the degree of goodness, only people do. Note here the immediate impact

of counterfactual exposure on conditional degree of goodness. The stability

rule would collapse if a counterparty or the DM would be able to influence

which event obtains - the tacit assumption that nature chooses an element of

Ω is essential. When acts were not deals, but only moves of nature, the DM

could take γ = 0 as neutral value, since she has no reason to judge moves of

nature as a deal.

The controversial non-consequentialist nature of Machina’s rule, now arises

as a natural property of conditional states. Even if the initial state i has

zero status quo reference point, not updating is non-consequentialist, but

the conditional state i; f ;E itself already is, through the influence of f on

the degree of goodness. Moreover, by adhering to model closedness back-

wardly, we should allow that i itself already may contain information on

existing rights and obligations from bygone exposure, before i, and the fixed

point update is hence only ‘consequentialist’ in the sense that it does not

rely on additional counterfactual exposure, in Ω \ E. So, in our framework,

non-consequentialism is a less appropriate term, it is rather keeping track of
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degree of goodness as a relevant aspect of the conditional ‘state of the world’.

In this way the threefold update principle further underpins the ratio-

nality of resolute choice within one deal, and confutes the qualification of

non-consequentialism in Wakker (1999) as ‘believing in ghosts’.

4 Sequential Consistency

So far the only axiom restricting the class P of regular preference orderings

is Axiom 2, which is just a sensitivity condition to guarantee well-defined

updates according to the update principles in Axiom 1. We now add to this

a more substantial static restriction, imposing additional structure in terms

of updates on mutually exlusive events.

Axiom 3 (Sequential Consistency) Values should be in the range of their

updates on any partitioning of Ω.6

Note that for the extreme partitions, namely the singleton Ω, and the par-

tioning into its separate elements, the axiom already follows from regularity.

We first concentrate on this axiom for the free updates. This requires

that for any partitioning Π of Ω,

V (f) ∈ range{VE(fE) |E ∈ Π}.

This indeed poses a substantial restriction on initial preferences, although

much weaker than Savage’s Sure Thing Priciple.

Axiom 3a (Equal Level Principle (ELP)) If fEc ∼ c for all events E in a

partitioning of Ω, then f ∼ c.

6This is quite different from the notion in Sarin and Wakker (1998), where it is defined

as the meta principle of model closedness. We explain below how we meet this principle.
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Lemma 4.1 Let be given a regular preference ordering % in P that satisfies

Axiom 2a, and a partion Π of Ω. The collection of fixed point updates %E

with E ∈ Π, satisfies Axiom 3 if and only if % satisfies Axiom 3a, otherwise

% has no free regular updates on Π that satisfy Axiom 3.

Proof Consider an act f with f %E c on Π. Then (3.1) implies that also

fEc % c on Π, and hence, by Axiom 3a, also f % c. By an obvious symmetry

argument, Axiom 3 follows.

Necessity of Axiom 3a: Consider an act f ∈ A with fEc ∼ c on Π. We

have to prove that f ∼ c from Axiom 2a and 3. Fix E ′ ∈ Π. Since %E is

regular for all E ∈ Π by assumption, there exists c′ such that fEc
′ ∼E c′ for

all E ∈ Π. Then fE′c′ ∼ c′ by Axiom 3, while also fE′c ∼ c by assumption,

so that Axiom 2a implies c′ = c. Since E ′ ∈ Π was arbitrary, fE ∼E c for all

E ∈ Π, and, again by Axiom 3, indeed f ∼ c. The last claim is now obvious.

�

This further underpins the fixed point update rule, as the only possibility

to avoid that value predictably increases or decreases. It turns out that

embedded updates inherit sequential consistency from free updates, since

both updates always lie at the same side of the overall value of an act.

Lemma 4.2 Assume Axiom 2 and 3a. For act f and event E, let c, d, r ∈ X

be defined by f ∼ c, fEd ∼ d, and rEf ∼ f . Then r − c and d − c are both

positive, both zero, or both negative.

Proof Axiom 3a for Π = {E, Ē} requires c ∈ range{d, d′} with d′ such that

d′Ef ∼ f . So if d > c, d′ ≤ c, and by Axiom 2b in fact d′ < c. Applying

Axiom 3a again, now on act rEf , yields r > c. Similarly, d < c implies r > c.

Finally, when d = c, then also d′ = c, and hence r = c. �
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Axiom 3 is trivial for Γ. Thus we arrive at the following class of preference

indices.

Definition 4.3 The sequentially consistent class S consists of regular pref-

erence indices (%,Γ) ∈ G that satisfy Axiom 2 and 3a. Equivalently, it is the

subclass of G with well-defined regular free updates satisfying Axiom 3 (hence

also Axiom 1a), and unique embedded updates defined by Axiom 1b.

Many controversies on rational choice reveal themselves in lack of a rea-

sonable update rule, making consistent updating an important litmus test for

normative models: (i) updating should be intuitive, (ii) conditional choice

should be of the same type as initial choice, and (iii) preference reversals

should be avoided. We believe the class S passes this test: (i) Axiom 1 has

a direct intuition, not relying on a specific assumption on taste and belief,

(ii) model closedness holds, since the relevance of bygone exposure is not

excluded for the initial state, and, conversely, a neutral initial state without

notion of bygone exposure is propagated by free updating, and (iii) Machina’s

rule directly guarantees the stick-to-your-choice principle.7

Sequential consistency adds to this the intuition of balance in conditional

thinking: present value can always be seen as arising from relatively good

and bad future states, both in terms of free updates and replacement values,

7Hanany and Klibanoff (2007, 2009) also adopt ‘non-consequentialist’ updating as a

way to achieve dynamic consistency, in line with Machina (1989). They reject, however,

Axiom 1b as a general update rule, because it lacks the closedness property. However, the

distinction we make between free and embedded updates resolves the issue in Bayesian

updating for the class of max-min expected utility (MEU), addressed in Hanany and

Klibanoff (2007, Prop. 3). We conjecture that it also reconciles Axiom 1b with model

closedness in ambiguity averse models without probabilistic sophistication, but a thorough

analysis of this topic is beyond the scope of this paper.
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and these two types in fact agree on this qualification of states.

We therefore propose class S as a general starting point for rational choice.

Of course, descriptive models may further restrict this class by concepts

for consistency of taste, belief, and/or compass for the value and degree of

goodness of different deals. In particular, it should be emphasized that we

do not model how a DM arrives at an sqrf γ in every decision, and what

consistency rules this should obey among different decisions. Our point is

that deals arise as natural units of choice, that humans have a strong compass

at that level for good reasons, and that it can be reflected in γ to resolve

some longstanding ‘context-free’ issues in updating. In class S, there is no

dilemma between forward or backward induction, no counterintuitive non-

consequentialism, no issue of modelclosedness, no need to enforce consistent

planning, since there is nothing to overrule.

5 The class with γ-equivalents

We have stressed that conditional choice is influenced by bygone exposure,

through the conditional degree of goodness inherited from the initial state.

Now we zoom in on the class of preference indices in which this is the only

counterfactual memory of conditional choice. Consequently, replacement val-

ues of a sub-act gE in gEf only depend on gE and the initial degree of good-

ness, Γ(gEf).

Axiom 4 (Γ-decomposability) For all events E ⊂ Ω and acts g, f, f ′ ∈ A

with Γ(gEf) = Γ(gEf
′) : gEf ∼ rEf if and only if gEf

′ ∼ rEf
′.

This is stronger than Axiom 3a. The following notion captures the essential

feature of Axiom 4.
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Definition 5.1 (γ-equivalent) For a preference index (V,Γ) satisfying Ax-

iom 4, the γ-equivalent of a sub-act is its replacement value in all acts of de-

gree of goodness γ. Formally, for a given sub-act g : E → X, and γ ∈ [−1, 1],

rγE(g) :=


r such that rEx∗ ∼ gEx∗ γ < Γ(gEx∗)

r such that rEx
∗ ∼ gEx

∗ γ > Γ(gEx
∗)

r such that rEf ∼ gEf for (any) f s.t. γ = Γ(gEf) otherwise.

Only in the last case we call the replacement value r proper, and we call the

corresponding interval for γ the proper domain of the Γ-profile of g in E.

The vector of γ-equivalents of an act f ∈ A with respect to a partition Π of

Ω, denoted as rγΠ(f), is called proper if all its entries are proper replacement

values.

Obviously, rγΠ(f) is always a proper replacement vector for γ = Γ(f), and

hence, for this value of γ,

V (f) = V (rγΠ(f)). (5.1)

In case Γ is constant, the axiom amounts to backward recursion, in line with

the STP. On other hand, in case Γ(c) is strictly increasing in c, the axiom is

equivalent to the following.

Axiom 5 (V -decomposability) For all events E ⊂ Ω and acts g, f, f ′ ∈ A

with V (gEf) = V (gEf
′) : gEf ∼ rEf if and only if gEf

′ ∼ rEf
′.

The recursion (5.1) then strengthens to a test for the value of f being at,

or above, any given value c ∈ X,

V (f)
(>)
= c if and only if V (r

γ(c)
Π (f))

(>)
= c. (5.2)

In other words, when the degree of goodness of an act is strictly monotone in

value, Γ-decomposability implies a qualitative form of the STP and induced

backward recursion, per level c under consideration.
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5.1 Relation with weak-decomposability

Axiom 5 is equivalent to the condition of complementary replacement,

if f ∼ rEf ∼ fE r̄ then f ∼ rE r̄. (5.3)

It means that serial and parallel replacement of sub-acts coincide. This, in

turn, can be rewritten as the condition of weak decomposability, defined in

Grant et al. (2000),

if f ∼ gEf ∼ fEg then f ∼ g. (5.4)

They explain how this captures the original motivation of Savage for

the STP, describe its equivalence with the notion of dynamic programming

solvability in Gul and Lantto (1990), and provide necessary and sufficient

conditions for weak decomposability in terms of what we call a fixed point

representation, taking the form

V (f)
(>)
= c⇔ uc,1(x1) + · · ·+ uc,n(xn)

(>)
= 0, (5.5)

where uc,i(x) is the (strictly increasing and continuous) utility of outcome x

in the i-th state of Ω, in an act of value c, normalized to zero for the balance

point x = c. Sufficient for Axioms 2 and 5 is the additional condition that

the utility functions are strictly decreasing and continuous in c, but this is

probably not necessary, see Grant et al. (2000, footnote 17). We describe a

characterization in Section A.2 of the appendix.

In addition, they show how weak decomposability entails the well-known

betweenness axiom (Dekel, 1986; Chew, 1983), when objects of choice can be

identified with probability measures Q on X (see Section A.1 for our axioms

in that setting). Under betweennes, value functions φ of probability measures

take the form

φ(Q)
(>)
= c⇔ EQuc(x)

(>)
= 0. (5.6)
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These representation results are straightforwardly adjusted for strength-

ening Axiom 5 to Axiom 4. As explained in Theorem A.1, we arrive at the

Γ-representation

V (f)
(>)
= c⇔ ûγ,1(x1) + · · ·+ ûγ,n(xn)

(>)
= ûγ,1(c) + · · ·+ ûγ,n(c), (5.7)

with parameter γ equal to Γ(c). The result for betweenness is analogous.

6 Comparison with Prospect Theory

How far is the proposed framework from PT? We first concentrate on a tech-

nical issue, namely that capacities are not closed under fixed point updating.

Secondly, we address probability weighting.

6.1 A refinement of comonotonicity

In PT, preference orderings are modeled in terms of capacities, in line with

the Rank Dependent Utility (RDU) model, also called Choquet Expected

Utility (CEU), proposed in Quiggin (1982) and Schmeidler (1989). For finite

Ω, a (normalized) capacity ν is a mapping from subsets of Ω to the interval

[0, 1], characterized by the properties ν(Ω) = 1, ν(∅) = 0, and ν(A) ≤ ν(B)

when A ⊆ B. For an act f = (x1, . . . , xN), now with indices rearranged so

that x1 ≥ x2 ≥ · · · ≥ xN , define

ν · f := π1x1 + π2x2 + · · · + πNxN , with πj := ν(∪Nj ) − ν(∪Nj+1), (6.1)

where ∪kj is the event corresponding to (xj, . . . , xk). The conjugate ν̄ is

defined by ν̄(A) = 1 − ν(Ā), with Ā the complement of A in Ω. RDU

consists of preference orderings representable by value functions V of the

form V (f) = ν ·(u·f), with u a strictly monotone continuous utility function.
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In view of the fact that all our axioms are invariant under a strictly increasing

utility transformation u of X,8 we can restrict the attention to u(x) = x, and

treat X as R in the analysis of the axioms.

Axiom 2a for a capacity ν amounts to

ν(A ∩ E) + ν̄(Ā ∩ E) > 0 (A,E ⊆ Ω).

For binary acts f of the form 1A, the fpu VE must therefore coincide with

the conditional capacity νE defined by

νE(A ∩ E) =
ν(A ∩ E)

ν(A ∩ E) + ν̄(Ā ∩ E)
(A,E ⊆ Ω). (6.2)

So if the update of ν in E is a capacity, then it is νE. As shown in Horie

(2013), however, this is generally not the case, even when ν is convex (and

hence V belongs to the class of Multiple Priors, cf. footnote 10). From our

perspective, taking Axiom 1a as starting point, the class of capacities has to

be adjusted, to meet the requirement of closedness under free updating.

To further analyse the issue, consider the outcome c for VE(fE) prescribed

by the fixed point update rule, ν · fEc = c. The reason that VE is generally

not a capacity, is that a pair of comonotone sub-acts fE, f
′
E, need not have

comonotone neutral embeddings fEc, f
′
Ec
′, since the rank of c in fEc need

not be the same as the rank of c′ in f ′Ec
′. This suggest to weaken the notion

of comonotonicity, by imposing the property for pairs (f, V (f)), (f ′, V (f ′)).9

8i.e., Ṽ defined by Ṽ (f) := u−1V (u · f) ∈ V when V ∈ V, and updates commute with

such a transformation, i.e., ṼE is the transformation of VE , and Ṽ u·f
E that of V f

E .

9Closedness can also be achieved by replacing c by a fixed embedding x∗ or x∗ for all

acts, cf. (Gilboa and Schmeidler, 1993, Thm. 3.2), the latter one being the Dempster-Shafer

rule for updating ambiguous beliefs, which amounts to maximum likelihood updating on

the intersection with the class of Multiple Priors. These updates generally do not satisfy

Axiom 3, but they turn out to play a natural role in the definition of γ-equivalents,

Definition 5.1.
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We then say that f, f ′ are c-comonotone (with respect to V ).

The corresponding generalization of the comonotonic STP and its char-

acterization in Chew and Wakker (1996) is straightforward, see Lemma A.2

in the appendix. As shown there, the corresponding extension of RDU is

to apply two (not normalized) capacities inward, from both sides, until they

‘meet’ the balance point c. We call this a centered capacity, to be evalu-

ated by a centered Choquet integral. This indeed restores modelclosedness

under fixed point updating, and eliminates the need to impose gain-loss sep-

arability of PT. Axiom 3, however, turns out to leave hardly any room for

nonlinear capacities, similar to the standard case, addressed in Sarin and

Wakker (1998).

In brief, the refinement to c-comonotonicity makes the syntax of PT closed

under fixed point updating, but still clashes with the principle that values

should be in the range of their updates, Axiom 3. This leaves the accom-

modation of suitable forms of rank dependency in our framework a topic of

future research.10

6.2 On probability weighting in PT

Together with the emphasis on a reference point, probability weighting de-

termines the main characteristics of PT. We refer to Bernheim and Sprenger

10 We note that Axiom 3a is well understood for the partially overlapping class of Mul-

tiple Priors (MP), also known as Maxmin Expected Utility (MEU), introduced in Gilboa

and Schmeidler (1989) in the Anscombe-Aumann setting. We refer to Roorda and Schu-

macher (2007) for an extensive analysis. In brief, it is shown there that the rectangularity

condition in Epstein and Schneider (2003) weakens to a triangular ‘junctedness’ condition

for the priors: vectors of priors conditioned on a partition Π need not be combinable with

all priors on Π, but only with at least one. Extensions to so-called variational preferences

can be found in Roorda and Schumacher (2016).
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(2020) for a critique on its descriptive validity. Our focus, however, is on its

distance to the normative axioms we propose.

Our main observation at this point is that betweenness allows for precisely

the S-shaped probability weighting in the standard PT model, for binary

lotteries, as an artefact. For a binary lottery L = (x, p; y, 1− p), with x > y,

the test that L has at least value c, with c ∈ [y, x], can be expressed as

p

1− p
≥ ūc(y)

uc(x)
,

with uc the utility function in the representation (5.6), and ūc denoting −uc.

This can be rewritten as

b

(
p

1− p

)a
≥ b

ūc(y)a

uc(x)a
,

which is in fact the only transformation that leaves the ratio at the right-

hand side separable in y and x. In terms of probability weighting, the c-test

for L takes the form

w(p) uc(x)a + (1− w(p)) buc(y)a
(>)
= 0 with w(p) =

bpa

(1− p)a + bpa
. (6.3)

This corresponds to the ‘linear in log odds’ probability transformation (Gon-

zalez and Wu, 1999). In this sense, betweenness is compatible with proba-

bility weighting, for binary lotteries. The classic weighting functions in PT

are of different functional form, but numerically nearly the same (Prelec,

1998). By choosing appropriate parameters a and b for each level c, the PT

model in Tversky and Kahneman (1992), restricted to binary lotteries, can

be approximated quite closely in the betweenness class, as follows.

Probability weighting in the standard PT model takes the form

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
for gains; w−(p) =

pδ

(pδ + (1− p)δ)1/δ
for losses,
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with γ = 0.61, δ = 0.69. This is nearly the same as w(p) in (6.3) with (i)

a = 0.543, b = 0.734 for gains, and (ii) a = 0.641, b = 0.834 for losses. For

mixes L = (x, p; y, 1−p) with x > 0 > y, the ratio w+(p)/(w+(p)+w−(1−p))

corresponds to (iii) a = 0.651, b = 0, 947. This can be combined in one

betweenness model by e.g. taking (iii) for c = 0, and a continuous transition

towards (i) and (ii) for c sufficiently positive / negative.

So the PT model is practically indistinguishable from the betweenness

class for the set comprised of all binary lotteries with gains only, losses only,

or mixes with value (close to) zero. It is remarkable that the original empirical

basis of PT, consisting of such binary lotteries only, also allows for linearity

in probabilities, when utility is allowed to be dependending on the value of

lotteries, and hence on their degree of goodness.

7 Conclusion

We conclude that rationality comes closer to behavioral evidence than gen-

erally believed. Although none of the elements in our framework are new,

the contrast with the mainstream view on rationality is sharp. Quite strik-

ingly, this is perfectly made clear by the way Tversky and Kahneman (1992)

phrases the main conclusion, opposite to ours (italics are ours):

The idealized assumption of rationality in economic theory is

commonly justified on two grounds: the conviction that only ra-

tional behavior can survive in a competitive environment, and the

fear that any treatment that abandons rationality will be chaotic

and intractable. Both arguments are questionable. First, the ev-

idence indicates that people can spend a lifetime in a competitive

environment without acquiring a general ability to avoid framing

25



effects or to apply linear decision weights. Second, and perhaps

more important, the evidence indicates that human choices are

orderly, although not always rational in the traditional sense of

this word.

Our diagnosis is that the tradition somehow lost attention for the notion

of how good, believing that only equally good and better can be revealed by

choice. However, how good does reveal its influence indirectly, but promi-

nently, in updating. The proposed remedy is the rehabilitation of the role

of degree of goodness, as central notion in the quest to advance the level at

which we understand and apply aspects of rational choice.

We had to exclude several topics from the scope of this paper. We did not

elaborate on the shape of the status quo reference function γ in Definition

2.1, in fact it is only relevant at which regions of X it is constant in the

Γ-representation (5.7). How to model the quantitative relationship between

degree of goodness Γ and the ordinal aspect V of a preference index, is a

topic of future research. In particular, we only indicated that the slope of

the corresponding status quo reference function γ at the left of where it

crosses zero, can be taken as measure of loss alertness, independent of loss

aversion, but this requires further modeling. Fairness could be modeled by

allowing Γ to decrease for excessively high value, overruling monotonicity.

A more comprehensive topic of future research is the application to game

theory. From our perspective, the degree of goodness should be given a more

prominent role in concepts of common knowledge of rationality. For instance,

in the beautiful paradox of the centipede game (Rosenthal, 1981), it turns

out to be problematic to understand (true) rationality, when it is supposed to

include backward induction, as consequence of subgame perfectness (formal-

ized ‘rationality’). The question in Binmore (1997) is spot on: how rational
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is it to be ‘rational’? It is enough to escape ‘rationality’ by deeming all

strategies to stop before step 92 bad right away, and understanding that the

opponent must be that wise too. The extra value it brings proves how truly

rational it is to play games on the qui vive.

A Appendix

A.1 Axioms for probability distributions (Section 5.1)

Our axioms translate to preference orderings on probability measures as fol-

lows. Let D denote the set of all probability distributions Q on X, and let

φ : D → R be a continuous valuation (in the topology of weak convergence).

Define, for K ∈ N, the value function V φ
K(f) = φ(Qf ), with Qf the law of an

act f : ΩK → X when a uniform distribution is assumed on ΩK , consisting

of K elements. This collection of value functions determines φ completely,

and our axioms induce the following class.

Definition A.1 B is the class of continuous valuations φ : D → X for which

V φ
K is regular and satisfies Axioms 2 and 3a, for all K ∈ N.

When extended with a status quo reference function in the obvious way, this

exactly matches the definition of class S, and hence all Axioms 1-3 apply.

Regularity (Definition 2.1) amounts to normalization (φ(δx) = x), conti-

nuity, and first order stochastic dominance, so that φ maps to X. Axiom 3a

then amounts to betweenness,

φ(Q) = c = φ(Q′)⇒ φ(αQ+ (1− α)Q′) = c (α ∈ [0, 1]), (A.1)

and Axiom 2a is then equivalent to the sensitivity condition

φ(αQ+ (1− α)δc) = c for some α ∈ (0, 1)⇒ φ(Q) = c.
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Axiom 2b is the condition of strict first order stochastic dominance.

The fixed point rule (5.5) for free updates takes the form

φA(Q) = c :⇔ φ(1AQ+ 1Āc) = c,

which is equivalent to Bayesian updating. The replacement rule (3.2) for

embedded updates becomes, in obvious notation,

φRA(Q) = r :⇔ φ(1AQ+ 1Ār) = φ(1AQ+ 1ĀR).

Axiom 5 (and hence weak decomposability) is now redundant, since it is

equivalent to betweenness under law invariance. From the results in Dekel

(1986); Chew (1989), the betweenness representation for class B follows:

φ(Q)
(>)
= c⇔ EQuc(x)

(>)
= 0,

for a c-parametrized family of utility functions uc that are strictly monotone,

continuous, and normalized at uc(c) = 0, and with c 7→ uc(x) continuous and

strictly decreasing.

A.2 Γ-representations (Section 5.1)

The characterization of Axiom 2 and 5, which is equivalent to (5.4), is largely

the same as in Grant et al. (2000). We first rephrase their results for our

simpler setting, addressing some details to close the gap between sufficient

and necessary conditions, and then formulate a representation theorem for

the subclass defined by Axiom 4.

We refer to the right-hand side in (5.5) as a c-test for f , induced by

the fixed point representation (FPR). In more compact notation, with Ω =

{1, . . . , n}, it takes the form

Bc(f)
(>)
= 0, with Bc(f) := uc,1(x1) + . . . uc,n(xn). (A.2)
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The following two properties are necessary and sufficient to define a reg-

ular V ∈ V : the basic sign property

Bc(f) = 0 ⇒ Bd(f) < 0 for d > c and Bd(f) > 0 for d < c, (A.3)

and the continuity property :

{c ∈ X |Bc(f) ≥ 0} and {c ∈ X |Bc(f) ≤ 0} are closed sets. (A.4)

An FPR (5.5) with these two properties is called regular. The utility func-

tions in state i are unique on their essential domain,

Dc,i = {x ∈ X |uc,i(x) + Σj∈Ω\i uc,j(y) = 0 for some y ∈ X}, (A.5)

modulo a free c-dependent scalar for each collection {uc,i}i∈Ω.

Axiom 2a amounts to the extension of the sign property (A.3) to partial

sums over events E, denoted as Bc,E(f) := Σi∈Euc,i(xi):

Bc,E(f) = 0 ⇒ Bd,E(f) < 0 for d > c and Bd,E(f) > 0 for d < c. (A.6)

Axiom 2 and 5 are now straightforwardly verified, for preference orderings

represented by a regular FPR with this partial sign property. Necessity of

both axioms follows along the lines of Chateauneuf and Wakker (1993) and

Segal (1992), and in particular the application of these results in (Grant

et al., 2000, Proposition 7). Their proof relies on ]Ω ≥ 4, see also below.

Axiom 4 now requires, in addition, that all utility functions uc,i in the

FPR with c ∈ Γ−1(γ) must be essentially the same, i.e., all pairs uc,i and uc′,i

coincide on Dc,i ∩Dc′,i, modulo a constant (in fact c′ − c) and a free scalar

(independent of i). The FPR then can be transformed into a Γ-representation

(5.7), by taking utility ûγ,i equal to uc,i on Dc,i for some c ∈ Γ−1(γ), and then

extending it such that it is an affine transformation of ud,i for all d ∈ Γ−1(γ).

The theorem below now follows.
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Theorem A.1 (Γ-representation) A regular preference index (V,Γ) sat-

isfies Axiom 2 and Axiom 4 if, and only if in case ]Ω ≥ 4, it is repre-

sentable by (5.7), with utility ûγ,i such that the collection uc,i defined by

uc,i(x) := ûΓ(c),i(x)− ûΓ(c),i(c) forms a regular FPR satisfying (A.6).

The analysis in Chateauneuf and Wakker (1993) makes clear why an

exception has to be made for the case n = 3. For n > 3, Axiom (5.4) entails

the so-called Thomsen condition, which can be expressed as a condition on

c-equivalents,

If (x, y) ∼c (x′, y′) and (x′, y′′) ∼c (x′′, y) then (x, y′′) ∼c (x′′, y′), (A.7)

where∼c denotes equality of c-equivalents on the corresponding pair of states.

For n = 3, however, (5.4) is void, but the Thomsen condition is still required

for the existence of an FPR. So, the exception for n = 3 can be cancelled if

the Thomsen condition for n = 3 is added to (5.4), Axiom 4 and 5.

A.3 Lemma on the c-Comonotonic STP (Section 6.1)

We extend some of the results in Chew and Wakker (1996) to obtain a char-

acterization of the c-comonotonic STP in our relatively simple setting with

finite Ω. The essential idea is to refine comonotonic cones Π by pairs (Π,m),

in which m marks the rank of c, i.e.,

(Π,m) = {(x1, . . . , xN) |x1 ≥ xm ≥ c ≥ xm+1 ≥ xn}.

We call W : R× 2S → R an outcome-dependent capacity if (i) W (x, ∅) =

0, (ii) x 7→ W (x,A) is continuous and (iii) W (x,B)−W (x,A)−W (y,B) +

W (y, A) > 0 for all x > y and A $ B.11 Define W c(x,A) := W (x,A) −

11Taking A = ∅ implies strict monotonicity of x 7→W (x,B). The capacities induced by

W are νx,y, defined by νx,y(A) := (W (x,A)−W (y,A)/(W (x,Ω)−W (y,Ω)).
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W (c, A), and, following their notation, V (x,B,A) := W (x,B)−W (x,A).

A pair (Ŵ , W̌ ) of outcome-dependent capacities represents % if f =

(x1, . . . , xN) ∼ c for the unique c such that there exists m with

Σm
j=1Ŵ

c(xj,∪j1)− Ŵ c(xj,∪j−1
1 ) + ΣN

j=m+1W̌
c(xj,∪Nj )− W̌ c(xj,∪Nj+1) = 0.

(A.8)

More compactly,

f ∼ c when Σn
j=1V

c(xj,∪j1,∪
j−1
1 ) = 0, (A.9)

with V c defined by, in obvious notation,

V c(x,B,A) :=

V̂ (x,B,A)− V̂ (c, B,A) (x ≥ c)

V̌ (x, Ā, B̄)− V̌ (c, Ā, B̄) (x ≤ c).

Lemma A.2 A regular preference ordering satisfies c-comonotonicity if it is

representable as above. For n ≥ 4, this is also a necessary condition.

Proof As in Chew and Wakker (1996, Thm. 1) for simple acts, with the

following adjustments. Replace V Π by V Π,m, the additive representation

on (Π,m) of the form ΣN
j=1V

Π,m
j . Sufficiency follows as in their Lemma

1. Apply the uniqueness argument also to the intersection of comoncones

(Π,m) ∩ (Π,m + 1), i.e., with xm = c, to deduce that V Π,m
j = V Π,m′

j in case

j ≥ m,m′ or j ≤ m,m′ (the argument requires that the intersection is at

least of dimension 3, hence the condition n ≥ 4). So the union of comoncones

(Π,m) over m have a common additive representation as in (A.9), for each

Π, say V c,Π corresponding to pairs V̂ Π, V̌ Π. They satisfy their refinement

condition (A4, p17). Since we need not impose that they agree on constants

(their condition (A5)), but rather normalize V c,Π to zero in c for any c ∈ X,

we can simply glue together V̂ Π, V̌ Π for all fully refined Π’s , to arrive at

(A.9) as the analog of (2) in their paper. �
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