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ABSTRACT 

In this paper we present a unifying framework for self-organization of automated vehicles. The paper is 
motivated by the lack of clear vision amongst researchers and practitioners on what automation and 
autonomy bring from a broader-than-vehicle-level perspective and how they may lead to a self-
organizing logistic system. Contrary to established literature, we do not focus on automation or 
autonomy from a single-vehicle perspective. Instead, we offer a broad perspective on how the mutual 
interaction of automated vehicles will impact logistic processes. Key in our approach is the interplay 
between the degree of autonomy of logistic systems and their degree of cooperativeness. On these two 
pillars we build a unifying framework distinguishing four fundamental categories of self-organizing 
automated vehicles. To illustrate the working of the framework in practice, we present four real-life case 
studies, one per each category. The usefulness of the framework established is two-fold: (i) it provides a 
common ground for researchers to position their work and to identify potential future directions for 
research and (ii) it serves as a practical and understandable starting point for practitioners on 
investigating how self-organization may affect their business and where their limited resources should 
be focused upon. 

Keywords: self-organization, logistics, transport, autonomous vehicles, framework 

This research did not receive any specific grant from funding agencies in the public, commercial, or 
non-profit sectors. 
 
 
1. INTRODUCTION AND RELATED LITERATURE 

1.1 Introduction 

Ever since the industrial revolution, Mankind has never ceased to embrace technology. Interestingly, 
technology needs technology. For instance, the technology of transport vehicles is in dire need of the 
technology of a highway. As more and more of our daily life is automated, complexity increases. To such 
a point that the human brain is either suffering from technology stress or – even worse – just cannot 
cope anymore. To exploit to the fullest the many features of modern transport means, we need a system 
to support us. Automated braking and adaptive cruise control for passenger cars and trucks are already 
helpful, for example. But why not delegate the entire control to some kind of autonomous system?  
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In the logistic field, where efficient transport and handling are key, practitioners need to distinguish 
themselves by outperforming the fierce competition. Availability of human labor may be scarce, 
especially 24-7. Here, automated systems come to the rescue. A more advanced idea would be a self-
organizing logistic system. Such a system consists of autonomous units, each with their own goal. By 
mutual cooperation they are able to achieve a common goal. To exemplify, the remarkable self-
organization within a colony of ants forms a continuous inspiration for designing self-organizing logistic 
systems. Ant Colony Optimization as well as Multi Agent Systems are examples, where simple atomic 
entities achieve a greater goal through self-organization. 

1.2 Related literature and contribution 

Despite the challenge of exploring nature-inspired systems and the possibilities they bring for logistics 
and its future, self-organization remains relatively underexposed in the current logistic literature. Other 
areas of research, such as computer science and biology, have embraced the notion of self-organization 
and its merits. In manufacturing, within the concept of Industry 4.0, there are framework studies on the 
digitalization levels of companies. For instance, the paper by Bagheri et al. (2015) is one of the earliest 
studies where they introduce five cognitive levels in cyber-physical systems and classify them as Pure 
automation, Self-awareness, Self-Control. A related reference is Wang et al. (2016) who present a 
comprehensive framework for I4.0 digitalization. The I4.0 Readiness Framework, IMPULS by Lichtblau et 
al. (2015) is another comprehensive framework.  

As for logistics, the need and potential to shift from conventional approaches to methods which lean 
towards autonomy and self-organization, is underlined throughout literature, see for example Scholz-
Reiter et al. (2004), Windt and Hülsmann (2007) and Wagner and Kontny (2017). Moreover, general 
definitions, properties and characteristics have been studied (Di Marzo Serugendo et al., 2005), as well 
as design and control approaches (Gershenson, 2007). However, actual implementations of Self-
Organizing Logistics (SOL) and structured methodologies or frameworks to study SOL for complex 
problems in logistics seem to be lacking. 

A first exception, addressing Self-Organizing Logistics (SOL), is the work of Bartholdi et al. (2010), who 
identified advantages and disadvantages of SOL. Furthermore, they provided a practical application of 
SOL for assembly lines, called bucket brigades. In the past decade, not much was added to literature 
regarding the conceptualization, formalization, or practical applicability of SOL. Pan et al. (2016) provide 
a noteworthy attempt to further specify SOL, using the notions of openness, intelligence and 
decentralized control. Several authors discuss example areas of SOL, including: transportation (Hongler, 
et al. 2010), order fulfillment (Reaidy, et al. 2014), Physical Internet (Sallez, et al. 2015), as well as 
emergent behavior in supply networks (Choi et al., 2001) and parcel distribution (Quak, et al. 2019). The 
latter is one of the few papers combining autonomous robots with SOL, but lacks a general approach to 
be useful within the broader domain of transport logistics. More general approaches focus on other 
areas, such as - see above - cyber-physical systems (Gershenson, et al. 2019), reverse logistics (Jaaron 
and Backhouse, 2015) and city planning (Rauws et al., 2020). To the best of our knowledge, literature 
lacks an endeavor to structure the multitude of upcoming automated logistic systems with varying 
degrees of autonomy. This holds in particular for the rapidly expanding field of automated vehicles. 

We aim to fill this void in literature by establishing a framework for self-organization of automated 
vehicles. Moreover, we link SOL to the irreversible uptake of vehicle automation and vehicle autonomy. 
Since there is some ambiguity around the notions of automation and autonomy, both in literature and 



practice, and in particular around the question how they may lead to a self-organizing logistic system, we 
touch upon these notions as well. In this paper we thus present a unifying framework for self-
organization of automated vehicles. Unlike established literature, typologies and classifications, we do 
not focus on automation or autonomy from a single-vehicle perspective, but rather take on a broader 
perspective on how automated vehicles impact logistic processes. The usefulness of our framework is 
two-fold: (i) it provides a common ground for researchers to position their work and to identify potential 
future directions for research and (ii) it serves as a practical and understandable starting point for 
practitioners on investigating how self-organization may affect their business and where their limited 
resources should be focused upon. 

The remainder of the paper is structured as follows. In Section 2 we discuss the notions of automation 
and autonomy, which are, as we will argue, closely related to self-organization in logistics. In Section 3 
we provide a unifying framework for self-organization of automated vehicles, identify four levels of self-
organization and discuss their impact on related notions in logistics. We illustrate the framework by 
means of recent case studies in Section 4. We close with conclusions and directions for further research 
in Section 5.  

2. Aspects of Automation and Autonomy 

This section aims to unify and classify various aspects of automation and autonomy, ultimately to lead to 
(a form) of self-organization. Before we present our framework in Section 3, we first provide a 
demarcation of its applicability in Section 2.1. Moreover, we discuss our views on the concepts of 
automation and autonomy in Section 2.2. 

2.1 Demarcation 

First of all, our focus is specifically on a logistical context in which automation and autonomy take place. 
As automation can be introduced almost anywhere in logistics, ranging from an automated workflow of 
document processing to automated storage and retrieval systems, we aim to clarify our exposition by 
providing a specific focus in which our framework is useful for both researchers and practitioners. We 
focus specifically on automated modes of transport. Examples would include Automated Guided Vehicles 
(AGVs) as used in container terminals or warehouses, Unmanned Aerial Vehicles (UAVs) for example 
used for surveillance or last-mile parcel delivery, and automated cargo shuttles, trains or boats. Or in one 
sentence: any kind of transport vehicle, regardless of modality, that can move in any (semi-)automated 
fashion. We leave the degree to which it can move automatically (e.g., only in some pre-defined 
scenarios, only closed-area or open road) part of the discussion. Notably, we argue that an increasing 
degree of automation has the potential (or urge) to become more autonomous and simultaneously 
pushes towards self-organization. Before we do so, we first define the notions of automation, autonomy 
and self-organization. 

2.2 The Notions of Autonomy and Cooperativeness versus Automation 

Both amongst researchers and practitioners there is commonly discussion around the notions of 
automation and autonomy and often they are intertwined. Both notions are used in different contexts 
and their meaning may differ depending on one's background. For example, for an automotive engineer, 
vehicle control might relate to concepts like steering, acceleration, braking or jerk, whilst for operations 
researchers, vehicle control might relate to concepts like dispatching, fleet management, routing or 
deadlock avoidance. Moreover, when discussing automated vehicles, an automotive engineer might 



solely focus on the degree to which the driving task is handed over from a human to the vehicle from a 
single-vehicle perspective, whereas a practitioner is interested in how an automated fleet of vehicles 
may improve its logistical processes. Without losing ourselves in the definition-game or discussing which 
definition prevails over the other, we provide our own view on both notions, for the purpose of 
motivating our framework for self-organization from a logistic perspective.  

First, let us note that we view the degree of automation as the degree to which an entity is able to 
perform its tasks without human involvement, and the degree of autonomy as the degree to which an 
entity is capable of making decisions on its own (e.g., delegated control). Consequently, we view the 
degree of automation as a spectrum between zero automation (e.g., manual) and fully automated (e.g., 
no human involvement) in physically accomplishing a task or taking the action after the decision is made. 
Obviously, in practical settings these two extremes rarely occur. For example, even manually operated 
cars typically have automated on-board systems like cruise control, which we would position in the lower 
end of the automation spectrum. Similarly, the degree of autonomy is a spectrum between zero (e.g., 
pre-programmed or no own control) and fully autonomous (e.g., no human involvement required in 
making decisions in even the most extreme scenarios). Again, in practice, many systems would position 
themselves somewhere between these two extremes.  

Second, we note that - in many cases - autonomy of a logistic system is not possible without at least 
some degree of automation. That is, if the system is not able to perform its core tasks (e.g., driving) to 
some degree automatically, it is also not capable of performing more complicated tasks (e.g., 
determining a route or anticipating on future demand). We say so, because in a broader logistical 
perspective the main achievement of an automated system is not solely eliminating a human driver or 
operator, but rather serving as a stepping stone towards a more intelligent transport system. That is, we 
typically do not deploy automated systems in practice just for being automated, but we also expect a 
more intelligent or robust (or any kind of metric for that matter) system compared to a manually 
operated system.  

From this view, the notion of self-organization comes into place. As logistic systems are generally 
complex, interconnected systems, typically with many stakeholders, one deploys forms of automated 
and autonomous systems to increase productivity or streamline logistic processes. The notion of self-
organization in logistics is thus one focused on automated systems (of systems) with certain decision 
latitudes (i.e., autonomy) in order to meet company objectives. Due to the complexity of logistic 
systems, a self-organizing system should be fragmented into smaller autonomous units. This is similar to 
how we divide a company into smaller departments (i.e., sales, inventory management, production), 
each which their own responsibility, but working together to achieve a common shared goal (e.g., 
company profit). A self-organizing logistic system is thus a system of small(er) autonomous units (also 
commonly referred to as agents) each with their own goal, and by communication and cooperation 
striving towards a common goal. Given our demarcation, this would for example be a fleet of 
autonomous drones for last-mile parcel delivery, which is able to perform speedy delivery without (or 
with minimal) supervisory or human interventions. Note that such a system is a mix of high automation 
(e.g., flying from any location to another in (almost) all weather conditions) and autonomy (e.g., deciding 
which drone delivers which parcel via which route).   

Lastly, we specifically distinguish between manually organized systems and self-organized systems. One 
may argue that any vehicle in itself shows some form of self-organization by its driver. For example, a 



driver may change its route based on congestion information from a navigation system. However, we 
refer to this as a manually organized system, as automation is fully absent and autonomous decision-
making lies fully at the responsibility of the driver. For a system to show some form of self-organization, 
it requires at least some automation and decision latitude outside of human control. Transitioning from 
manually organized systems to lowly automated systems, without sufficient autonomy, might decrease 
logistic performance, though. That is, humans are by nature intelligent creatures and are able to respond 
to changing environments. To exemplify, when a transport robot is introduced in a parcel sorting 
company, eliminating (unproductive) walking time by employees, performance may go down due to (i) 
high safety restrictions of the vehicles, lowering their flexibility and (ii) potential deadlocks at junctions. 
Humans may accidentally (almost) bump into each other while walking and they would never indefinitely 
wait at a junction when the traffic rules deployed do not prescribe who has way in a certain scenario. For 
an automated system to match this kind of behavior and performance, it requires advanced automated 
technology and also some level of autonomy to make intelligent decisions. Generally speaking, (i) there is 
some run-up required for an automated system and (ii) a certain level of autonomy is required to make 
intelligent decisions on its own, to show increased performance when moving away from a manually 
organized system. After this threshold is reached, opportunities arise for intelligent, automated and 
autonomous systems to increase the level of self-organization and to outperform manually organized 
systems. A general representation of this concept is given by Figure 1, where the horizontal axis denotes 
the degree of automation, the vertical axis the system performance measured by some relevant KPI, and 
the dashed line the degree of autonomy that should be associated with the corresponding degree of 
automation to establish a path towards self-organization. Although many different levels of autonomy 
might exist with the same degree of automation, the dashed line depicts what generally happens in 
practice.  

From this figure we see that low degrees of automation with a low degree of autonomy should be 
avoided where possible, when implementing automated solutions, as illustrated by the example of the 
transport robot above.  

When this is not possible, for example with pilot implementations, the run-up should be recognized by 
decision-makers in order to avoid loss of interest at stakeholders. Namely, after the drop in 
performance, which may in some cases be negligible, at some point the automated systems work 
sufficiently well, and some degree of autonomy can be introduced, after which performance tends to go 
up. From this moment onward, we talk about self-organizing logistics (SOL). Admittedly, at this point the 
level of SOL is extremely low, and might even perform worse than a manual system, but it is the starting 
point towards an ultimate form of self-organization. Although not extensively substantiated here, we 
expect that there is a boundary to the level of SOL given a certain automated and autonomous transport 
system. That is, beyond this point, further automation or delegation of control does not contribute to 
the self-organizing properties of the system.  

 



Figure 1: Co-evolution of automation and autonomy to establish self-organization. 

  



3 A FRAMEWORK FOR SELF-ORGANIZING AUTOMATED VEHICLES 

Figure 2 shows our framework for self-organizing automated vehicles. It is presented alongside the 
notions of (i) the degree of autonomy and (ii) the degree of cooperativeness, both of which are discussed 
in Section 3.1. The descriptions alongside the axes of the framework aim to provide general 
categorizations, as such to be applicable to a broad spectrum of autonomous transport solutions (e.g., 
vehicles, drones, boats or delivery robots). Moreover, the framework identifies four areas to help classify 
research in the field of self-organizing automated vehicles. The four areas are discussed in Sections 3.1.1 
to 3.1.4. The boundaries between these areas are far from rigid, but they help to provide researchers 
and practitioners with a common ground and vocabulary to guide the discussion of self-organizing 
automated vehicles. Moreover, they suggest directions for research and help to shape roadmaps 
towards self-organization of automated vehicles. The shaded area represents our view on the path 
towards self-organizing automated vehicles, having clearly demarcated, lowly self-organizing systems 
near the origin and loosely coupled, highly self-organizing systems when approaching the top right. 
These and related concepts in logistics are further discussed in Section 3.2.  

Figure 2: Framework for self-organizing automated vehicles.  

  



As the concrete interpretation of both the descriptors alongside the axes and the identified areas are 
highly case specific, we provide examples of the application of the framework to real-life cases in Section 
4 and use somewhat agnostic descriptors in the framework itself, albeit within the domain of automated 
transport.  

The authors believe that this approach makes the framework useful to fit a broad spectrum of (future) 
cases for self-organizing automated vehicles, without losing generality. 

3.1 Autonomy versus Cooperativeness 

The framework for self-organizing automated vehicles as shown in Figure 2 is plotted along two axes: 
degree of autonomy and degree of cooperativeness. We argue that these two elements are inherent to 
SOL as there is always a certain tension between autonomy and cooperativeness of any system 
whatsoever. European countries, for instance, take pride in keeping their autonomy, but - at the same 
time - sacrifice it somewhat in order to benefit from fruitful cooperation with European partners. In the 
logistic field, major shipping companies formed the Grand Alliance. Cooperation among members is 
restricted to provision of joint port-to-port services. The shipping lines stay autonomous and compete to 
attract customers.  

In general, any cooperative project must be based on a clear convergence of goals. A logistic system with 
a low degree of autonomy will probably easily cooperate with a similar partner since the goals will 
quickly converge. For instance, fire brigades easily cooperate. Their common goal is obvious. On the 
other hand, logistic systems with a high degree of autonomy need a long trajectory to achieve 
cooperation (e.g. KLM and Air France). Hence, in Figure 2, highly self-organizing transport systems will 
experience a challenging route towards cooperation. 

For the degree of autonomy, we divide the scale from low to high into four levels: (i) critical, (ii) 
rudimentary, (iii) constituent and (iv) self-governing. The first level comprises of automated systems 
where the only autonomy is focused on tasks that are critical or safety-related (e.g., avoid imminent 
danger or collisions with humans). Within the second level, some additional, rudimentary tasks are given 
to vehicles to decide upon (e.g., follow a pre-defined route or return to a base station). Within the third 
level, the majority of the tasks can be performed autonomously, but supervisory human control may be 
required in some scenarios. One may think of determining a route based on real-time congestion 
information or reroute to a charging station. However, the most difficult tasks are not performed 
autonomously by the vehicles, but rather by a human or external software.  

The last level consists of systems where all, or close to all, tasks are performed autonomously and the 
responsibility (or decision latitude) lies fully at the autonomous transport system. It goes without saying 
that typically in such self-governing systems the human role is not fully absent. For some situations 
human control may be beneficiary for the system. Furthermore, within each level there is some room for 
interpretation. For example, one may position its system on the boundary between two levels. In Section 
4 we provide case studies to illustrate this. 

Also, the degree of cooperativeness is divided into four levels: (i) individual, (ii) brother, (iii) team and (iv) 
societal. The first level are systems where the autonomy (any degree of it) lies within a single unit and 
there is no cooperation between the units. Within the second level there is some level of cooperation, 
but only between the same type of transport units or within a quite narrow set (i.e., brothers). Within 
the third level, the degree of cooperativeness is extended beyond the borders of like-minded transport 



units and now includes cooperation between other system functionalities (e.g., cooperation between 
routing, scheduling and battery replenishment to determine effective routes, whilst respecting time-
windows and simultaneously taking into account energy levels of the vehicles and the capacity of 
charging stations). A team still operates within the boundaries of a single company (e.g., a fleet of AGVs 
at a container terminal).  

Within the last level, the cooperation goes beyond the boundaries of a single company and we classify 
these autonomous transport systems as societal. That is, within a certain logistic system, the entire (or 
vast majority) of the society (e.g., stakeholders or processes) cooperatively manages the logistic system. 
An example would include a fleet of autonomous trucks who cooperate with traffic lights to optimize the 
flow of traffic.  One may also view this as a set of sub-units working together to manage the logistic 
chain. Again, the interpretation of the levels may be case-specific and is further discussed in Section 4.  

Before we do so, we first introduce four categories of SOL within the framework, each with certain 
degrees of autonomy and cooperativeness. These categories motivate the name we will henceforth give 
to our framework: the SOL framework 

3.1.1 The Quiet One 

In the lower-left quadrant of Figure 2 we identify both the degrees of cooperativeness and autonomy as 
low and denote this category by The Quiet One. This denotation comes from the fact that the transport 
systems classified in this quadrant typically perform their tasks in relative solitude with no to little 
communication with others. These - although typically automated - systems show no form of autonomy 
or only for safety-critical or rudimentary tasks. These systems typically consist of a homogeneous fleet of 
vehicles, where each unit works independently with zero to almost no cooperation between vehicles. 
Examples would include automated warehouses where pallets are moved around using robots, or 
reconnaissance drones which map pre-programmed areas. All decisions within these logistic processes 
(e.g., what to do when) are determined - not by the vehicles themselves but - by either a human 
controller or a centralized system. In these systems, the decision latitude is very low to low, with no to 
little connection between the transport units or with external systems. As a collective, such systems may 
still be highly-efficient and intelligent. The intelligence then emerges from a system level in a more-or-
less centralized fashion. These systems are typically highly coupled and clearly demarcated, which are 
preferred properties for stability and predictability, but show no to little emergent behavior nor contain 
much self-organizing properties. 

3.1.2 The Master Apprentice 

We denote lowly cooperative but medium to highly autonomous systems by The Master Apprentice. 
Similar to the previous category, the degree of cooperativeness is low to limited, but the transport units 
have a substantial amount of autonomy. This ranges from partly delegated control to fully self-
governing. An example would include a fleet of vehicles that is highly to fully responsible for carrying out 
all, to almost all tasks, without supervisory control (e.g., scheduling, routing, conflict resolution, 
recharging, maintenance activities, etc.). These systems show some form of self-organization, mainly due 
to their autonomous nature, but typically within a limited scope or application area. There is no 
connection or cooperation with external systems or awareness of the broader impact of their actions. 
This may include for example a fleet of autonomous parcel delivery drones, where last-mile logistics is 
fully self-governing and parcels are delivered in a timely fashion, with a minimum number of vehicles 



deployed. However, the system is not aware of any customer-related preferences and thus may fail to 
provide the best service possible from a customer point-of-view. For example, the system is not aware of 
the customer's whereabouts and thus may face a no-show or is not able to adapt the delivery location 
based on the customer's presence. However, within their limited domain of cooperation, these systems 
perform well with no to little (human) supervisory control required. As the decision latitude increases, 
the intelligence moves from a system level to the autonomous units.  

3.1.3 The One-Trick Pony 

In the upper-left quadrant of the framework we identify lowly autonomous and medium to highly 
cooperative systems and denote these by The One-Trick Pony. This designation is motivated by the fact 
that the transport systems in this quadrant typically have a limited set of skills. They score low on 
autonomy which is confined to safety-critical or rudimentary tasks. Their degree of cooperativeness, 
however, is high. The latter enables them to communicate with their environment, e.g., with external 
logistic systems. Opposed to the previous two categories, these systems cooperate beyond the borders 
of their own span of control to form collaborations. They may consist of a heterogeneous fleet of 
vehicles that mutually cooperate. 

Despite a substantial amount of cooperation, the nature of the cooperative tasks is limited to basic or 
rudimentary tasks, but still may yield a highly efficient system. An example would include a fleet of 
autonomous vehicles which may adapt their routing based on current congestion information or 
synchromodal systems which base their decisions on real-time information.  

A concrete example for the latter case would include the last-mile parcel delivery example of the 
previous category, where now both street robots and drones are available. Both modalities 
communicate and coordinate to provide a cooperative delivery service. For example, a drone might be 
less suitable in bad weather conditions, whereas the street robots are less suitable in areas with bad 
infrastructure. As system boundaries become increasingly ambiguous when cooperating with other 
parties or (IT-)systems, the predictability may go down when moving away from closed systems. 
Moreover, notions as trust, vulnerability and responsibility come into play as existing cooperative 
partners may change their mind, leave the system or are replaced by other partners with different 
interests. However, as the decision latitude is low for this category, the impact of these notions is 
expected to be small and thus may provide a safe haven as a step towards SOL for systems currently 
identified as The Quiet One. 

3.1.4 The Intelligent Collective 

In the last category both the degree of cooperativeness and the degree of autonomy is medium to high. 
Self-governing autonomous systems which cooperate with a large part of the society fall within this 
category. Decisions are made autonomously, and tasks are performed via mutual cooperation and 
coordination. Therefore, we denote this category by The Intelligent Collective. In this category there is a 
high delegation of control which spans beyond the boundaries of a closed domain by cooperating with 
external actors or systems. The top-right corner of this category includes extreme forms of SOL and 
shows similar self-organizing properties and emergent behavior as biological systems, like ant colonies 
and beehives. A fleet of self-organizing vehicles complements the notion of the Physical Internet (PI). The 
idea of PI is to place goods in standard boxes containing encapsulated information, usually via Internet of 
Things (IoT) to identify the package and to route it to the right destination. IoT refers to a concept where 



every-day physical objects (so-called things) are connected to the Internet and are able to identify 
themselves to other devices, collecting and sharing data. Here, a ‘thing’ is an object that is traditionally 
not connected to the Internet, such as a garage door, a utility meter, a streetlamp, etc. Connecting these 
ordinary things to the Internet enables them to communicate with each other real-time without any 
human being involved, thus effectively merging the digital and physical worlds (i.e., transport by 
automated vehicles). The intelligence acquired by the objects may vary between merely identifying 
themselves (e.g., by RFID) and making smart choices (based on built-in software). 

Other, less extreme, examples of systems within The Intelligent Collective would include coordination 
between manual and autonomous vehicles in mixed-traffic applications and real-time collaborative 
transport planning. 

3.2 Beyond the SOL framework 

The framework presents four categories of SOL and helps researchers and practitioners to position their 
research and projects. Moreover, the framework is useful to position the implications of SOL on related 
concepts in logistics. For example, the shape of the shaded area in Figure 2 denotes the paths that lead 
to more self-organizing systems. In addition, the shade of grey denotes the corresponding transition 
from closed, highly coupled systems near the origin, towards open, loosely coupled systems identified as 
The Intelligence Collective.  

In this section, let us consider other relevant notions in logistics that are affected by self-organization. 
We illustrate them in Figure 3 by means of contour plots (the whiter the shade, the higher the value). 
Similar to Figure 2, the degree of autonomy is shown on the horizontal axis and the degree of 
cooperativeness on the vertical axis. Although many concepts and notions exist within the field of 
logistics (cf Pan et al. (2016)), we argue that the following notions are affected most by self-organization: 
(i) control hierarchy, (ii) intelligence, (iii) predictability, (iv) connectivity, (v) decision latitude and (vi) 
cost-effectiveness. In particular, the control hierarchy is highly affected by self-organization, shifting 
from centrally organized systems to decentralized systems.  Due to this shift, the notions (ii)-(vi) are also 
affected. These notions are further discussed below. 

Control Hierarchy 
Systems positioned in the top-right quadrant (The Intelligent Collective) make their decisions 
autonomously and tasks are performed via mutual cooperation. There is a high delegation of control by 
cooperating with external systems. So, this quadrant is leading with regard to decentralized control. 
When cooperation is high, but the extent to which decisions are made autonomously is low (i.e., the top-
left quadrant) there is still a high reliance on centralized (or human) control. In this quadrant thus more 
hybrid control hierarchies are expected.  

Intelligence 
The modes of transport in the logistic systems in the lower left quadrant (The Quiet One) have little to no 
individual intelligence. As these systems are typically controlled centrally, intelligence may stay confined 
to system level. For individual intelligence, a logistic system needs to be sufficiently cooperative. That is 
why the upper quadrants score higher on intelligence emerging from a collective level, rather than a 
system level. To a lesser degree this also holds for The Master Apprentice (i.e., a dark shade of grey) and 
The One-Trick Pony (i.e., a light shade of grey), resulting in a hybrid system, where intelligence emerges 
both on a system level as well as on a collective level. 



 

Predictability 
Figure 3c is the opposite from Figure 3a (Control Hierarchy). Since systems positioned in the top-right 
quadrant (The Intelligent Collective) make their decisions fully autonomously and by cooperation, they 
are hard to predict for the outsider. In contrast to this, the logistic systems from The Quiet One are 
highly predictable. 

Connectivity 
Inherent to cooperation is the ability to communicate, which – for autonomous systems – originates 
from IT-systems. The framework distinguishes between communication with internal systems (i.e., up 
until brother level) and the ability to communicate with external systems (i.e., team level and above). 
Figure 3d shows the expected impact of the degree of cooperativeness of the autonomous system. In the 
lower half of the framework the connectivity is expected to be low, as no or little cooperation is 
required. From there on the level of connectivity increases and is especially high when cooperation is 
sought within the entire society. A similar plot can be made regarding the vulnerability of the system.  

Decision-latitude 
In order to have decision-latitude, a logistic system needs to be sufficiently autonomous. That is why, 
only systems from The Intelligent Collective and The Master Apprentice have this privilege. 

Cost-effectiveness 
Logistic systems in the lower left quadrant (The Quiet One) have hardly any decision latitude. They do 
not require a huge investment per vehicle, which enables the procurement of several coupled systems 
which - together - are highly cost-effective. Conversely, systems from the top-right quadrant are quite 
expensive per vehicle. Nevertheless, for huge companies that can afford them, these self-governing 
autonomous systems really make a difference by cooperating with important societal partners. Hence, 
they are cost-effective as well. 



 

Figure 3: Impact of SOL on related notions in logistics. 

 

4. CASE STUDIES 

This section presents four real-life case studies to illustrate the usability of the SOL framework. For 
brevity we provide only short introductions to the cases. In the sections below, we discuss the following 
three aspects for each case study: (i) the case is positioned within the framework, (ii) one or more 
opportunities are provided to increase the level of self-organization and (iii) the limits of SOL are 
discussed. Figure 4 shows the SOL framework with the positioning of the case studies (denoted by the 
number of the case study) as they are now, and it also depicts the directions towards more self-
organization.  

Case 1: Manure cleaning robots 

The first case study underlines the broad spectrum in which the SOL framework can be applied. This case 
focuses on the agricultural sector and specifically on the logistics of manure cleaning robots in cow 
stables. These robots sweep the barn for manure using pre-defined routes and deliver the manure to a 
fixed location. Each robot has a dedicated charging station to recharge the battery. Depending on the 
size of the barn, one to six robots are deployed simultaneously. When multiple robots are deployed, they 
each have a unique (non-overlapping) section of the barn to clean.  



Despite the high automation degree of these robots, the level of autonomy is low. The robots are able to 
sense objects in their close surroundings using ultrasonic sensors. The robots stop when a non-
preprogrammed object is detected for a longer time period and thus perform critical safety tasks by 
themselves. The only two other (rudimentary) tasks the robot takes are: (i) drive to the charging station 
when the battery is nearly depleted and (ii) drive to the manure-delivery location when the tank is 
almost full. Both decisions are based on pre-programmed routes and logic. The decision latitude of the 
robots is thus quite low and there is no cooperation between the robots when multiple are deployed. 

We thus categorize the automated logistic system of this case study as The Quiet One with no self-
organizing properties. A direction to enhance self-organization includes the combination of: (i) delegate 
more tasks to the robots with supervisory control by the farmer,e.g., the vehicles determine their own 
routes and charging schedules within the time limits set by the supervisor, and (ii) introduce cooperation 
between the robots to relax the restriction of unique sections such that robots can for example take over 
jobs when one is temporarily out of service. An additional opportunity to enhance self-organization is to 
include a cow monitoring system to measure and predict manure intensities in different areas of the 
stable. When such a monitoring system cooperates with the robots, a more connected and flexible 
system is created which surely outperforms the non-cooperative variant of the system. 

Both these directions towards SOL are shown in Figure 4, where the latter option is within The Intelligent 
Collective category, near the center of the framework. Further increasing cooperation or autonomy 
within this case study does not seem worthwhile or useful in practice and thus the ability for the system 
to become self-organizing is deemed present but limited.  

Case 2: Truck Platooning 

The second case study is focused on truck platooning. Truck platooning is a recently developed 
technology within the logistic sector. In a platoon, two or more digitally connected trucks drive in a 
convoy with small following distances in a (semi)autonomous fashion. In this case we specially focus on 
so-called real-time platooning, where platoons may be formed close before the scheduled departure of a 
truck. Example locations would include parking areas or fuel stations. The interested reader is referred to 
Gerrits (2019) and Gerrits et al. (2020) for a more detailed discussion. Trucks at these locations are 
typically from different companies. The trucks may cooperate and try to find suitable matches to form a 
platoon with, and therefore jointly benefit from fuel and emission savings. The trucks still need a human 
controller, or at least a human supervisor. They also cooperate with external systems, e.g., they make 
way when a non-platooning vehicle enters the highway or connect to intelligent traffic lights. By 
cooperating they bundle forces. This case demonstrates that a certain degree of cooperativeness 
between different trucks and/or companies results in a more efficient logistic system with mutually 
shared benefits. The level of autonomy is low as trucks are not allowed to radically change their course 
of action, e.g., routes or time-windows. Despite this limited decision latitude, truck platooning still shows 
its usefulness within the logistic sector. This case can clearly be considered as a One-Trick Pony.  

Further increasing cooperation among truck companies - by for example aligning routes or schedules in 
real-time - may provide opportunities for enhanced self-organization within truck platooning, beyond 
solely driving together when an opportunity arises. Moreover, more control can be delegated to the 
trucks to make decisions in real-time. For example, a truck parking area may provide opportunities for 
trucks to collaborate to solve less-than-truckload shipping when two or more loads can be consolidated 
in a single truck. Obviously, a mutually agreed upon cost-benefit sharing system needs to be deployed in 



any situation. When trucks are allowed to make more decisions autonomously and in real-time, we move 
away from static planning by each individual truck company, towards a more self-governing and societal 
transport system, beyond truck platooning alone. This path towards SOL is illustrated in Figure 4.  

Case 3: Smart Yards  

The third case study focuses on low-speed autonomous vehicles in closed or semi-open areas at or near 
distribution centers or other transport hubs. Examples include: (i) the landside area of a cargo airport, (ii) 
pre-gates parking areas or buffer zones at container terminals and ports and (iii) aprons at the docks of a 
distribution center. For a more in-depth analysis of the latter case, the interested reader is referred to 
Gerrits et al. (2018). These cases provide opportunities for the hand-over of cargo (e.g., containers or 
trailers) to autonomous vehicles for last-mile transport or on-site maneuvering. Hence, we refer to these 
areas as Smart Yards. They not only provide a decoupling point between last-mile and long-haul, but also 
provide opportunities for autonomous freight transport. Typically, yard tractors or similar vehicles are 
deployed in these areas. Multiple manufacturers are currently developing and testing a next generation 
with a high degree of automation, so-called Automated Yard Tractors (AYTs). These AYTs enable 
unmanned last-mile transport and maneuvering and provide opportunities for delegated control. In this 
case study, we are particularly interested in how a fleet of AYTs is able to handle the logistic processes at 
yards in an autonomous and ultimately self-organizing manner.  

AYTs are highly automated and are able to drive in both closed areas as well as on (semi-public) open 
roads. Opposed to Case 1, where we see a similar degree of automation, AYTs are developed with 
autonomous task handling in mind. That is, the purpose of AYTs is not to solely replace human drivers or 
operators, but also to take over tasks such as routing, scheduling and conflict resolution. This is possible 
as a fleet of AYTs is typically homogeneous and has a clearly demarcated set of tasks to perform within 
the last-mile. The sole purpose of an AYT is to fulfill transport requests from origin to destination based 
on inbound and outbound transports. Depending on the specific case location, this ranges from low-
speed maneuvering on closed aprons near the dock area to medium-speed driving between terminals or 
pre-gate parking areas. The freedom of the AYTs is currently bounded by external systems or 
infrastructural limitations. The system does not have any influence on these external mechanisms and 
thus we classify autonomous vehicles at smart yards as The Master Apprentice. In terms of autonomy we 
classify smart yards on the verge of constituent and self-governing and in terms of cooperativeness on 
the level of brother (i.e., the fleet of homogeneous AYTs form a strong bond).  

To increase SOL within this case, we identify the possibility of including more cooperativeness with 
external systems. Currently, the fleet management of AYTs is typically determined by a centralized 
system which accounts for transport planning. When a more connected and cooperative system is 
deployed, e.g., by using IoT-sensors, geo-fencing or coupling with warehouse management systems or 
terminal operating systems, the fleet of AYTs may be able to make smart decisions based on the data 
generated. For example, non-urgent transport may be brought forward in the planning when some AYTs 
are idling, to increase available capacity when more demand is anticipated in the future given. Also, AYTs 
may position themselves strategically when a geo-fencing system is deployed in order to reduce waiting 
times. This enhanced degree of cooperativeness automatically provides opportunities for the system to 
become more self-governing in terms of autonomy, thereby reducing the role of human planning to 
make operational decisions.  



For a smart yard to become more societal beyond this point, we propose to also cooperate with 
infrastructure such as Intelligent Traffic Lights (ITLs). When AYTs are able to communicate with ITLs in 
mixed-traffic open road situations, the traffic monitoring system may be able to secure junctions. With 
this cooperative behavior, the external traffic system thus influences the self-organizing properties of the 
AYT system, especially in terms of safety. The degree of cooperativeness takes a rather large leap as this 
requires cooperation beyond the logistic processes of a smart yard. The degree of autonomy, however, 
does not change much with this added functionality, which from a safety perspective may be useful. 
From an SOL perspective we position this additional cooperation on top of the previously mentioned 
cooperativeness with external systems, as shown in Figure 4. 

Case 4: Mixed-Traffic Container Terminals 

The final case study is also focused on the deployment of AYTs, as introduced in the previous case study, 
but in this case in Mixed-Traffic container Terminals (MTTs). This case study presents a near-future vision 
of Automated Container Terminals (ACTs), where both AYTs and manual trucks coexist. The AYTs have 
similar tasks as in the previous case: providing horizontal transport, between the quay area and the 
stacks of a terminal. In an MTT (see Gerrits et al. (2019) and Gerrits et al. (2021) for further details), 
manually operated road trucks share the same infrastructure with the AYTs. For an MTT to be safe, 
secure and performant, a high level of autonomy and cooperation is required. Even in non-mixed-traffic 
terminals, AYTs may be highly autonomous in their decision-making (e.g., routing, scheduling, charging) 
in order to facilitate high terminal productivity. When introducing mixed-traffic, even more control 
should be delegated to the fleet, in order to attain a robust, safe and most-of-all, scalable system. 
Typically, 5-10 AYTs are deployed per quay crane and thus - even for mid-sized terminals  planning & 
control in real-time is challenging and global optimization methods are less suitable. Moreover, trade-
offs between manual and automated vehicles are imminent in mixed-traffic situations and thus a high 
degree of cooperativeness is required to guarantee safety and efficiency. ACTs with mixed traffic can 
thus be positioned with high degrees of both autonomy and cooperativeness, as shown in Figure 4.  

For the system to become more self-organizing, the crux is the harmony between the manual and the 
automated systems. Only in harmony, the system may be fully self-governing. For example, in order to 
increase port productivity, dynamic traffic rules may be deployed based on terminal congestion. Whilst 
dynamic control of the terminal may be beneficial, it may also introduce unpredictability (e.g., a dynamic 
limit on the number of manual trucks allowed on the terminal during peak hours). These rules should be 
clearly communicated to both the manual and automated system. In future applications, AYTs may even 
be allowed to leave the terminal area. For example, to provide last-mile shuttle services between 
terminals and pre-gate parking areas. For now, AYTs are not allowed to leave the terminal and thus the 
societal level of cooperativeness cannot be reached as the terminal remains a closed area.   



 

Figure 4: Case studies positioned within the SOL framework.  

 

5. CONCLUSIONS AND FURTHER RESEARCH 

This paper presents a unifying framework for self-organization in the field of automated vehicles offering 
a broad perspective on how automated vehicles impact logistic processes. The framework focuses on the 
interplay between the degree of autonomy (DA) of logistic systems and their degree of cooperativeness 
(DC). In the corresponding perceptual mapping, the following four quadrants can be distinguished: (1) 
The Quiet One (low DA, low DC) (2) The Master Apprentice (high DA, low DC) (3) The One-Trick Pony (low 
DA, high DC) and (4) The Intelligent Collective (high DA, high DC). These four categories of self-organizing 
automated vehicles help researchers and practitioners to position their research and projects.  

The framework is also useful to position the implications of SOL on related concepts in logistics. We 
illustrate this by contour plots, where the impact of the DA and the DC is shown for six related notions in 
logistics: (i) control hierarchy, (ii) intelligence, (iii) predictability, (iv) connectivity, (v) decision latitude 



and (vi) cost-effectiveness. The framework is illustrated by means of four different case studies from 
practice.  

The usefulness of the established framework is two-fold: (i) it provides a common ground for researchers 
to position their work and to identify potential future directions for research and (ii) it serves as a 
practical and understandable starting point to create awareness for practitioners on how self-
organization may affect their business and where their limited resources should be focused upon. 

We challenge researchers to use this framework to position their research and to steer their 
investigations towards interesting areas. As future research, we intend to include case studies into other 
types of modalities to further verify our framework. In particular, since all case studies mentioned 
involve ground vehicles, it may be interesting to perform case studies into unmanned aircraft. 
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