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Abstract—Smart solutions that make use of machine learning
and data analyses are on the rise. Big Data analysis is attracting
more and more developers and researchers, and at least five
requirements (Velocity, Volume, Value, Variety, and Veracity)
show challenges in deploying such solutions. Across the globe,
many Smart City initiatives are using Big Data Analytics as a tool
for doing predictive analytics which can be helpful to human well
being. This work presents a generic architecture named Machine
Learning in Microservices Architecture (MLMA) that provides
design patterns to transform a monolithic architecture of machine
learning pipelines in microservices with separate roles. We
present two case studies deployed to a Smart City initiative, where
we discuss how each component of the architecture applied in
specific applications that use predictions with machine learning.
Among the benefits of this architecture, we argue prediction
performance, scalability, code maintenance and reusability makes
such transition a natural trend in Big Data and machine learning
applications.

Index Terms—microservices, machine learning, design pat-
terns, recommendation systems, predictive policing.

I. INTRODUCTION

Big data approaches have been used by many Smart
City Initiatives to discover new patterns and insights that
can improve public and private services. However, with the
proliferation of data sources in Smart City initiatives, it is
necessary to adopt improved processing approaches to make
scalability and maintenance of these initiatives sustainable.
At least six requirements of big data (Velocity, Volume,
Value, Variety, Veracity and Complexity) bring challenges to
extract meaningful information of the data and to the way
technologies are being developed. The methods to analyze
a big volume of data must be able to extract features we
don’t know yet, which brings several benefits like a better
understanding of patterns, business value and an improved
scientific discovery [1]. Also, with the rise of cloud computing
[2] as a powerful way of deploying predictive systems that use
machine learning, designing new applications requires more
appropriate architectural modelling.

A recent trend in the practice of developing Smart City
applications hosted in clouds is to use architectures based on
microservices [3]. This type of architecture has been adopted
by many big tech companies, such as Amazon, IBM and Mi-
crosoft, so prominent investments has made it reach a higher
degree of maturity in recent years. It consists of dividing a

system into a set of small services, highly decoupled, each
one performing in its own process and communicating with
light mechanisms [4]. Each service has a purpose-specific
and well-defined role, focusing on doing a small task [5].
As microservices practices have been developed most in IT
industrial environment, Soldani et al. [6] recently suggested
that there is a gap between the academic state-of-the-art and
industrial state-of-practice.

The fact that microservices are loosely coupled brings
several advantages, such as:

o The developer has the freedom to develop and deploy
services independently;

o The developer can implement them in different program-
ming languages;

o The application is easily integrated and deployed us-
ing container-based and distributed technologies such as
Docker or Mesos;

e The code is easier to understand and maintain because
each service has isolated responsibilities;

o The application has multiple points of failures and can
be implemented to handle them without a crash.

In this work, we propose a generic architecture, named
Machine Learning in Microservices Architecture (MLMA)
for implementing machine learning pipelines by means of
separating similar processing steps into smaller services. With
such a design, we argue that it improves the performance and
code maintenance of machine learning pipelines. Also, the
independence between the microservices makes them reusable
in different tasks within the same workflow. We have assessed
the feasibility of our proposed work by means of two case
studies deployed to a Smart City Initiative. The first one is
a Recommendation System applied to a Smart Tourism [7]
application, in which we adapted the monolithic framework
described by Figueredo et al. [8]. The second one is a
Predictive Policing [9], following the framework described by
Araujo jr et al. [10]. We observe different scenarios, in which
incoming requests levels and business logic differ significantly,
and we derive a discussion from such differences that are
useful when implementing the proposed architecture.
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II. RELATED WORKS

Machine Learning (ML) continues to grow as a powerful
tool for problem-solving. However, implementing ML in ap-
plications is not an easy task and requires specific knowledge
from the developer. To facilitate this process, [11] proposes
the technique of encapsulating ML as microservices, which
he called REST ML. For this, three algorithms that were
considered relevant to the area of internet of things were
implemented as microservices. In the end, the author shows
that the proposed approach simplifies the implementation of
algorithms for ML since it allows the reuse of services and
configurations.

With the use of Machine Learning in applications, the
lack of computational resources become a problem. However,
improved solutions with the implementation of parallelization
algorithms gain performance, and this is where the work of
[12] goes into detail. In this work, gains are discussed and
presented by parallelizing and using services that modularize
the layers of the Deep Neural Network (DNN). As a result,
the work contributes a framework called SERF, which finds
the best parallelization settings for DNN services.

When working with multiple services, challenges arise as
to how to properly host those services and what kind of
technology to use. In the work of [13], Docker containers
are used to host monitoring applications. These containers run
on top of a virtual machine created in an OpenStack cloud,
which allows the use of resources from several computers at
the same time [14]. A processing component that uses Deep
Learning to monitor the environment in which the containers
was developed and hosted on a separate virtual machine.
This component enables the detection of security problems,
as we can see in Figure 1. The solution proved promising and
functional, but as explained by the author of the solution, the
monitoring component needs to be improved.
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Fig. 1. Monitoring the environment of Docker containers. (Source: [13])

Still following the line of monitoring, the work of [15]
monitors the path travelled by typhoons through satellite
images. To perform this monitoring, Docker and Kubernetes,
an administrator for Docker containers [16], host the applica-
tion that processes the images and distributes computational
resources.

In the proposal of [17], containers were also used to host
a solution that makes use of Convolutional Neural Network
to monitor the memory integrity of a system. Although the
last two papers cited do not work very much on the issue of
containers and distributed systems, they show that solutions

that use services to classify data and use Docker to control
and deploy these services are gaining ground in the literature.

ITI. MACHINE LEARNING IN MICROSERVICES
ARCHITECTURE TOPOLOGY

The concept of generic architecture occurs in the face of the
great need for artificial intelligence models, always applied
in different scales and contexts, to be made available in a
simple way for the utilizing services. The generic architecture,
represented in Figure 2, was designed to be implemented in
any project that wants to make use of data classification, so
it would only be necessary to map the classification steps for
the services defined in the architecture, from data collection to
the prediction stage. The Application Programming Interface
(API) of this architecture works by getting data to classify
and the model that would be used. In this way, it would be
possible to do various types of analysis, such as texts to find
out the realm of a sentence, or even real-time image analysis,
such as checking if a driver is sleeping behind the wheel.

In the proposed study, resources are managed from an
end-to-end perspective, from the extraction of features of
the data until the moment of the binary classifications. The
resources are managed so that the final task involving artificial
intelligence is optimally and scalably reproduced. The generic
workflow proposes the creation of microservices based on the
following topology that will be described in the next sections.

A. Flow Controller Service and Post Processing Service

The Flow Controller Service and the Post Processing Ser-
vice are the initial services of the architecture and are optional.
The purpose of these services is to generate some information
from the result of the data classification. In case the Flow
Controller Service is not used, communication will be made
between the Consumer and the Data Collector Service.

After receiving the result of the classification, the Flow
Controller Service will request for possible services that are
classified as Post Processing Service, that will transform the
result of the classification into some information that will be
returned to the user in the request. We can have more than
one service that fits into the Post Processing Service, this will
depend on the processing required after sorting the data, and
the Flow Controller Service will integrate the results of these
services.

B. Data Collector Service

The purpose of this service is to extract the information,
data or content from a well-defined source to place it at the
beginning of an analysis process. There is no type of analysis
or concepts of artificial intelligence or embedded data analysis
at this stage of the process. However, given the wide variety
of data possible to work with a generic architecture, it can be
said that Data Collector Service was thought to be as robust
as possible to support the most different contexts.

Data used at this level may vary in type, size, structure, and
availability. The first and second situations can be constantly
perceived by the mass of data generated by users, such as
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Fig. 2. Proposed Machine Learning in Microservices Architecture to Support Generic ML Pipelines

images, geospatial data, text and time series. In terms of
structures, this service should be robust enough to support
structured and unstructured data, widespread when the data
source is social networks like Twitter.

C. Data Orchestrator Service

The Data Orchestrator Service has an intermediate function
between data from three different services. As seen in Figure 2,
data collection, feature extraction, and classification/prediction
services are managed by the Data Orchestrator Service.

In this step, the data collected and sent by the Data
Collector Service are passed on first to the feature extraction
service. After extracting the information made by the service,
the data is returned in another structure so that it can be used.
Thus each data that has the features extracted are processed
so that they can serve as input to the next service, which has
a variance in its structure in front of the type of classifier
used. After the preparation process, the Data Analysis Service
sends the new data structure created by the classification so
that at the end of the process can receive the result of the
classification.

D. Data Handler Service

In some cases, it will be necessary to preprocess the
data before extract the features, for which the Data Handler
Service was intended. In this stage of the architecture, some
information is not extracted from the data, but cleanup is done
that can disrupt the classification or some modification to adapt
the data to some specified pattern. For instance, a typical
preprocessing step in text processing pipelines is stop-word
filtering.

E. Features Service

The feature extraction service, named Features Service, is
where raw or preprocessed data will be used. Unlike previous
services that work with data storage or cleanup, the Feature

Service needs to work directly with the data to process them
properly [18].

Extracting features in the context of artificial intelligence
is the act of extracting information or processing data so that
it can be learned more simply by training algorithms. The
generic architecture proposed here separates the process of
extracting features from the classification. There is no drop in
performance in terms of classification. However, in multilabel
classification based on binary classification systems, the act of
separating the extraction from the classification can represent
a relevant classification time gain because we use the Feature
Service only once, while the data analysis service makes
several calls to the Predict service using the same features
extracted.

FE. Predict/Classification Service

The classification service will be responsible for generating
the most relevant information for the users of the system at
the generic stage of the process. In this case, the result of one
classification, predictive or any other machine learning process
is created using this service.

A high differential of the generic approach mentioned is the
use of the final step of the machine learning process. In many
cases, the classifier or predictors structure is maintained for all
classes. In this way, what is done in the proposed architecture
is the use of the structure of the classifiers to avoid redundancy.
Thus, the structure loads new configurations dynamically so
that it can perform the output process.

The data structured as a form of features or preprocessed,
when applicable, enter this service so that it can come out as a
set of classifications. The result is a vector of NV values that are
related to the number of outputs present in this architecture.
The values present in this vector of N positions refer to the
adopted approach in the classification, prediction or output
process. They can have different data structures as output.
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G. Volume

The volume represents the location where the data used in
the application will be stored, as well as the model files that
will be loaded by the Predict Service. Data may be stored in
files or a database, and these decisions are fully open to the
needs of the application.

IV. CASE STUDIES

In order to assess the proposed architecture, we have
implemented two case studies designed for the Natal Smart
City Initiative!. Natal is a city of Northeastern Brazil that has
joined the IEEE Smart City initiative as an affiliated city. This
initiative aims to transform Natal into a smart city through
the development of systems and applications to bolster the
use of IT as means of contributing to improve the life quality
of its citizens. Both case studies have already been deployed
[8], [10] to Natal by using a monolithic architecture. Next
sections describe how we have implemented the same case
studies using our proposed microservice architecture.

A. Tourism Recommendation based on Social Media Photos

Systems related to tourism recommendation are known to
use different data steps to create a preference profile and
generate recommendations. Nowadays, through the advent of
social networks and information propagation technologies,
diversity of data is generated and can be used to model tourism
preferences, and they create a personalized recommendation.
However, it is essential that the model adopted to map user
preferences be accurate.

The FindTrip Platform[19], [8] recommendation system can
use photos of tourist trips to generate recommendations of
points of interest to be visited in the city of Natal, Brazil.
For this, the recommendation system identifies the types of
environments where the photos were taken and models a
preference profile using fuzzy logic. In this way, common
problems of recommendation systems are avoided. Each step
of this process has been modelled within the generic MLA
to create a scalable, well-performing framework context, as
shown in Figure 3 and shown in the following topics:

1) Data Collector: The first set of microservices is re-
sponsible for data extraction. The data extraction comprises
two steps. The photos collector step is represented in our
generic approach in the data collector step for this application.
First, the user performs the log in the user interface using one
account/password from one of the three most relevant social
media or users devices. The web interface component uses
the permissions given through the authentication process to
gather the user’s photos. The second step comprises starting
the respective microservice (i.e., microservice one if the user
authenticated using a Facebook account) to download the
photo and store in a shared database. The photo collection
service can be easily used by other applications that have
the main data source social network images supported by the
service.

Thttps://smartcities.ieee.org/municipal-partners
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Fig. 3. Application of the generic micro services architecture to the Find Trip
recommendation system.

2) Features: The scenario classification step is the first
related to profile analyses and most essential to creating the
user tourism preferences profile. The scenario classifier is
the feature extraction step in the recommendation process
described. The main goal of this step is to identify the types of
environments most frequented by users. Each photo collected
using the Data Collector microservice is sent individually to
a set of the binary classifiers. The binary classifiers approach
was used to support a scalable and multilabel classification.
Instead of using a single classifier that classifies an image into
one single class, the adopted approach can classify one image
as belonging to several classes using a true or false output.
In this way, 25 binary classifiers were created using a deep
learning architecture. The great advantage of using the generic
architecture at this stage is the ability to add new classifiers
dynamically, making the feature extraction step (Figure 2)
scalable.

3) Post Processing: A fuzzy approach was adopted to
classify the tourist into the five classes through the features
extracted from photos. After the user photos analyses, one
vector containing 25 features is created using the Scenario
Classifier. These features are the basis for the fuzzy rules.
The main goal of the fuzzy inference is to infer which of
the five tourism classes are relevant for the user based on the
scenarios. The fuzzy approach will generate a human logic
based preferences map. The idea is relating the tourism classes
with the scenarios. In this case, what is crucial for us is to
see the membership value for each tourism class. Tourism
classes containing high values of memberships are considered
relevant for us. This process also becomes scalable due to
the generic architecture. For structure modification, rules and
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fuzzy outputs can be added dynamically according to the
platform’s need.

4) Recommendation: The output from the fuzzy inference
step is a vector containing five features relating the user
with the five classes of tourism created by the Classification
Microservice. The recommendation step will relate this output
vector with the attractions. To do so, each attraction is mod-
elled by each tourism experts in the universe of the attractions.
The Flow Controller will manage the output of this service for
applications that seek to consume information. In our topology,
the recommendation step in works inside the Post Processing,
such as the Fuzzy Inference Process, generating an output for
the users of the Find Trip Platform.

5) Orchestrator: The process to collect the data from the
user request, create features based on the photos and fuzzy
inference and then create the recommendation are managed
by the central service called in our topology of Orchestrator.
This service is the same used in other applications. In this case,
the request contains information about what services will be
used in the recommendation process. Them the Orchestrator
will create a machine learning workflow to fulfil the recom-
mendation request while other requests from other application
are received.

B. Predictive Policing

Allocating police resources in areas of crime concentration
has been done with the help of predictive algorithms, e.g.
[20], [9]. In a previous paper, Araujo jr et al. [10] described
a framework for adjusting machine learning models applied
to predictive policing in the context of hotspot detection. The
goal is to produce spatial predictions related to crime incidence
values for a time interval in the future. In this case, we observe
an asynchronous batch prediction structure, given that with
each new time interval, new predictions are generated. We
map the steps described in this framework to a microservice
architecture following the modelling discussed in this paper
using the following components.

1) Data Collector: The loading of data sources specific to
a given city is done through this service. It has the constraint
of having to be implemented individually since each city can
store a different data model.

2) Data Handler: The creation of a space grid and the
extraction of time series are performed in this service. We
divide this service processing step of the data loading process
so that an application with another database can reuse the same
implementation of this microservice, assuming that primary
attributes are present, such as geographic coordinates of the
occurrence, its type and corresponding time. One of the
configurable aspects of this service is the sampling frequency
of the series (which will correspond to the frequency of the
prediction).

3) Features: The translation of the space-time points of the
occurrences into entries for the machine learning algorithms is
done in this service. Araujo jr et al. [10] uses the expression
feature ingestion to describe this process, which may include
other auxiliary processes such as feature selection and other

transformations. Like the Data Handler, the implementation
of this microservice is also reusable for applications involving
the same task of machine learning in another city.

4) Predict: This service will be responsible for loading a
trained model and making the inferences for the next time
interval, according to the same sampling frequency considered
previously. The result of what has been extracted of features
for this next period will be the trigger to generate the predic-
tions in this service.

5) Orchestrator: To manage the sequence of data loading,
time series extraction of the spatial grid, feature ingestion and
prediction, we have this central service. In addition to being
reusable between analogous applications, its implementation
must be generic to consider a data preparation service, one
of the features and one of prediction. Thus, it can be used in
machine learning applications from different domains, such as
the recommendation system described above.

6) Post Processing: As described by Perry et al. [9],
predictive policing brings more information to a real police
operation. In this case, a post processing step described in
the framework [10] is the formulation of an optimized patrol
program that covers the hotspot identified in the predictions.
This program should consider vehicle restrictions and other
operating costs in an optimization model to map routes that
cover dangerous areas of the city. Thus, this service operates
with the inputs constraints and predictions, producing as output
the given routes in a separate microservice.

V. EVALUATION AND RESULTS

The architecture proposed in this work divides the steps
of the ML process into microservices and proposes optional
components for possible additional treatments in the data.
Following the model of components in microservices, we can
take advantage of the result of the extraction of features for
different classifications, as in the first example of the case
study. Thus, one can easily add new classification models for
use in Predict Service.

When using multiple microservices, we have some problems
like a more complex application deploy and more costs to keep
the project active. To solve these problems, solutions such as
AWS Lambda and Azure Functions are promising [21], since
the environment automatically controls the entire application
load balancing and the charge is based on the number of
requests or time of resources used.

Table 1 shows the processing times in seconds for the
recommendation system steps, where time was calculated
as the average of 10 runs. Two approaches were used, the
monolithic and the version based on the MLMA architecture
in a scalable environment. Clearly, we have a significant gain
in the Scene Classifier, which abstracts the steps of extraction
of features and classification of the data, this mainly occurs
by the use of the result of the extraction of features by several
classification services that execute in parallel. The tests were
performed on a Dell 7567 computer.

In the case of the application of predictive policing we don’t
have a runtime comparative analysis yet, but using the MLMA
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TABLE I
PROCESSING TIMES FOR EACH STEP OF THE RECOMMENDATION
APPLICATION.
Step Monolitc | MLMA
Scene Classifier 29,863 s 9,848 s
Fuzzyfication 0,241 s 0,247 s
Recommendation | 0,079 s 0,071 s

architecture, the ability to process multiple prediction requests
simultaneously for possible different users and locations is
obtained, for this, it is necessary to label the data used for each
specific prediction and maintain the application in a scalable
environment like the AWS Lambda. Also,

Upgrading components or adding new optional components
to an MLMA-based application are easy activities as we are
working with microservices. Project maintainability, in gen-
eral, is a strong attribute, since each component is independent
and well-defined, making its code simple, easy to understand
and change.

VI. CONCLUSION

The proposed work aims to present a topology able to
improve the deployment of Machine Learning applications
in a smart city production context. We presented two cases
studies to illustrate the applicability of our approach. First,
in the Recommendation System, the topology was essential
to improve the feature engineering based in photos classifi-
cation. The microservices represented the parallelism of the
multilabel classification approach used in the system. Besides,
a significant gain in system maintenance was noticed through
the ability to add new classifiers and steps into the system
without much complexity.

On the other hand, we analyzed the application of the
topology in the Predictive Policing system from a different
perspective. A limited set of police units will interact with the
results, unlike a high-demand request platform. Therefore, the
processing performance gains in the microservice architecture
for this study case are not representative. The main advantages
in shifting from the monolithic architecture to microservices,
in this case, are related to reusability of code in other cities
and the greater ease of separate maintenance of the services
that make up the application.

In this way, it is possible to infer that the proposed topology
can have different impacts based on the application. This leads
us to believe that topology has its advantages but should be
evaluated before its actual application. Improvements can be
noticed depending on the amount of incoming client requests
and complex code workflow.
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