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A B S T R A C T   

Geospatial referenced environmental data are extensively used in environmental assessment, prediction, and 
management. Data are commonly obtained by nonrandom surveys or monitoring networks, whereas spatial 
sampling and inference affect the accuracy of subsequent applications. Design-based and model-based proced
ures (DB and MB for short) both allow one to address the gap between statistical inference and spatial data. 
Creating independence by sampling implies that DB may neglect spatial autocorrelation (SAC) if the sampling 
interval is beyond the SAC range. In MB, however, a particular sampling design can be irrelevant for inferential 
results. Empirical studies further showed that MSE (mean squared error) values for both DB and MB are affected 
by SAC and spatial stratified heterogeneity (SSH). We propose a novel framework for integrating SAC and SSH 
into DB and MB. We do so by distinguishing the spatial population from the spatial sample. We show that spatial 
independence in a spatial population results in independence in a spatial sample, whereas SAC in a spatial 
population is reflected in a spatial sample if sampling distances are within the range of dependence; otherwise, 
SAC is absent in the spatial sample. Similarly, SSH in a population may or may not be inherited in data, and this 
depends on the sampling method. Thus, the population, sample, and inference constitute a so-called spatial 
statistic trinity (SST), providing a new framework for spatial statistics, including sampling and inference. This 
paper shows that it greatly simplifies the choice of method in spatial sampling and inferences. Two empirical 
examples and various citations illustrate the theory.   

1. Introduction 

Spatial sampling and inference are widely used in the survey and 
assessment of soil, atmosphere, and water environments (Gao et al., 
2015; Mindham and Tych, 2019; Wang and Xuan, 2020; Wang et al., 
2013b; Chen et al., 2019). Inappropriate application of the methods, 
however, may introduce bias in modelling and analysis. The 
model-based (MB) and the design-based (DB) statistical procedures are 
two common ways to address this problem. DB originated from Bowley 
(1906), and it was further shaped in the 1930s (e.g., Neyman, 1934), 
whereas MB originated from Kiaer (1896), and it was shaped by Fisher, 
1922; in Section 2) and later by Krige (1951) and Matheron (1963, 
1971). The two statistical frameworks constitute two mainstream ap
proaches in spatial statistics (Fig. 1; Cassel et al., 1977; de Gruijter and 
ter Braak, 1990; Brus and Guijiter, 1997). In DB, the population is 

regarded as fixed, and stochasticity in the data is introduced by random 
sampling; estimation procedures are based on the known probabilities of 
sampling. Spatial variation within a population, mainly described as 
either spatial autocorrelation (SAC), or spatial stratified heterogeneity 
(SSH), is of little concern in DB (de Gruijter and ter Braak, 1990). 
Conversely, in MB, the population is regarded as a single realization of a 
joint distribution model, and predictions are based on the model chosen 
to represent the population. Joint design- and model-based frameworks 
(DMFs) provide a general basis for statistical sampling and inference. 

The distinction between DB and MB raises some concerns: (1) Will 
the spatial variation (SAC and SSH) of a population affect the MSE of 
estimation when applying DB? (2) Can information contained in the 
sampling design be used to improve the MSE of estimation when 
applying MB? (3) There is some overlap between the two approaches 
when aiming at the same target (de Gruijter et al., 2006, p.68). To 
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address the first issue, we note that in DB, stratified sampling is favored 
over simple random sampling if the population exhibits SSH (Cochran, 
1978; Wang et al., 2016). For the second issue, it is well known that in 
MB, the empirical error of kriging interpolation, i.e., the difference be
tween the predicted value and the true value at a prediction point, varies 
with the sampling design (Minasny and McBratney, 2016). For the third 
issue, we note that overlapping makes it difficult for users to make the 
best choice of approach. Model-assisted sampling and hybrid sampling 
overcome part of the limitations of the DMF (Särndal et al., 1992; Sterba, 
2009). In hybrid sampling, the spatial variation of a population can be 
included in the joint stochastic distribution model, and a sampling 
design of any random sample can be used in the estimation of parame
ters. Accordingly, Brus and Guijiter’s (1997) table of sampling strategies 
can be updated as shown in Table 1. 

The objective of this paper is to explore the root of the inconsistency 
between theoretical assumptions and empirical studies for both DB and 
MB. That is, DB neglects the spatial variation of a population and MB 
neglects the sampling design, while in empirical studies, both of the 
neglects influence the errors of their estimates from the real value. 
Consequently, we propose a unified framework named the spatial sta
tistic trinity (SST) that will greatly simplify the model and method 
choice in the spatial sampling and spatial inference of environments. 

To address the problems above, the remainder of this paper is 
organized as follows. Section 2 refines the common standard of perfor
mance for various samplings and inferences; Section 3 proposes the 
generic SST framework to address the problems (arisen in Section 1) 

using the standard of performance (set in Section 2). Then, SST is 
compared to the existing DMF and others in Section 4. Finally, we 
illustrate the key concepts of SST using empirical studies in Section 5, 
and we draw conclusions in Section 6. 

These Sections and Sub-sections are supported and logically linked 
by sequential figures as well: study background (Fig. 1) → motivation of 
SST with an example (Figs. 2 and 3) → connections between the com
ponents in SST using a data flow (Fig. 4) → computation issues (Fig. 5) → 
model efficiency comparison (Fig. 6) → SST model choice for practical 
applications (Fig. 7). Key concepts in SST are empirically illustrated 
(Figs. 8–10). 

2. The performance of spatial sampling and statistical inference 

The gold standard of the performance of an estimator or predictor Ψ is 
its difference from the true value Ψ0: 

|ψ − ψ0| (1)  

where Ψ is a parameter of a population ℜ or superpopulation R. A 
superpopulation refers to a collection of random variables (one for each 
location), and a population is one of the realizations of the super
population. In practice, however, Ψ0 is unknown, and usually only a 
single realization of a superpopulation or one sample I of a population is 
available. The performance of an estimator Ψ̂ is then measured via the 
theoretical expectation of the p-MSE under the assumption of many in
stances of sampling of the target population by a sampling scheme p 
(Equation (2a)). Likewise, the performance of a predictor Ψ̃ is measured 
by the theoretical expectation of the ξ-MSE under the assumption of 
many instances of realizations of the superpopulation ξ (Equation (2b)) 
or the joint p- and ξ-MSE (Equation (2c)): 

MSEpψ(I) = Ep(ψ − ψ0)
2 (2a)  

MSEξψ(ℜ) = Eξ(ψ − ψ0)
2 (2b)  

MSEξpψ = Eξp(ψ − ψ0)
2 (2c)  

where the MSE refers to the mean square error and Ψ may be either an 
estimator Ψ̂ or a predictor Ψ̃. The MSE reduces to a variance in the case 
of an unbiased estimation: 

Fig. 1. Evolution of the design- and model-based frameworks (DMFs).  

Table 1 
Types of sampling strategies updated from Brus and Guijiter (1997).   

Values at given location 

Fixed Random 

Sample locations Fixed Fully deterministic Model-based 
Random Design-based Hybrid  

Fig. 2. Spatial statistic trinity. i.i.d., SAC, SSH and 
MIX in red color are four types of population; 
Random, Systematic and Stratified in blue color are 
sampling methods, representing simple random sam
pling, systematic sampling, stratified random sam
pling respectively; Average, Stratified, Kriging, MSN 
in green color are estimators, representing estimator 
for simple random sampling, estimator for stratified 
random sampling, Kriging and MSN; each square in 
the magic cube represents a combination of a popu
lation, sampling method and estimator; the letters in 
the rightmost column are examples of the combina
tion, with the first letter representing the population, 
the middle letter representing the sampling method 
and the third letter representing the estimator. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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(
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In this study, we focus on an unbiased estimation. For such a popu
lation parameter as the spatial mean, p-inference fails to account for the 
SAC in a population (Särndal, 1978; de Gruijter and ter Braak, 1990). 
For a superpopulation parameter, such as the model mean, ξ-inference 
only concerns the distances between sampling sites; in contrast, it fails to 
account for their specific locations. Note that the theoretical measures in 
statistics, originating from gambling based on random and repeated 
sampling (RRS) and widely applied in experimental sciences, seem too 
far from the reality in geoscience, where both random and repeated 
sampling are rare. 

3. The spatial statistic trinity (SST) framework 

3.1. Motivation of SST 

In MB, sampling is done on a population variable, whereas spatial 
data refer to a sample (Cochran, 1977; Anselin, 1988; Cressie, 1992; 
Cressie, 1990; Haining, 2003). While in DB one assumes a fixed popu
lation, both the population and sample can be referred to as spatial data. 
To improve estimation for spatial data, we have to deal with SAC, 
defined as the coincidence of locational and attribute similarities 
(Tobler, 1970; Matheron, 1963; Anselin, 1988; Goodchild, 2004; Sui, 
2004), although SAC is not explicitly included in DB inference. SAC is a 

property of either the population or the sample, with the former being 
independent of the latter. Kriging interpolation will be useful if the 
population has SAC, particularly if distances between sampled sites are 
less than the range of spatial dependence. 

Instead of the (p, t) spatial statistical dual (Brus and Guijiter, 1997; 
Brus, 2019), where p represents a sampling design and t represents an 
estimator, we put forward an SST (R, I, Ψ) composed of a population 
R, sampling design ℑ, and estimator Ψ. Each of the three dimensions has 
many options; consequently, there are more than 100 combinations of 
triples (Fig. 2). Only a few of these are efficient, however, where the 
population properties, assumption of estimators, and sampling condi
tions match. Fig. 3 gives a simple example of SST: an i.i.d. population, 
random sampling, and sample mean in which the triple of the population 
parameters (number of units N and variance σ2), of the statistic pa
rameters (sample mean y and its variance v), and of the sampling pa
rameters (sample size n) are connected by a function having an analytic 
solution. 

3.2. SST components and their relationships 

Fig. 4 illustrates the spatial data flow in SST from a generator, usually 
a spatial process or superpopulation R, to its single realization over a 
geographical space (population ℜ), which is observed by a single 
sampling (I). We are interested in predicting the values at unsampled 
sites, the spatial mean of the population R, or even the parameters of the 
superpopulation R based on the observed sample ℑ and an estimator or 
predictor Ψ under specific assumptions. Drawing a sample from a pop
ulation, the values of the sample are the result of data propagation from 
superpopulation R to population R under sampling scheme I. The 
spatial variation of a superpopulation, such as i.i.d., SAC, or SSH, is 
inherited by the population (Haining, 1988, p.575; Eqs. (1.1), (1.2); 
Cressie, 1993, pp.13–15). These properties, however, may or may not be 
inherited by the sample due to the sampling method (Isaaks and 

Fig. 3. An example of an SST triple with an i.i.d. population (in the box). # 
represents the sampling method, e.g., random, systematic, kriging; n is the 
number of sample units; v is the error of estimation; N is the number of units in 
the population; σ2 is the dispersion variance; c is the spatial autocorrelation; 
and q is the spatial stratified heterogeneity. 

Fig. 4. Spatial data flow. Solid arrows denote observed information flow; dashes and grey words denote imagined realizations and samplings. The stochastic 
properties of an observed population generated by a superpopulation and a sample design from a population to a sample are denoted by ξ and p, respectively. The 
population mean Ψ̂ is called the spatial mean and the superpopulation mean Ψ̃ the model mean; + stands for sample sites. 

Fig. 5. Optimal sampling for a population. 
(v stands for variance). 
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Srivastava, 1989, chapter 7; Haining, 1988, p.576), and they may or 
may not be utilized by the chosen estimator. Because of the propagation 
and inheritance of the data properties (Table 2), we coin either spatial i. 
i.d. or SAC or SSH for a population instead of for a superpopulation, as 
linear regression modelling is interpreted under the framework of pop
ulation and sample without recourse to the word of superpopulation 
(Gujarati and Porter, 2009, p.35, 43). When the distinction between 
population and superpopulation causes little difference, for simplifica
tion, we use population to refer to both population and the mechanism 
generating the population, i.e., superpopulation. Consequently, an 
estimation using the sample data ℑ and an estimator Ψ are determined 
by the sampling trinity SST (R, I, Ψ). SST considers the uncertainties in 
superpopulation modelling and population sampling, as well as the 
match between the assumption of a model or estimator for inference and 
the property of a population. 

The elements and linkages of the spatial data flow in Fig. 4 and 
Table 2 are further explained in the following subsections. 

3.2.1. Population (ℜ) and estimator (Ψ) 
A spatial process refers to a superpopulation, where its properties are 

inherited by its populations. For example, disease risk (super
population R) is to be distinguished from an exhaustive observation 
(population ℜ) of disease incidence or prevalence if we are concerned 
with its causation. One commonly assumes that a disease occurrence 
follows a Poisson process (Haining, 2003, p.308), Oi ~ Poisson(Eiri), 
where Oi is the observed number of deaths (population) in the i-th 
subarea, and Ei denotes the expected number of deaths from the disease. 
Then, the relative risk of dying from the disease ri, with ri = Oi/Ei as its 
maximum likelihood estimator, is a superpopulation parameter that can 

be estimated and mapped for each subarea. The risk ri may be further 
modeled by a prior distribution or covariates (Banerjee et al., 2015). 
Based on different perspectives, population and superpopulation may be 
defined as interchangeable. If it concerns individual locations, then 
there are two concepts for estimation, which are as follows: p(disease 
occurrence | locations) and p(locations | disease occurrence). These 
concepts represent the probability of the diseases p(y) and the proba
bility function of the locations p(locations). They are related to each 
other through Bayes’ law, that is, p(y |x) = p(x |y)p(y)/p(x). Commonly, 
the term p(x) is ignored because it is irrelevant for y, and we have that p 
(y |x) ~ p(x |y)p(y). 

The spatial mean of a population ℜ and the model mean of a 
superpopulation R are defined as 

M(R) =
1
N

∑N

i=1
z(i|R), (4a)  

M(R) =
1
R

∑R

R=1

M(R) (4b)  

respectively, where ℜ = 1, …, R, and R stands for either a super
population or the number of all possible populations of a super
population. Both M(ℜ) and M(R) can be estimated by a weighted sample 
mean: 

m(R) =
∑n

i=1
w(i)z(i|R) (5)  

where w(i) is adopted by a sampling design (Horvitz and Thompson, 
1952; Särndal et al., 1992), such as 1/n if it is simple random sampling, 
or it is calibrated if the spatial population (variation) is modeled. 

3.2.2. Population (ℜ) and sampling (ℑ) 
The spatial variation of a population may or may not be reflected in a 

sample. A population ℜ or superpopulation ℝ can be i.i.d., such as a 
Poisson process or white noise; deterministic, such as a plane or sinuous 
time series; or hybrid—that is, between completely random and 
completely deterministic—such as an SSH or SAC. Given a specific 
estimator Ψ and sampling method ℑ, the MSE varies with the properties 
of the target populations (Table 3). We consider three cases below. 

Case 1. Deterministic population (DP). If a population is fully 
deterministic, such as the path of a bouncing ball, it follows Newton’s law 
Ψ. From a low number of sampling points of the path, one can reconstruct 
the exact path (population) using Newton’s law as an estimator (Isaaks 
and Srivastava, 1989, p.199). A second example is the detail of urban 
planning. The third example is the population y, which is determined by 
the covariate X, such as the first soil map for the United States, which is 
strongly influenced by geology and rivers (Whitney, 1909); 
soil-landscape models allow for the prediction of soil properties based on 
landscape position (Branham, 1989); pollution emissions by vehicles 
differ between steady speed and unsteady, allowing for the prediction of 
air pollution along a road. The fourth example is the temporal trans
mission of a communicable disease, which can be well reflected by the 
temporal process of the susceptive-exposed-infective-recovered (SEIR) 

Fig. 6. Efficiency of spatial sampling and statistics for different populations. 
(the shorter the length of the arrow, the higher the efficiency of the framework). 

Fig. 7. Model selection according to SAC (shaded cells) and SSH (cells parti
tioned by curves) for spatial mean (rows indicate whether the population ex
hibits SAC, i.e., I = 0 or I ∕= 0, respectively; columns indicate whether the 
population presents SSH, i.e., Geodetector q = 0 or q ∕= 0, respectively; and the 
q∕=0 column is further divided into two columns according to whether the 
sample covers all strata; dots stand for sample units; Sample Ave is the esti
mation method of simple random sampling; Sandwich is proposed by Wang 
et al., [2013a]; MSN is by proposed by Wang et al., [2009]; Heckman’ s 
correction methods are proposed by Heckman [1979]; Bshade is proposed by 
Wang et al., [2011]; SPA is proposed by Wang et al., [2012]). 
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model. A few sample units randomly drawn from the SEIR process can 
calibrate the SEIR model to simulate the exact time series of an infectious 
disease (Wang et al., 2006). SAC can be derived from the spatial version 
of SEIR and then used for spatial interpolation (Angulo et al., 2013; 
Kolovos et al., 2013). 

Case 2. Semi-random population (SRP). For SSH populations, such 
as climate zones, the annual mean temperature of an area can be esti
mated using a stratified sampling (Cochran, 1977). If a population ex
hibits SAC, with a known shape of the variogram—which can be 
calibrated by a sample even if it is i.i.d. and small—then kriging can be 
implemented (Matheron, 1963; Rodriguez-Iturbe and Mejia, 1974; 
Haining, 2003). Context effects and uncertainty can then be observed 
(Kwan and Schwanen, 2018). 

Case 3. An i.i.d. population (IID). Against a population containing 
SAC or SSH, an i.i.d. population looks like a white noise picture, which 
may be generated by a spatially independently and identically 

distributed superpopulation. An example is a piece of farmland of 
seedlings that was sowed with problematic corn seeds (only 80% can 
sprout due to variety or spoiling, for example). It is virtually impossible 
to reconstruct the i.i.d. population using a finite sample and even 
advanced estimators. There is no better approach than random sampling 
for surveying an i.i.d. population; spatial interpolation is impossible in 
this case (Table 3). 

A population ℜ or superpopulation R could be estimated by a 
mechanistic model with little data as in case 1, a weak model with much 
data as in case 3, or a balance between the model and data as in case 2. 
Any choice of estimation method depends on the properties of the 
population, as well as the available sample. The properties of a popu
lation or superpopulation may be known in advance via the general and 
specific knowledge of the process (Christakos, 2005), study area, rele
vant determinants, or prior exploratory sampling. If no prior knowledge 
of the target population is available, simple random or systematic 

Fig. 8. Five simulated populations with different SAC values (the target value is the Pb concentration in soil with ppm as the unit).  
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sampling is applicable, although this is done at the possible cost of 
inefficiency. 

3.2.3. Sampling (ℑ) and estimator (Ψ) 
Sampling is usually followed by applying a method to make an 

inference of a population or superpopulation. By the analytical solution 
of a sampling design, we mean that the variance of an estimator is a 
function of sample size, and vice versa. For example, the variances of the 
superpopulation mean and population mean of a simple random sam
pling are (Ripley, 1981; Haining, 1988; Griffith et al., 1994) 

v(R) = (1+ r)
(

1 −
n
N

) S2

n
(6a)  

v(R) = (1 − r)
(

1 −
n
N

) S2

n
(6b)  

respectively, where n is the sample size, n
N is the sampling fraction, S2 is 

the variance of the population, and r is the average of pairwise corre
lations of the study area computed by the covariance between two 
randomly selected points. For an i.i.d. population, r = 0 in (6a, 6b), and 
the right side becomes the same as the DB one. After a simple transform, 
the sample size n is a function of the required variance of the sample 
mean. An effective sample size is n’ = n/(1 + r) for an SAC super
population and n’ = n/(1 – r) for an SAC population (Griffith, 2005). 

For most estimators (e.g., kriging predictors), there are no analytic 
solutions to find the optimal sampling design given their variances; thus, 
they must be found by simulations. As Fig. 5 shows, for a given popu
lation ℜ and sample size, how simple random sampling is carried out. 
Sample ℑ1 is used by estimator Ψ to estimate the spatial mean m̂(I1)
with variance v(I1). Another sampling ℑ2 is carried out to obtain 
m̂(I2) and v(I2). This process is repeated until all combinations CN

n are 
enumerated, where N and n are the numbers of units in the population 
and sample, respectively. The optimal sampling is the sampling that 
results into the smallest variance. The population mean m̂ can be esti
mated by either a DB estimator (Ψ(∀I)|ℜ) of an average over all sam
plings ℑs in one realized population ℜ or an MB predictor (Ψ(∀ℜ)|I) of 
an average over many realized populations ℜs giving one sampling ℑ. 

3.3. Model selection with SST 

Fig. 4 shows that the properties of a spatial sample are the result of 
information propagation from a process, that is, a superpopulation, to a 
population; the population is a realization of the superpopulation and is 
then captured by the sample and operated in an estimator or predictor. 
SAC and SSH are generic features of a spatial process or population. 
They may or may not be reflected by a sample (Table 4). If the super
population is i.i.d., the population will be i.i.d. In most cases, whereas 
autocorrelation in a superpopulation will be preserved in its populations 
and be present in the observed spatial data if the distance between 
sampling units is within the SAC range. The parameters of a population 
or superpopulation may be obtained from priors like Newton’s law, 
previous surveys or a survey of a similar attribute in the same area, or 
surveys of the attribute in a similar area. In practice, SAC can be tested 
by Moran’s I (Moran, 1950) or semivariogram (Matheron, 1963); SSH 
can be tested by q statistic (Wang et al., 2016); and a population is i.i.d. 
if it is neither SAC nor SSH. 

Many sampling methods and many estimators can be used. Hence, 
any sampling and estimation can be one of the combinations of the 
triples (Fig. 2). Table 5 and Fig. 6 illustrate the efficiency of the SST. 
Estimation method selections according to SAC and SSH are illustrated 
in Fig. 7. For an i.i.d. population, no approach is better than simple 
random sampling for inferring about a parameter. When a population 
only presents SAC without SSH, kriging is preferred. For an SSH popu
lation, stratified sampling or Sandwich (Wang et al., 2013a) is superior 
to simple random sampling because it requires fewer sample units to 
reach a given inference precision. When both SAC and SSH exist in a 
population, the population is first partitioned according to its SSH, and it 
can then be estimated by kriging in strata (Stein et al., 1988; Goovaerts, 
1997) or more precisely by the mean of the surface with stratified 
non-homogeneity (MSN) (Wang et al., 2009; Gao et al., 2020). If the 
sample cannot cover all strata with an SSH population, bias correction 
should be adopted, such as the correction method of Heckman (1979) 
for an SSH population and Bshade (Wang et al., 2011) and SPA (Wang 
et al., 2012) for a population that presents both SAC and SSH. 

In summary, DB (p, t) and MB (ξ) (Brus and Guijiter, 1997, p.5) can 
be integrated by the SST (R, I, Ψ). Compared with a complicated 
DMF-based decision tree for choosing between DB and MB sampling and 
statistical strategies (Brus and Guijiter, 1997, Figure 11), the SST covers 

Fig. 9. Estimation errors of simulated datasets (Range1 is the result for population with Range = 1, Range5 for Range = 5, Range10 for Range = 10, Range20 for 
Range = 20, and Range40 for Range = 40). 
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Fig. 10. Estimation error of a climate dataset.  
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the essentials of spatial statistics from sampling choice to statistical 
inference (Table 5). 

4. Reinterpretation of key concepts under the SST 

In SST, the MSE is determined by the sampling design, estimator, and 
population properties. This is different from DMF, which only admits 
two of the triples. Following an influential paper interpreting DMF (Brus 
and Guijter, 1997), we reinterpreted some key concepts under SST. 
Table 6 lists the key notations and definitions, which are compared with 

those in authoritative statistics books. 
We have outlined the properties below. 
R1. Determinants of the estimates. In SST, prediction, estimation 

and their variances are determined by SST (see Fig. 2). This contrasts 
with DMF, which considers MB to be unaffected by the sampling design 
and DB to be unaffected by spatial variation. However, as an MB 
method, kriging has an empirical error that varies according to the 
sampling scheme. Random and stratified sampling have developed as DB 
methods, and the variances of the sample means are proportional to the 
variance and SSH of the population. 

R2. ξ-Unbiasedness and minimum ξ-variance. In SST (Fig. 2), the 
MSE is the gold standard for assessing the efficiency of spatial sampling 
and of an estimator. This is determined by SST—that is, the population 
property, sampling plan, and estimator—regardless of whether a DB or 
MB method is used. In DMF, ξ-unbiasedness and minimal ξ-variance are 
not that useful, because in MB, there are no restrictions on the selection 
of the sampling locations. 

R3. Random variable. In SST, the location selection function I(x) is 
a random variable, which equals 1 if site x is selected and 0 otherwise; xi 
refers to a location i, which is fixed once selected. Thus, it is considered a 
variable but not a random variable. This contrasts with DMF, where the 
i-th location xi is considered a random variable. 

R4. Dependence between observations. Functional independence 
is generated by the following theorem: “If two random variables X and Y 
are independent and g, h: ℝ → ℝ, then g(X) and h(Y) are also indepen
dent” (Grimmitt and Stirzaker, 2001, p.49; Theorem 6A in Parzen, 1960, 
p.295; Theorem 2 in Ash, 1970, p.84). In SST, the sampled sites x1 and x2 

are two outcomes of an indicator random variable I(x). Therefore, 
application of the function independence theorem for spatial sampling is 
incorrect, and independence between two spatial locations cannot be 
created by selecting the two locations independently. This contrasts with 
the DMF, where it is asserted that if x1and x2 are random locations 
selected independently from each other, then the variables z(x1) and 
z(x2) are also independent, no matter how close the two locations are. 
This definition falls short because two randomly selected locations are 
not two random variables; thus, the theorem of function independence is 
not applicable to this case. 

R5. Independence. In SST, samples are independent if the popula
tion is i.i.d. or the sampling interval is beyond the SAC range of the 
population. In truth, the properties of a population rather than the 
sample data determine the choice of methods for spatial statistics and 

Table 2 
Propagation of properties in spatial data.  

SAC; SSH; i.i.d. 
Then 

Superpopulation Population Sample 

If 
Superpopulation – Y Y/N 
Population Y – Y/N 
Sample Y/N Y/N –  

Table 3 
Conditions for spatial interpolation based on spatial autocorrelation.  

Interpolation based on SAC 
Sampling 

i.i.d. SAC 

Population 
i.i.d. N/A N/A 
SAC Implementable Implementable  

Table 4 
SAC in population, sampling, and sampled data.  

Sampled data 
Sampling interval 

Within SAC range Beyond SAC range 

Population ℜ
i.i.d. i.i.d. i.i.d. 
Spatial autocorrelation (SAC) SAC i.i.d.  

Table 6 
Notations and concepts.   

DMF Statistics (Grimmitt and 
Stirzaker, 2001) 

Independence 
between two 
variables 

If x1 and x2 are random 
locations selected 
independently, then they are 
independent, where the 
underline denotes random 
variables. 

p13: Two random variables 
X1 and X2 are independent if 
p(X1, X2) = p(X1)p(X2), 
where p denotes probability 
(p13). 

Independence 
between two 
functions 

If x1 and x2 are random 
locations selected 
independently from each 
other, then the variables z(x1) 
and z(x2) are also 
independent. 

p49: If two random variables 
X and Y are independent and 
g, h: ℝ → ℝ, then g(X) and h 
(Y) are also independent, 
where ℝ denotes the set of 
real numbers (Theorem 6A 
in Parzen, 1960, p295; 
Theorem 2 in Ash, 1970, 
p84). 

Random variable Two spatial sites x1 and x2 are 
two random variables. 

A rv X is a process of 
assigning a number X(ζ) to 
every outcome ζ. The 
resulting function must 
satisfy the following two 
conditions but is otherwise 
arbitrary: (1) The set {X ≤ x} 
is an event for every x; (2) 
the probability of the events 
{X = ∞} and {X = − ∞} 
equals 0: p{X = ∞} = 0 and p 
{X = -∞} = 0. Site selection 
function I(i) (= 1 if site xi is 
selected, 0 otherwise) is a rv; 
xi is a variable instead of a rv 
(Papoulis, 1991, p66). 

Note. rv denotes random variable. 

Table 5 
Efficiency of the spatial statistic trinity.  

Population ℜ
Sampling ℑ and Estimator Ψ 

Random Stratified Kriging Newton 

i.i.d. (neither SSH nor SAC) Best N/A N/A N/A 
Spatial stratified heterogeneity 

(SSH)(tested by SSH q 
statistic) 

Less 
efficient 

BLUE N/A N/A 

Spatial autocorrelation (SAC) 
(tested by Moran’s I or 
semivariogram) 

Less 
efficient 

Less 
efficient 

BLUE N/A 

Deterministic (a bouncing ball) Less 
efficient 

Less 
efficient 

Less 
efficient 

Perfect 

Note. “Less efficient” means too many sample units for a given MSE or a big MSE 
for a given sample size. BLUE denotes the best linear unbiased estimate; Newton 
represents a genetic determinant process and estimators; N/A stands for “not 
applicable”; “Deterministic” describes a generic deterministic population. 
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spatial sampling. SAC is not included in the estimation of DB (Cochran, 
1978); this is no problem if the target population is i.i.d., but it may be 
less efficient than MB sampling (Haining, 1988; Cressie, 1993, 
pp.13–15) if the data are spatially autocorrelated. This is in contrast to 
DMF, where the ξ-independence of sample data is determined by the 
modeler and p-independence is determined by the sampling design. 

5. Case study 

According to SST, SAC in a population affects the efficiency of a 
sampling and the accuracy of an inference. In DB, SAC of a population is 
neglected or cannot be counted by a quantitative parameter (Särndal, 
1978). To demonstrate the advantage of SST to DB, two case studies 
using a simulated dataset and a climate dataset, respectively, were 
carried out. In both cases, the same sampling method and estimator were 
adopted to draw samples and to estimate the means of several pop
ulations with different SACs. The sampling method and estimator are 
typical for DB and the sample size remains the same. The MSE is ob
tained by repeated sampling. 

MSE =
1
T
∑T

t=1
(m̂t − m)

2 (7)  

where T is the total number of sampling times for each sample size, m is 
the true population mean, and m̂t is the estimation of m with the sample 
of time t, using a DB estimator. To make the sampling errors of different 
populations comparable, the normalized MSE, aveMSE, is used: 

aveMSE =

̅̅̅̅̅̅̅̅̅̅
MSE

√

m
(8) 

If aveMSE varies with the SAC of a population, SST is a reasonable 
framework. In both cases, the finding is consistent with different sample 
sizes. 

5.1. Simulated dataset 

Five populations with sizes of 50 × 50 pixels, whose values represent 
the Pb concentration in soil (ppm), were generated using sequential 
Gaussian simulation (Remy et al., 2009). Simple kriging with a spherical 
variogram was applied with the same sill and nugget but at different 
ranges, as shown in Table 7. According to the variogram, the degree of 
SAC in the five populations is Range40 > Range20 > Range10 > Range5 
> Range1 (see Table 7 and Fig. 8). 

Each of the five populations was divided into four square strata to be 
comparable to Brus and Guijter’s (1997) paper; samples with different 
sizes (16, 24, 32, 40, 48, 56, and 64) were drawn using simple random 
sampling (DB). For each sample size, 500 instances were randomly 
drawn to compute the aveMSEvia Equation (8). 

The results are shown in Fig. 9: the aveMSEvalues of simulated 
populations for all sample sizes take exactly the opposite order 
(Range40 < Range20 < Range10 < Range5 < Range1) to that of the SAC 
for all sample sizes. This means that the larger the SAC of the population, 
the smaller the variance inferenced from samples drawn by simple 
random sampling, given the same sample size; the SAC in a population is 
one of the determinants of the variance of DB, and its impact increases 
with reductions in sample size. 

5.2. Climate dataset 

The area-aggregated meteorological data of 363 cities from the 
summer of 2015 (June 1st–August 31st, 92 days), obtained from the 
“China Meteorological Data Sharing Service System” (data.cma.cn), 
were used as populations. Four meteorological indicators—that is, the 
daily mean temperature (TEM), daily mean relative humidity (RHU), 
sum of sunshine duration (SSD), and max wind speed (WIND)—have 
different SACs and represent four populations. Their SACs (r) are 
calculated using the following equation: 

r=
1
n2

∑n

i=1

∑n

j=1

Cov
(
Vi,Vj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(Vi)Var
(
Vj
)√ , (9)  

where n is the number of cities, Cov(Vi,Vj) is the covariance function of a 
meteorological factor between city i and city j, and Var(Vi)and 
Var(Vj)are variance functions of a meteorological factor of city i and city 
j. For TEM, the covariance is calculated using the following equation: 

Cov
(
TEMi, TEMj

)
=

∑T
t=1

(
TEMit − TEMi

)(
TEMjt − TEMj

)

T − 1
, (10)  

where T is the days of temperature data, TEMit represents the daily mean 
temperature of city i on day t, and TEMi is the mean temperature of city i 
on all T days. The variance can be calculated using the following 
equation: 

Var(TEMi)=

∑T
t=1

(
TEMit − TEMi

)2

T − 1
. (11) 

The SAC coefficients of different meteorological factors (pop
ulations) are listed in Table 8, and TEM > RHU > WIN > SSD. 

For each meteorological indicator, the observed values of all the 
cities on each day are composed of a population. The sample sizes are 
16, 24, 32, 40, 48, 56, and 64. Five hundred samples were randomly 
drawn for each sample size. The aveMSE of the meteorological factors of 
each day were calculated, and the results are plotted in Fig. 10. Clearly, 
the order of the aveMSE of TEM < RHU < Win < SSD is opposite that of 
the SACs (Table 8) for all sample sizes. That is, the larger the SAC of the 
population, the smaller the variance inferred from the samples drawn by 
simple random sampling; the SAC in a population is one determinant of 
the variance of DB, and its effect increases with reductions in the sample 
size. 

Besides the above two case studies, Liu et al. (2018) tested the SSH 
and SAC of rodent density in a study area, and they found that the former 
is significant and the latter is weak. Then, both the SSH-based Sandwich 
estimator (Wang et al., 2013a) and SAC-based kriging were applied to 
the same sample to map the population, respectively. The Sandwich map 
has a smaller absolute error than the kriging map, as expected by SST. 

6. Discussion and conclusion 

According to the gold standard of the performance of an estimator or 
predictor, either MB or DB alone is incomplete. In principle, DB is 
applicable, but it does not guarantee optimization in all cases because it 
neglects the mechanism generating the population. When a population 

Table 7 
Parameters for five simulated populations.  

Population name Model Range (m) Sill Nugget 

Range40 Spherical 40 5.1 0.1 
Range20 Spherical 20 5.1 0.1 
Range10 Spherical 10 5.1 0.1 
Range5 Spherical 5 5.1 0.1 
Range1 Spherical 1 5.1 0.1  

Table 8 
Spatial autocorrelation coefficients of different meteorological indicators 
(populations).  

Meteorological indicators Spatial autocorrelation coefficients 

TEM 0.180 
RHU 0.099 
WIN 0.087 
SSD 0.068  
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is not i.i.d. and prior knowledge about the spatial data process (super
population or population) is available, there are more efficient strategies 
for spatial sampling and statistics. MB neglects the sampling design, so it 
fails to account for its resulting bias; moreover, from a technical 
perspective, different configurations of sampling sites will produce 
different covariance matrices, thus generating different estimation 
results. 

Sampling is often incorrectly neglected in spatial statistics of envi
ronmental problems. Statistics, originating from gambling, usually as
sumes an RRS, which allows the mathematical expectation to be 
determined. This assumption, however, is often far from reality in the 
context of spatial data, where sampling is usually performed once and 
non-randomly, and the accuracy of statistical inference varies with the 
adopted sampling strategy. The accuracy of applying spatial statistics 
using field data depends on the sampling, including its pattern and 
density (Brevik et al., 2016). 

Sampling efficiency and the precision of inference are determined by 
the SST, which provides a simple and clear sampling and inference de
cision tree with the following characteristics (Table 4):  

(1) If the population is deterministic, a few sample units plus a 
deterministic estimator are sufficient for recovering a complete 
picture of the population. In this case, DB is less efficient;  

(2) If the population is SAC or SSH or both, sampling and inference 
should be based upon SAC or SSH or both, regardless of whether 
the sampled data are SAC or SSH;  

(3) If the population is i.i.d., then the data must be i.i.d. In this case, 
MD is useless;  

(4) A DB sampling strategy will be fine if the population is i.i.d., but it 
will lose efficiency if the population is SSH (Equation 5.28 in 
Cochran, 1977, p.99; Fig. 1 in Wang et al., 2013) or SAC (Haining, 
2003, p.118) Vopt ≤ Vprop ≤ Vran (Eq. 5.28 in Cochran, 1977, 
p.99); and  

(5) When SAC is present, DB is less efficient than kriging; in the 
absence of SAC, kriging fails to work. Sandwich interpolation 
(Wang et al., 2013a) works if the population is SSH. 

For SST, we distinguish the population and sample when mentioning 
data. Kriging is applicable if the population is SAC—even if the sampled 
data are i.i.d—if we can obtain the variogram in other ways. 

To assess, predict, and manage environmental data, this paper shows 
that it is important to deal carefully with the properties of spatial sam
pling, including how these affect the estimations of environmental 
properties that are important for humans being and for society at large. 
Therefore, spatial statistical methods should be as accurate and efficient 
as possible to obtain the highest accuracy of subsequent research and 
applications. In these cases, SST provides a useful framework to guide 
the choice of the proper method. 
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