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H I G H L I G H T S  

• Tropical urban phenology has key differences to temperate urban phenology. 
• In Kampala, growing season length increases along the urban–rural gradient. 
• Vegetation in the most built-up LCZ class had the shortest growing seasons. 
• Increases in surface temperatures resulted in shorter vegetation growing seasons.  
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A B S T R A C T   

Knowledge about the impacts of urban heat islands (UHI) and associated thermal gradients on vegetation sea
sonality (i.e. phenology) is vital for understanding spatial patterns in vegetation ecosystem functions. However, 
in contrast to temperate cites, there is little evidence to show how UHI influences landscape phenological pro
cesses in the tropics. In this study, we examined vegetation phenological responses to urban form, distance from 
the city centre and surface temperatures, in the tropical city of Kampala, Uganda. Estimates of vegetation 
growing season length and land surface temperature were derived from MODIS satellite imagery for multiple 
years (2013–2015) and urban form was characterised using the Local Climate Zone (LCZ) classification. We 
showed that growing season length increased along the urban–rural gradient (p < 0.001) and was longest in the 
least built-up LCZ class (p < 0.001). Growing season length was significantly reduced as land surface temperature 
increased (p < 0.001). These findings contrast with results reported for temperate cities, where higher tem
peratures are often associated with longer vegetation growing seasons. Our findings suggest that enhanced 
surface temperatures associated with UHI are a limiting factor to season length in the urban tropics. Urban 
planners in tropical cities should therefore account for vegetation sensitivity to UHI when developing targeted 
management strategies aiming to optimise the benefits accrued from vegetation.   

1. Introduction 

By 2050, 68% of the world’s population will reside in urban areas 
(United Nations. (2019), 2019). Up to 90% of the projected growth of 
the global urban population will occur in Africa and Asia (United Na
tions. (2019), 2019), where many cities are already vulnerable to 
climate change and hazards caused by urbanisation (du Toit et al., 
2018). Vegetation is posited to significantly improve urban resilience 
through the provision of ecosystem functions, such as thermal regula
tion, yet many cities in the global south are undergoing rapid vegetation 

loss (Lindley, Pauleit, Yeshitela, Cilliers, & Shackleton, 2018; Yao, Cao, 
Wang, Zhang, & Wu, 2019). It is therefore imperative to understand the 
impacts of urbanisation on vegetation to safeguard human and 
ecosystem health. 

One of the most obvious effects of urbanisation is the phenomenon 
known as the Urban Heat Island effect (UHI), i.e. where urban areas 
typically experience higher temperatures relative to their surrounding 
landscapes (Landsberg, 1981; Taha, 1997; Voogt & Oke, 2003). UHIs are 
caused by high proportions of impervious land cover types that promote 
heat storage and restrict natural radiative cooling through 
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evapotranspiration. UHI intensities are influenced by the size of cities 
and their characteristics in terms of urban morphology, biome, regional 
climate, seasonal changes in meteorological conditions and vegetation 
cover (Giridharan & Emmanuel, 2018; Imhoff, Zhang, Wolfe, & Bou
noua, 2010; Roth, 2007). Urban vegetation mitigates UHI through 
increased thermal regulation via evapotranspiration (Norton et al., 
2015) and the provision of shade (Li, Ratti, & Seiferling, 2018). In recent 
years, several studies have noted the importance of vegetation for UHI 
mitigation in tropical cities (e.g. Cavan et al., 2014; Feyisa, Dons, & 
Meilby, 2014; du Toit et al., 2018; Lindley et al., 2018). However, the 
specific impacts of urbanisation and UHI on vegetation phenology in the 
tropics remain less well studied. 

Vegetation phenology, defined as the seasonal timing of vegetation 
growth and reproduction (Fenner, 1998), is essential for primary pro
duction and for sustaining many important ecosystem benefits for 
human populations (Denny et al., 2014). Vegetation responses to ur
banisation have been studied extensively for temperate cities where 
UHIs result in earlier growing season start dates and longer growing 
season durations compared to surrounding rural areas (Jochner & 
Menzel, 2015). However, phenological patterns and processes within 
tropical cities are less well studied. The few urban tropical phenological 
studies that exist highlight differences in the timing of start of season 
tree budding compared to temperate cities (Gazal et al., 2008; Jochner, 
Alves-Eigenheer, Menzel, & Morellato, 2013). The evidence suggests 
that tree budding is more sensitive to UHI in temperate cities due to the 
sensitivity of temperate vegetation to springtime temperature increases 
(and photoperiod) after wintertime dormancy (Zhang, Friedl, & Schaaf, 
2006). However, there remains a limited understanding of the effect of 
UHI on the timing of the end of the growing season and growing season 
duration in tropical cities. 

In tropical natural habitats leaf growth usually occurs in the wet 
season whereas leaf fall occurs mainly in the dry season (de Camargo, de 
Carvalho, Alberton, Reys, & Morellato, 2018; Williams, Myers, Muller, 
Duff, & Eamus, 1997). Given that UHI intensities are most significant 
during the dry season in tropical cities (Giridharan & Emmanuel, 2018; 
Roth, 2007), UHIs might have a greater influence on leaf fall than on leaf 
growth. Moreover, the formation of an Urban Dryness Island (UDI) effect 
and increased plant water requirements due to UHI-induced potential 
evapotranspiration (Hao, Huang, Qin, Liu, Li, & Sun, 2018; Luo & Lau, 
2019; Wang, Hutyra, Li, & Friedl, 2017; Zipper, Schatz, Kucharik, & 
Loheide, 2017), may be more pronounced during the dry season. 
Consequently, the impact of UHI on leaf growth and development may 
vary depending on the season. To investigate these impacts there is a 
need for phenological observations that span the entire vegetation 
growing season. 

Satellite remote sensing can provide landscape scale phenological 
information on the start of the growing season (SOS), the end of the 
growing season (EOS) and the growing season length or duration (GSL) 
(Melaas, Wang, Miller, & Friedl, 2016; Zhang et al., 2003). Landscape 
phenology is inherently different from the phenology of individual 
species (Badeck et al., 2004), although information about both is useful 
for understanding phenology in urban environments (Jochner & Menzel, 
2015). In temperate cities, vegetation growing in heavily built-up urban 
areas often has a long GSL due to elevated urban temperatures (Melaas 
et al., 2016; Zhang, Friedl, Schaaf, Strahler, & Schneider, 2004; Zhou, 
Zhao, Zhang, & Liu, 2016; Zipper et al., 2016). In contrast, the duration 
of the vegetation growing season declines along the urban–rural 
gradient as the degree of urbanisation diminishes (Zhang et al., 2004; 
Zhou et al., 2016). An equivalent understanding of landscape scale 
phenological processes in tropical cities is lacking. Whereas temperate 
regions experience extreme seasonal changes in temperature as the main 
trigger for vegetation phenology (along with photoperiod), changes in 
temperature are less drastic in the tropics. Tropical phenology is mainly 
controlled by rainfall (Clinton, Yu, Fu, He, & Gong, 2014; Zhang et al., 
2006) but excess urban heat might act as a limiting (stress) factor in 
tropical urban contexts. 

In this study, we examined the impact of UHI intensities on vegeta
tion phenology in the tropical city of Kampala, Uganda. Our objectives 
were to: (i) determine the spatial variability in landscape phenology in 
respect to degree of urbanisation (i.e. urban form and distance from the 
city centre); (ii) determine the combined effect of urban form and dis
tance from the city centre on Land Surface Temperature (LST); (iii) 
establish how spatial patterns of LST vary across years; and (iv) assess 
the effect of variations in LST on phenology. 

2. Materials and methods 

2.1. Study area 

The study focussed on the equatorial city of Kampala in East Africa 
located at 00◦18′49′′N 32◦34′52′′E. Kampala has rapidly urbanised in 
recent years and the urban extent of the Kampala Greater Metropolitan 
Area (KGMA) now covers more than 800 km2 (Vermeiren, Van Rom
paey, Loopmans, Serwajja, & Mukwaya, 2012). Our region of interest 
(ROI) covers an area extending 20 km from the city centre (approxi
mately 1402 km2) and includes the KGMA. Kampala has a population of 
over 1.5 million inhabitants, and this is expected to reach 5.5 million by 
2030 (United Nations. (2019), 2019). The city has a tropical rainforest 
equatorial climate (Af) according to the Köppen climate classification. 
There are two wet seasons (March-May and September-November) and 
the city has a mean annual precipitation of about 1200 mm. Torrential 
rains are often observed from March to May and July is normally the 
driest month. 

2.2. Data 

Urban form, vegetation abundance, vegetation phenology and LST 
were characterised using remotely sensed satellite imagery for 
2013–2015. We constrained our selection of satellite imagery to three 
years to minimise the effect of rapid changes in urban form across 
Kampala. The Local Climate Zone (LCZ) classification scheme (Stewart 
& Oke, 2012) was used to represent urban form, and LCZs were char
acterised using imagery from the US Geological Survey Earth Explorer 
Landsat 8 Operational Land Imager (OLI). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor was used to estimate spatial and temporal patterns of LST, 
vegetation abundance and phenology. We obtained vegetation abun
dance and phenology data using Vegetation Indices as proxy measures of 
canopy ‘greenness’ (Huete, Didan, van Leeuwen, Miura, & Glenn, 2011; 
Senanayake, Welivitiya, & Nadeeka, 2013; Yao et al., 2019; Yuan & 
Bauer, 2007). The subsections below provide further information on 
data sources and processing steps, and the overall methodology is 
summarised in Fig. 1. 

2.2.1. Urban form and vegetation abundance 
The LCZ framework is a robust, objective and universal approach for 

characterising urban form for use in climatological research (Kotharkar 
& Bagade, 2018; Mushore et al., 2019; Stewart & Oke, 2012). There are 
seventeen classes contained in the LCZ framework, each representing 
distinct characteristics of surface cover and structure. We used the 
World Urban Database and Access Portal Tools (WUDAPT) LCZ classi
fication method (Bechtel et al., 2015) for mapping Kampala’s LCZs. The 
WUDAPT method uses supervised machine learning to generate a city- 
wide LCZ map from multispectral Landsat 8 OLI imagery in a 3-step 
process; namely: (i) acquisition and pre-processing of cloud-free im
ages, (ii) creation of training areas in Google Earth and (iii) imple
mentation of the classification in the open-source GIS software, System 
for Automated Geoscientific Analyses (SAGA-GIS). 

It is recommended that more than one satellite image is used in LCZ 
classification to minimise the impact of spectral changes in vegetation 
over time (Bechtel et al., 2015). We selected two Landsat 8 OLI scenes 
(LC81710602015074 and LC81710602015058), both with low cloud 
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cover. The images were radiometrically calibrated to Top of the Atmo
sphere reflectance and resampled from 30 m to 100 m. Resampling al
lows the spectral signals of multiple urban features to be combined and 
thus facilitates attribution of local climate to zones (Bechtel et al., 2015; 
Stewart & Oke, 2012). 

Training areas with a minimum width of 200 m were digitised within 
Google Earth for the most common LCZ classes in Kampala: Compact 
midrise (LCZ2), Compact low-rise (LCZ3), Open midrise (LCZ5), Open 
low-rise (LCZ6), Large low-rise (LCZ8), Sparsely built (LCZ9), Dense 
trees (LCZA), Scattered trees (LCZB), Bare soil or sand (LCZF) and Water 
(LCZG). Subclass LCZ3_F was added to the selection to indicate compact 
low-rise neighbourhoods (LCZ3) with mostly bare soil surfaces (LCZF), 
as was done for the city of Nagpur in India (Kotharkar & Bagade, 2018). 
To minimise the effect of mixed pixels, we digitised polygons in loca
tions with broadly homogenous land cover composition and avoided 
boundaries between any two given LCZ types. The number of training 
sample polygons per LCZ class ranged between 3 and 20, and depended 
on the area covered by each LCZ class and how well areas could be 
digitised. 

The LCZ classification was implemented in SAGA-GIS using its 
Random Forest classifier, which has high accuracy and computational 
performance for LCZ classification (Bechtel et al., 2015; Breiman, 2001). 

New training areas were iteratively selected, and LCZs reclassified to 
obtain an LCZ map that compared favourably with existing maps of 
Kampala’s urban morphology. Accuracy assessment of the final LCZ map 
was performed using the Semi-Automatic Classification QGIS plugin and 
a total of 764 test polygons (100 m cell size) selected through stratified 
random sampling (Congedo, 2016). The overall accuracy of the final LCZ 
map was 73.2% with a Kappa coefficient of 0.674. This is within the 
expected accuracy range, for instance, within the 60–89% range re
ported for LCZ maps produced for 20 cities in China (Ren et al., 2019). 
Four of the eleven LCZ classes (i.e. Compact low-rise and bare soil 
(LCZ3_F), Open low-rise (LCZ6), Sparsely built (LCZ9) and Scattered 
trees (LCZB)) covered 87% of the ROI, and all LCZs had producer and 
user accuracies above 90% and 85% respectively. Given their high ac
curacy statistics, distinctiveness and large spatial extent, these four LCZ 
classes (Fig. 2) were selected for further analysis. To validate our choice 
of LCZ classes, we ascertained that they were different in terms of sur
face cover using a Kruskal-Wallis H-test performed on Enhanced Vege
tation Index (EVI) data. We chose EVI for characterising surface cover (i. 
e. vegetation abundance) because it minimises canopy background 
variations and maintains sensitivity over dense vegetation in urban 
environments (Huete et al., 2011). EVI is an optimised combination of 
Blue, Red, and Near Infrared (NIR) bands and can be derived using the 

Fig. 1. Flow diagram of data processing steps.  
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equation below: 

EVI = 2.5(ρNIR − ρRED)/(L + ρNIR + C1ρRED − C2ρBLUE)

where ρ is reflectance; L is the canopy background adjustment factor; C1 
and C2 are aerosol resistance weights. The coefficients are L = 1, C1 = 6 
and C2 = 7.5 (Huete et al., 2011). 

We used the MOD13Q1 EVI product (16-day composites and a spatial 
resolution of 250 m) acquired from the Oak Ridge National Laboratory 
(ORNL) Distributed Active Archive Center (DAAC) of the National 
Aeronautics and Space Agency (NASA). To characterise vegetation 
abundance across Kampala whilst minimising the effects of seasonal 
changes in vegetation, we calculated the average of 23 MOD13Q1 EVI 
images for 2013 using the raster calculator function in ArcGIS 10.0. The 
vegetation abundance and LCZ maps were converted to polygon vector 
format and an intersect function of the overlay toolset in ArcGIS 10.0 
used to acquire the LCZ classification at each EVI pixel location. 

2.2.2. Vegetation phenology 
Time series analysis and extraction of vegetation phenology seasonal 

parameters was performed in the TIMESAT 3.2 program (Eklundh & 
Jönsson, 2015; Jonsson & Eklundh, 2004) using MOD13Q1 EVI images 
spanning three years (2013–2015) as shown in Fig. 3. The adaptive 
Savitsky-Golay algorithm which uses local polynomial fitting functions 

was used to smooth the EVI time series. This approach preserves 
important features of the dataset (i.e. maximum, minimum and width) 
whilst reducing the noise due to possible cloud cover (Yao et al., 2017). 
We set the adaptation strength to 3.0, seasonal parameter to 0.5 (2 
seasons per year) and used a Savitzky-Golay window size of 3. We 
weighted the data for each pixel using the pixel reliability band (i.e. 
cloud-free assigned 1, marginal data assigned 0.5 and cloudy data 
assigned 0.1). We extracted the start (SOS), end (EOS) and length (GSL) 
of the vegetation growing season using the amplitude method. The 
amplitude method is better suited than the threshold method in urban 
settings because low vegetation cover in cities makes it hard to find a 
threshold for determining the start and end of the season (Zhou et al., 
2016). The SOS and EOS were the dates that the fitted curve increased 
and declined to the proportion of the amplitude (set to 20%). 

2.2.3. Land surface temperature 
We derived LST for 2013–2015 from the MODIS MOD11A2 LST 

product. The MOD11A2 LST product has a high temporal resolution (8- 
day composite) and is a useful proxy for estimating surface UHI intensity 
(Yao et al., 2018). We again used the Savitzky-Golay smoothing algo
rithm and TIMESAT 3.2 to identify the maximum LST for each of the 
three years as the basis for assessing impacts on vegetation development. 
As with the EVI data, the MODIS quality assessment images were used to 

Fig. 2. A) Characteristics of candidate LCZs; B) High-resolution imagery for an example 1 km2 area of the candidate LCZ classes in Kampala.  
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de-noise the data. 

2.3. Data analysis 

Vegetation phenology, vegetation abundance, LST and LCZ data 
were assigned to each MOD13Q1 EVI pixel as the unit of analysis. 
Firstly, all data was converted from raster to vector format (conversion 
toolbox in ArcGIS 10.0) due to differences in the spatial resolution of the 
input data (vegetation abundance & phenology, LCZ and LST; Fig. 4). 
The dissolve function (Manage data toolset in ArcGIS 10.0) was applied 
to the LST and LCZ vector data separately to merge polygons that had 
similar data and shared boundaries. The intersect function (overlay 
toolset in ArcGIS 10.0) was then used to acquire LCZ and LST data for 
each MOD13Q1 EVI pixel. To account for the diminishing effect of de
gree of urbanisation along the urban–rural gradient, we obtained the 
distance between each pixel and the city centre using the Near Analysis 
tool in ArcGIS 10.0. Each data point therefore represented an EVI pixel 
location with its attributes (i.e. phenology, vegetation abundance, LCZ, 
distance from the city centre and LST) for each year. As with vegetation 
abundance, differences in LST and phenology among LCZs were 
computed using Kruskal–Wallis H-tests. 

A series of linear mixed models were used to analyse the effect of 
urban form (LCZ) and distance from the city centre on SOS, EOS, GSL 
and LST. We fitted a model for each response variable with LCZ and 
distance as explanatory variables. Year was used as a fixed effect to 
control for differences across years in the phenology models. In
teractions between year and LCZ and between year and distance from 
the city centre were included in the LST model to account for varying 
effects of urban form and distance from the urban core across the three 
years. Location was used as a random effect to allow for correlated error 
terms caused by repeated observations (each year) at the same location. 
The modelling was done using the “lmer” function of the “lme4” package 
in R (Bates, Mächler, Bolker, & Walker, 2015; R Core Team, 2018). We 
used a likelihood ratio test to establish the significance of the final full 

model against a null model comprising the intercept only. The impor
tance of each explanatory variable was determined using a likelihood 
ratio test (R function “drop1”) that compared the full model with 
reduced models. Variance inflation factors were computed from stan
dard linear models to assess collinearity (Zuur, Ieno, & Elphick, 2010), 
and no issues were found. Normality and independence of the residuals 
were confirmed by inspecting QQ plots and plots of residuals against 
fitted values. 

Linear mixed models were also used to assess the influence of LST on 
SOS, EOS and GSL using LST and Year as fixed effects. This allowed us to 
examine the influence of LST patterns while controlling for meteoro
logical differences across years. Location was included as a random ef
fect and model diagnostics (significance of final full model and 
normality of residuals) performed as described in previous models. 

3. Results 

3.1. Surface cover differences across LCZ types 

Vegetation abundance (i.e. mean EVI) differed significantly among 
the LCZs and between all LCZ pairs (Table 1). EVI decreased from the 
least to most built-up LCZ type. LCZ9 (Sparsely built) and LCZ6 (Open 
low-rise) had EVI values that were 17% and 34% lower respectively than 
those in LCZB. LCZ3_F (Compact low-rise and bare soil) recorded the 
lowest overall EVI at 47% lower than LCZB. 

3.2. Phenology 

The combined effect of LCZ, distance from the city centre and year 
had a significant influence on SOS (likelihood ratio test: X2 = 1097, df =
6, p < 0.001), EOS (likelihood ratio test: X2 = 7963, df = 6, p < 0.001) 
and GSL (likelihood ratio test: X2 = 284.2, df = 11, p < 0.001). LCZ class 
had a significant influence on SOS, EOS, and GSL (Table 1; Table 2). 
LCZB (Scattered trees) experienced the earliest SOS and the latest EOS 

Fig. 3. Savitzky-Golay algorithm applied to the three-year MODIS EVI (Enhanced Vegetation Index) time series (MOD13Q1) for the candidate LCZ classes: (a) 
Compact low-rise (LCZ3_F); (b) Sparsely built (LCZ9); (c) open low-rise LCZ6; (d) Scattered trees (LCZB). Each data point (blue) represents the averaged EVI value of 
10 randomly select pixels within each given LCZ category. Brown points represent the start and end of season. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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dates resulting in longer growing seasons (Fig. 5). In comparison to 
LCZB, GSL was shorter in LCZ9 (Sparsely Built) (estimate = − 3.3 days, 
standard error = 0.5, p < 0.001), LCZ6 (estimate = − 8.6 days, standard 
error = 0.7, p < 0.001) and LCZ3_F (estimate = − 13.2 days, standard 
error = 0.7, p < 0.001). Distance from the city centre significantly 
(positively) influenced GSL but had negligible effects on SOS and EOS 

Fig. 4. Spatial distribution of input variables used in the analysis. These include: a) urban form represent by LCZ; b) vegetation abundance depicted by EVI; c) peak 
LST in the 2013 growing season; and (d) growing season length in 2013. The region of interest (area = 1402 km2) used for the analysis has been added for ease of 
visual comparison across images. 

Table 1 
Kruskal-Wallis test results carried out on EVI (Enhanced Vegetation Index), LST 
(Land Surface Temperature) and GSL (Growing Season Length), and differences 
across LCZ classes in terms of mean (±99% confidence interval) EVI, LST and 
GSL.  

LCZ class Mean EVI Mean LST 
(◦C) 

Mean GSL 
(days) 

LCZB. Scattered trees (area = 854 
km2) 

0.435 ±
0.001 

32.57 ±
0.04 

110.0 ± 0.6 

LCZ9. Sparsely built (area = 277 
km2) 

0.361 ±
0.001 

33.79 ±
0.06 

106.3 ± 1.1 

LCZ6. Open low-rise (area = 137 
km2) 

0.285 ±
0.002 

35.37 ±
0.09 

100.5 ± 1.6 

LCZ3_F. Compact low-rise and bare 
soil (area = 134 km2) 

0.229 ±
0.002 

36.47 ±
0.08 

95.9 ± 1.6  

Kruskal-Wallis test results 
χ2 391,480 15,451 832.16 
df 17 3 3 
p 0.0001 0.0001 0.0001  

Table 2 
Mixed Models testing whether phenology start of season (SOS), end of season 
(EOS) and growing season length (GSL) vary across years, Local Climate Zone 
(LCZ) class, distance from city centre and Land Surface Temperature (LST). 
DenDF and NumDF represent the Numerator and Denominator degrees of 
freedom. Pr(>F) is the significant coefficient (P) for the F statistic.  

Phenology ~ 
degree of 
urbanisation 

Phenology ~ LST   

Year LCZ Distance Year LST 

SOS F value 507.3 17 1.2 453.7 1.7  
NumDF 2 3 1 2 1  
DenDF 41,768 21,487 21,607 44,489 35,017  
Pr(>F) 0.0001 0.0001 0.27 0.0001 0.1978  

EOS F value 4,128 55.6 1.2 3,351 85.9  
NumDF 2 3 1 2 1  
DenDF 41,883 21,416 21,539 44,458 34,064  
Pr(>F) 0.0001 0.0001 0.28 0.0001 0.0001  

GSL F value 4,226 119 6.3 3,612 71.7  
NumDF 2 3 1 2 1  
DenDF 41,776 21,400 21,522 44,435 34,793  
Pr(>F) 0.0001 0.0001 0.012 0.0001 0.0001  
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(Table 2). 

3.3. Land surface temperature 

LST varied significantly across LCZs (Table 1) and was influenced by 
the combined effect of LCZ, distance from the city centre and year 
(likelihood ratio test: X2 = 37944, df = 14, p < 0.001). Despite some 
variation in LCZ LSTs between years (interaction between year and LCZ: 
F6, 43739 = 6.7, P < 0.001), the overall trend was similar, i.e. Scattered 
trees (LCZB) < Sparsely Built (LCZ9) < Open low-rise (LCZ6) < Compact 
low-rise (LCZ3_F). 

LST declined with increasing distance from the city centre across all 
years, but the magnitude of LST change from urban to rural areas varied 
across years (interaction between year and distance: F2, 43819 = 1247.7, 
P < 0.001). LST ranged between approximately 26–28 ◦C (rural–urban) 
in 2014 and 2015 and around 24–28 ◦C (rural–urban) in 2013 (Fig. 6). 
The Kruskal-Wallis H-test confirmed significant differences in LST across 
years (χ 2 = 8575.1, df = 2, P < 0.0001). 

3.4. Relationship between LST and phenology 

The combined effect of spatial differences in LST and year had a 
significant effect on SOS (likelihood ratio test: X2 = 951.8, df = 3, p <
0.001), EOS (likelihood ratio test: X2 = 7610.7, df = 3, p < 0.001), and 
GSL (comparison of full with null model: X2 = 7717.5, df = 3, p <
0.001). LST had a significant negative effect on EOS (estimate = − 1 day, 
standard error = 0.1, p < 0.0001) and GSL (estimate = − 1 day, standard 
error = 0.1, p < 0.0001). However, LST had a negligible effect on SOS 
(Table 2). 

4. Discussion 

Our results show that landscape phenology in the tropical city of 
Kampala is influenced by LST, distance from the city centre and degree 
of urbanisation (LCZ). During 2013-15, heavily built-up locations 
experienced high LST, early EOS and a short GSL in comparison to less 
built-up locations. LCZB (Scattered trees) had the highest vegetation 
cover and experienced the lowest LST, earliest SOS, latest EOS and 
longest GSL. LCZ9 (Sparsely built) and LCZ6 (Open low-rise) had GSLs 
that were 3 and 9 days shorter respectively than in LCZB. LCZ3_F 
(compact low-rise and bare soil) recorded the shortest GSL overall at 13 
days shorter than in LCZB. The order of LCZs in respect to GSL was LCZB 
> LCZ9 > LCZ6 > LCZ3_F which mirrored the order of LCZs in respect to 
LST (LCZB < LCZ9 < LCZ6 < LCZ3_F). Furthermore, the decline in LST 
along the urban–rural gradient varied between years. Rural areas 
experienced temperatures that were 2 ◦C cooler in 2013 in comparison 
to 2014 and 2015. 

The LCZs exhibited differences in surface cover characteristics. The 
relative order of vegetation abundance in each LCZ (i.e. EVI) was LCZB 
> LCZ9 > LCZ6 > LCZ3_F. This mirrored the order of LCZs in respect to 
LST (LCZB < LCZ9 < LCZ6 < LCZ3_F). Several studies have attributed 
lower temperatures within cities to higher vegetation abundance (e.g. 
Mushore et al., 2019; Senanayake et al., 2013; Yuan & Bauer, 2007) due 
to enhanced latent heat flux through evapotranspiration (Cavan et al., 
2014; Feyisa et al., 2014). On the other hand, a high proportion of 
impervious land cover enhances thermal admittance and high heat 
storage resulting in higher temperatures (Landsberg, 1981). In the case 
of LST, a high amount of vegetation cover is particularly important in 
terms of its influence on surface albedo and shading (Taha, 1997). 

Fig. 5. Main effect plot for: (a) Start of Season; (b) End of Season; and (c) Growing Season in relation to LCZ class with error bars (95% confidence intervals).  

Fig. 6. Main effect plot for: (a) LST distribution with standard error bars across LCZ types in 2013, 2014 & 2015; and (b) LST distribution with confidence bands 
along an urban–rural gradient in 2013, 2014 & 2015. 
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Our findings on the effect of urbanisation on landscape phenology in 
Kampala contrast with the established phenological patterns in 
temperate cities, where vegetation experiences earlier SOS, later EOS 
and longer GSL due to UHI (Melaas et al., 2016; Zhang et al., 2004; Zhou 
et al., 2016; Zipper et al., 2016). The long growing season observed in 
highly vegetated locations in Kampala agree with the phenological 
patterns observed by Guan et al. (2014) in tropical natural habitats. 
However, the cause and mechanisms determining longer growing sea
sons were not well established in Guan et al. (2014). 

The Urban Dryness Island effect is a phenomenon that describes 
lower moisture availability in cities compared to the surrounding 
landscape as a consequence of high proportions of impervious land 
cover types (Hao et al., 2018; Luo & Lau, 2019; Wang et al., 2017). The 
spatial patterns of UDI are similar to the thermal gradients associated 
with UHI (Hao et al., 2018; Luo & Lau, 2019; Wang et al., 2017) and high 
plant water requirements have been attributed to UHI-induced potential 
evapotranspiration (Zipper et al., 2017). The UDI in Kampala is there
fore also expected to have diminished from the most to least built-up 
LCZ category (LCZ3_F (Compact low-rise and bare soil) > LCZ6 (Open 
low-rise) > LCZ9 (Sparsely built) > LCZB (Scattered trees)). Observed 
phenology patterns in the city are likely to be driven by factors relating 
to both UHI and UDI. 

The spatial pattern of LST in 2013 differed from 2014 and 2015 due 
to the meteorological anomalies of the drought and El Niño effect in 
2014 and 2015 respectively (Zhang, Dannenberg, Hwang, & Song, 
2019). Regional temperature anomalies in 2014 and 2015 had strong 
effects on LST in rural areas, and the effect declined along the rural
–urban gradient. These findings suggest that inter-annual differences in 
regional climate exacerbate the effect of UHI. 

5. Conclusions 

In this paper, we provide substantial new evidence about the role of 
temperature as a limiting factor for GSL in tropical cities. Our study 
results for Kampala demonstrated that GSLs in LCZ6 (Open low-rise) and 
LCZ3_F (compact low-rise and bare soil) were 8.6 and 13.2 days shorter 
respectively compared to LCZB (Scattered trees). Shorter vegetation 
growing seasons, in turn, limit the provision of beneficial ecosystem 
functions. For instance, a shorter growing season will influence some 
aspects of urban agricultural productivity and regulating ecosystem 
roles such as those associated with human thermal comfort. Urban 
planning in tropical cities could focus on strategies that aim to mitigate 
UHI and extend the GSL, for example, through the enhancement of green 
spaces in highly built-up zones. Knowledge about the environmental 
processes and intrinsic attributes (surface cover, meteorology and 
phenology) of LCZ classes could provide useful information to support 
urban planning in Kampala. For example, city planners could aim to 
increase vegetation cover in LCZ3_F (compact low-rise and bare soil). 
Additionally, city planners could restrict further expansion of LCZ3_F in 
favour of LCZ classes that have higher vegetation cover, lower temper
ature (and dryness) and therefore longer GSLs (e.g. LCZ6 and LCZ9). 
These strategies could also be applicable in other tropical cities that are 
faced with similar urbanisation challenges. 

The combined effect of UHI and elevated regional LST might have a 
more substantial impact on phenology than UHI alone. As the current 
study focussed solely on local-scale UHI effects on phenology, future 
work could explore the combined effect of UHI and LST anomalies at a 
regional scale. 
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