Reproducibility review of: Window Operators for Processing
Spatio-Temporal Data Streams on Unmanned Vehicles

Daniel Niist @2/, Frank O. Ostermann

2020-07-13

REPRODUCIBLE

AGI(I;*

This report is part of the reproducibility review at the AGILE conference. For more information see
https://reproducible-agile.github.io/. This document is published on OSF at https://osf.io/7twr2/. To
cite the report use

Nist, D., & Ostermann, F. O. (2020, July 13). Reproducibility review of: Window Operators
for Processing Spatio-Temporal Data Streams on Unmanned Vehicles. https://doi.org/ 10.
17605/ OSF.10/TTWR2

Reviewed paper

Tobias Werner and Thomas Brinkhoff: Window Operators for Processing Spatio- Temporal Data
Streams on Unmanned Vehicles. AGILE GiScience Ser., 1, 21. https://doi.org/10.5194/ agile-
giss-1-21-2020, 2020.

Summary

The reproduction was successful. Based on an updated data and code archive provided by the authors
(extending the original anonymous supplement), I was able to deploy a database with the newly imple-
mented functions and insert the test data. All but one data-based figures could be recreated with the
provided functions.

https://orcid.org/0000-0002-0024-5046
https://orcid.org/0000-0002-9317-8291
https://reproducible-agile.github.io/
https://osf.io/7twr2/
https://doi.org/10.17605/OSF.IO/7TWR2
https://doi.org/10.17605/OSF.IO/7TWR2
https://doi.org/10.5194/agile-giss-1-21-2020
https://doi.org/10.5194/agile-giss-1-21-2020
https://figshare.com/s/cc758d056c8c6f193e52

Reproducibility reviewer notes

Reproduction

Following the instructions in readme.txt I conducted the following steps.

I./I1. Database setup and window operators

I started a database locally with Docker using the closely matching tag 11-2.5:

docker run --rm -it --name windowoperators -p 5432:5432 -e POSTGRES_PASSWORD=password postgis/postgis:11-2.5

Add auv database (using a second terminal and the same image):

docker run -it --link windowoperators:postgres —-rm postgis/postgis:11-2.5 \
sh -c 'exec psql -h "$POSTGRES_PORT_5432_TCP_ADDR" -p "$POSTGRES_PORT_5432_TCP_PORT" -U postgres'

postgres=# CREATE DATABASE auv;
CREATE DATABASE
postgres=# \1
List of databases

Name | Owner | Encoding | Collate | Ctype | Access privileges

auv | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

templateO | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres +
| | | | | postgres=CTc/postgres

templatel | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres +
| | | | | postgres=CTc/postgres

template_postgis | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

(5 rows)

Then I ran the creation script from the directory of the file create_windows.sql:

docker run -it --link windowoperators:postgres —-rm -v $(pwd):/work postgis/postgis:11-2.5 \

sh -c 'exec psql -h "$POSTGRES_PORT_5432_TCP_ADDR" -p "$POSTGRES_PORT_5432_TCP_PORT" -U \
postgres -d auv -a -f /work/create_windows.sql'

Password for user postgres:

-- PostgreSQL version 11.5

-- PostGIS version 2.5.3

-- Load spatial extension

create extension postgis;

CREATE EXTENSION

[..]

ITI. Python environment

The authors provide textual instructions for recreating the Python environment using miniconda and list
the used versions. Since no ready-to-use environment definition was available and I am not familiar with
miniconda, I created a snapshot using Pipenv using local Python 3.8 installation. The installation of
the psycopg2 package from source failed and I installed psycopg2-binary in the latest available version
instead. The resulting Pipfile is as follows:

[[sourcel]

name = "pypi'"

url = "https://pypi.org/simple"
verify_ssl = true

[dev-packages]

[packages]

geopandas = "==0.6.1"
psycopg2-binary = "==2.8.5"
matplotlib = "==3.2.2"

[requires]
python_version = "3.8"

IV. Data insertion
pipenv run python database.py

This command starts a counter going up to 35553, which took at least 12 hours (roughly one insertion
per second) on my system (8 cores, 40GB RAM, SSD). This seemingly long time to insert a small number
of records is due to the implemented operators being triggered on every insertion.

V. Evaluate results and plot figures
Connecting to the database, I see the following tables/values:

postgres=# \c auv
You are now connected to database "auv" as user "postgres'.

auv=# \dt
List of relatioms

Schema | Name | Type | Owner
———————— T T Tt e
public | area | table | postgres
public | area_window_result | table | postgres
public | jumping_distance_window_result | table | postgres
public | location_stream | table | postgres
public | session_distance_window_result | table | postgres
public | sliding_distance_window_result | table | postgres
public | sliding_window_result | table | postgres
public | spatial_ref_sys | table | postgres
public | tilting_distance_window_result | table | postgres
public | tilting waypoint_window_result | table | postgres
public | tilting_window_params | table | postgres
public | tilting_window_result | table | postgres
public | waypoints | table | postgres
(13 rows)
auv=# SELECT * FROM area_window_result LIMIT 5;

time | geom

+
2019-03-01 12:40:25.8 | 0101000020787F00003A61D1BF763D1A4143FD6A8190C55641
2019-03-01 12:40:26 | 0101000020787F0000COD4A7D3753D1A411553938C90C55641
2019-03-01 12:40:26.2 | 0101000020787F0000DE687TEE7743D1A415EAABB9790C55641
2019-03-01 12:40:26.4 | 0101000020787F0000731D55FB733D1A411C03E4A290C55641
2019-03-01 12:40:26.6 | 0101000020787F00008AF22B0F733D1A414F5D0CAEQ0C55641
(5 rows)

auv=# SELECT schemaname,relname,n_live_tup
auv-# FROM pg_stat_user_tables
auv-# ORDER BY n_live_tup DESC;

schemaname | relname | n_live_tup
____________ e
public | tilting distance_window_result | 35554
public | location_stream | 35554
public | session_distance_window_result | 35554
public | tilting_window_result | 35554
public | tilting_waypoint_window_result | 35553
public | area_window_result | 29266
public | spatial_ref_sys | 5757
public | sliding_distance_window_result | 1364

public | jumping_distance_window_result | 543

public | waypoints | 57

public | sliding_window_result | 16

public | tilting_window_params | 1

public | area | 1
(13 rows)

There are 8 _result tables, with different number of rows, as can be expected due to the different
operators.

Plots

The following plots were created with these function calls (prepending pipenv run to set the computing
environment). Where a file save command was missing, the plots were saved to files manually. Fig. 14
seems to be a data-based plot but the code is missing.

Plot density track (Fig. 2), pipenv run python plot_density_track.py

1e6
1704 -

1702 - 50
1700 -

1698 - | 60
1696 -

1694 40
e Vehicle location

43000@3025@3050@13075@31000

(1) ==

1692 A

Plot tilting window (Fig. 9), pipenv run python plot_tilting_window.py

leb

5.9704 A

5.9702 - |
5.9700 A
5.9698 A

5.9696 A
5.9694 A

5.9692 -

430000 430200 430400 430600 430800 431000

Plot tilting distance window (Fig. 11), pipenv run python plot_tilting_distance_window.py

leb

5.9704 A
5.9702 A
5.9700 A
5.9698 A
5.9696 A (\JJ
5.9694 A

5.9692 -

430000 430200 430400 430600 430800 431000

Plot tilting waypoint window (Fig. 13), pipenv run python plot_tilting_waypoint_window.py

leb

o0l N LN N N

5.9702 -

5.9700 A

5.9698 A

5.9696 A

Nes® Gmmmmmy ey

|
|
) /)

|
/

430000 430200 430400 430600 430800 431000

5.9694 A

5.9692 -

Plot jumping distance window (Fig. 15), pipenv run python plot_jumping_distance_window.py

le6

9704 -

9702 A

9700 A

9698 -

9696 -

9694

9692

430000430200430400430600430800431000

GStream tool

I can confirm the authors’ SQLite package extension compiles following the commands in travis.yml:
there is a file 1ibstreams.so afterwards. Running GStream/test/src []$ python gstream_test.py
runs 7 tests and results in a message “OK”. Since the SQLite extension was included for the sake of
completeness but was not used in the evaluation of the article, I did not inspect this tool further.

Conclusion

An excellent example of a reproducible computational workflow, with only some potential to improve
automation and documentation for third parties.

Comments to the authors

The given repository is an excellent attempt at trying to make a workflow reproducible. The docu-
mentation is good, though steps could be automated a little bit further. I have the following concrete
recommendations:

o Provide a reusable snapshot of the environment (environment.yml)

e Document expected execution times clearly, with the hardware environment they were based on;
ideally, provide a small sample dataset that demonstrates the functionality of the code within a few
minutes, and document the expected numerical outcomes

o Document how to determine if the created tables are “correct” (how many rows, what summary
statistics to expect)

o Use (and provide) a script for the database creation process (do not assume the person evaluating
your work knows SQL)

e Save all plots to files, so display properties can be controlled better

Comments on first supplement

The original data and code supplement did not include the code for creating the figures, and lacked a
documentation of all steps, e.g., it was unclear how to evaluate the results sets in the window tables. This
supplement is still available online at https://figshare.com/s/cc758d056¢8c6f193e52. The instructions or
code to create the figures from the paper were missing.

https://figshare.com/s/cc758d056c8c6f193e52

	Reviewed paper
	Summary
	Reproducibility reviewer notes
	Reproduction
	I./II. Database setup and window operators
	III. Python environment
	IV. Data insertion
	V. Evaluate results and plot figures

	Plots
	GStream tool
	Conclusion

	Comments to the authors

