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CHAPTER 1

Introduction

A blood transfusion is a safe, common, and potentially life-saving medical proce-
dure in which one or multiple blood components, originating from a donor, are
inserted into the bloodstream of a transfusion recipient. One of these blood com-
ponents is the red blood cell, by 400,000 units per year in the Netherlands [99]
and 85 million units per year worldwide [129] the most frequently transfused blood
component. Red blood cell transfusions are typically used to improve the oxygen-
carrying capacity of the blood. The recipient might, for example, suffer from a
genetic disorder that affects the functioning of the red blood cells (sickle cell dis-
ease, thalassemia), cancer or a cancer treatment that affects the red blood cell
production (leukaemia, chemotherapy, stem cell transplant), or severe bleeding
(surgery, childbirth, trauma).

With respect to transfusion of red blood cells, it is important that the blood
groups of the donor and transfusion recipient match. The blood group of an
individual is determined by the presence or absence of antigens on the surface of
the red blood cells. If a particular antigen is present on red blood cells of a donor
but absent on the red blood cells of the transfusion recipient, the immune system
of the transfusion recipient may produce antibodies against this foreign antigen.
This is called alloimmunization. These antibodies will cause problems during a
subsequent transfusion or, in the case of a female recipient, a future pregnancy.
Such a response from the immune system can be prevented by selecting red blood
cells lacking the relevant antigen.

1.1 Red blood cell matching

1.1.1 History

The first successful human-to-human blood transfusion has been reported in 1825
by James Blundell, an obstetrician at Guy’s and St. Thomas’ Hospitals in London.
He treated a woman with severe postpartum hemorrhage (excessive blood loss after
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4 Chapter 1. Introduction

childbirth). The woman received four ounces of blood from her husband, rallied,
and survived. Between 1818 and 1830 Blundell performed ten blood transfusions
with varying degrees of success. He acknowledged that there were serious risks
associated with his procedure and therefore only applied it in exceptional cases
[5, 11]. At the end of 19th century, blood transfusion was regarded as a dangerous
procedure due to its varying degrees of success. It was, therefore, avoided.

Below a brief historic description of the originating blood group systems is
provided, as adopted from [48]. In 1901, Karl Landsteiner discovered the ABO
blood groups. He described the reactions between the red blood cells and sera of
22 individuals [68] and observed that the addition of serum from some individuals
reacted with the red blood cells of other individuals. He recognized a pattern and
showed that the individuals could be divided into three blood groups: A, B, and
O. For example, the serum of individuals belonging to blood group O reacted with
the red blood cells from groups A and B. In the next year, two of his students
confirmed his findings in a larger study among 155 individuals. They also found
four subjects (2.5%) that did not belong to one of these three groups. Later this
became the fourth blood group, blood group AB.

A quarter of a century later, another student of Landsteiner encountered a
problem with a transfusion between a man and woman, who had both blood group
O. [71]. Combining the woman’s serum with cells from her husband resulted
in a reaction. Her serum was also combined with the red blood cells of 104
other individuals with blood group O and a reaction was seen in 80 cases. This
was the first discovery of the Rhesus-D antigen. The name for this blood group
system came from parallel experimental work carried out by Landsteiner and Wiener
involving research on rabbits and guinea pigs with blood from Rhesus monkeys.
The serum from these animals was also found to react with the red blood cells of
85% of the individuals tested, who were classified as Rhesus positive [48].

This work stimulated similar research and many other antigens were recognized
in subsequent years. The identification of new blood group systems was facilitated
by the development of the anti-globulin test as well as the recognition that incu-
bation of red blood cells with enzymes enhanced the expression of some antigens
[24, 76]. The Kell system was the first blood group system that was identified
through the application of this test [25]. The discovery of the Duffy (Fy) and Kidd
(Jk) systems followed quickly.

1.1.2 Present

Currently there are more than 300 antigens known, of which only 25 are clinically
relevant [108]. In practice, however, extensively typed blood products are only
applied for specific groups of transfusion recipients. These groups consist of re-
cipients who are expected to receive multiple transfusions or recipient who have
an increased risk of developing antibodies (e.g., patients who have developed an-
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tibodies in the past). For example, recipients with sickle cell disease, thalassemia,
auto-immune hemolytic anemia (AIHA), or myelodysplastic syndrome (MDS), re-
cipients who already have developed antibodies, women of reproductive age (< 45
years) [18]. All individuals who have developed antibodies (as a result of a previous
blood transfusion) are logged in national register (TRIX). Previous to a new trans-
fusion this register is checked for presence of antibodies, which might no longer be
detectable in the patients blood.

To be able to comply with the Dutch transfusion policy, Sanquin has an ex-
tensively typed donor base [125]. This implies that the majority of the donors
are typed for the ABO, Rhesus and Kell blood group systems. Dependent on the
blood group profile of the donor on this limited number of antigens, the donor is
further tested for other blood group systems. The blood group of the donor is
determined by serology. This implies that for each antigen a separate test has to
be performed, which is both costly and time-consuming. Although a large part of
the donor population has been extensively typed, hospitals still face the problem of
ensuring that patients who have developed antibodies will obtain matched blood
products.

1.1.3 Future
Recent technological developments in diagnostics enable blood group identification
by genotyping instead of serology. This implies that with one single measurement
the presence or absence of all antigens (or at least more than a hundred) can be
determined. This creates a situation in which it becomes practically feasible to de-
termine the extended blood group of donors and recipients. In addition, the costs of
genotyping itself are expected to become comparable to the costs of a single sero-
logical test in the forseeable future. These developments will thus steer towards
the application of extended blood group matching for all transfusion recipients.
This implies a paradigm shift from preventing the consequences of alloimmuniza-
tion to the prevention of alloimmunization itself by extended matching. One of
the additional benefits from extended matching is that the in-hospital testing for
antibodies can be abolished. The magnitude of the beneficial impact of red cell
genotyping on patient outcomes compared to traditional serology-based laboratory
methods, remains unclear and warrants further study [15].

1.2 Managing the blood supply
The management of the inventory of blood products has a number of specific
features. These are 1) compatibility of blood components and 2) perishability of
blood components. In an ideal situation, one would transfuse only identical blood
products. However, due to the compatibility of blood groups, some blood products
can be used to satisfy multiple requests, as long as these are compatible. So, there
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are multiple differing inventories (one per blood group) which can satisfy differ-
ent requests. Ideally, one would have only one inventory with blood groups that
are negative for all antigens and therefore could satisfy any specific blood group
request. This unbalanced/unequal usability of the blood groups in the inventory
creates a very specific inventory management approach. In addition to the unbal-
anced usage of blood groups, blood inventory management requires taking into
account the fact that red blood cells outdate after 35 days.

When issuing a blood product from inventory, one has to consider both of the
features mentioned above (compatibility between the supplied and requested blood
groups and their perishability) in such a way that not only the current request can
be satisfied, but that the remaining inventory will allow doing so for any future
request as well. For the basic ABO-D matching this balance is overseeable as there
will always be an identical red blood cells available (due to the limited number of
blood groups). However, when the number of antigens considered increases, the
complexity of the inventory increases as well, which will force an increase in the
number of incompletely matched blood groups.

1.2.1 Managerial decisions
The development of inventory models for perishable products dates back to the
1960s. Since that time several review papers have been written with applications in
the fields of food, pharmaceuticals, photographic films, drugs, and blood. Although
there are no review papers that specifically focus on red blood cell matching, it is
often considered a sub-part of the inventory management of blood products, which
is an area in OR that has extensively be studied. For an overview for review on
either perishable products or blood products we refer the reader to the following
review articles:

• perishable inventory management [4, 50, 62, 78, 90]

• blood inventory management [7, 83, 85, 86, 88, 107]

When we have to decide which red blood cell units are issued from inventory there
are two main decision that have to be made:

• What is the blood group of the issued red blood cell unit?

• What is the age of the issued red blood cell unit?

While most of the papers on perishable inventory have assumed a fixed lifetime
of the products, few papers have also considered the life to be a random variable,
which is often exponentially distributed. We assume that red blood cell units have
a fixed lifetime of 35 days and that incoming units have age zero when they enter
the inventory.
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1.3 Contributions and thesis outline
In contrast to existing literature on inventory management of perishable products,
or more specifically, blood products, the main focus in this thesis is on inventory
issuing policies when extended blood group matching would be applied. This
implies that the models presented can be applied for both the current setting,
where the blood groups of individuals are determined by serology, as well as for a
future setting where mass-scale genotyping is implemented.

Part I: Introduction

The introduction consists of this chapter and Chapter 2. In Chapter 2 we address
the concept of alloimmunization, the most frequent adverse event of blood transfu-
sions. Whilst completely matched donor blood would nullify the alloimmunization
risk, this is practically infeasible. Current matching strategies, therefore, aim at
matching a limited number of blood group antigens only, and have evolved over
time by systematically including matching strategies for those antigens for which
(serious) alloimmunization complications most frequently occurred. An optimal
matching strategy for controlling the risk of alloimmunization, however, would
balance alloimmunization complications and costs within the entire blood supply
chain, whilst fulfilling all practical requirements and limitations.

Part II: Donor selection

In Chapter 3, the objective is to compute the effectiveness for recruiting next of
kin’s for donorship. For rare blood groups the recruitment of donor relatives, for
example siblings, is expected to be effective, since the probability of a similar rare
blood group is likely. However, the likelihoods strongly differ between blood groups
and are not commonly available. This chapter provides a unified mathematical for-
mulation to calculate such likelihoods. From a mathematical and probabilistic point
of view, it is shown that these likelihoods can be obtained from the computation of
a stationary genotype distribution. This, in turn, can be brought down to a system
of quadratic stochastic operators. A generic mathematical approach is presented,
which directly leads to a stationary genotype distribution for arbitrary blood groups.
The approach enables an exact computation for the effectiveness of recruiting next
of kin for blood donorship. Next to an illustration of computations for ABO and
Rhesus-D blood groups, it is particularly illustrated for the extended Rhesus blood
group system. Other applications requiring next of kin blood group associations
can also be solved directly by using the unified mathematical formulation.

Part III: Inventory allocation

Chapter 4 is a preliminary chapter for Chapters 5, 6 and 7 In this chapter we
introduce a binary representation for general blood groups (i.e. beyond ABO,



8 Chapter 1. Introduction

Rhesus-D blood groups). This binary representation provides a clear and unam-
biguous way to represent blood groups mathematically, irrespective of the number
of antigens considered. Another advantage of this binary representation is that a
compatibility matrix, which grows exponentially with the number of antigens con-
sidered, is no longer required, since the compatibility between blood groups can be
easily determined by an element-wise comparison of binary vectors. In addition,
it presents how the blood group distribution can be computed from phenotype
frequency tables for an arbitrary set of antigens.

In Chapter 5, we model the inventory allocation problem as a Markov Decision
Process. First we show that the deterministic ageing process of an red blood cell
unit can be approximated by a phase-type distribution, or more specifically, an
Erlang distribution. We then provide a generic description and formulation for
issuing red blood cell units upon requests. Its detailed description can be used to
further develop approximative techniques for solving.

The Markov Decision Process formulation in Chapter 5 is computationally
very demanding and can only be solved for small problem instances. In Chapter
6 we therefore apply a decision rule, which is based on both the age and rareness
of the red blood cell units in inventory. More specifically, we compute the relative
opportunity loss between the blood group of the RBC units in inventory and the
RBC units requested. Using this predetermined decision rule, the inventory alloca-
tion problem can be modelled as a minimal cost flow problem, which can easily be
solved, also for realistic problem instances consisting of up to 214 different blood
groups.

In Chapters 5 and 6 we incurred a shortage, when there was an insufficient
number of matching red blood cell units available from inventory. In practice,
however, not being able to satisfy a request is unacceptable and a blood product
must be issued. The solution is to issue a red blood cell unit with a smaller
number of matching antigens. In Chapter 7 we deal with this issue and determine
an optimal order for antigen exclusion when an insufficient number of matched
RBC units is available from inventory, such that the probability that antibodies
will be developed is minimized.

Finally, in Chapter 8, we give some general conclusions and provide directions
for future research based on the findings in this thesis.



CHAPTER 2

A conceptual framework for optimizing blood
matching strategies

2.1 Introduction

In a utopian world every blood transfusion would be handled like an organ trans-
plant, which means that one would try to find a perfect match between donor
and recipient. The reality however is that completely matched donor blood is
impossible in practice due to the abundance of blood group antigens, costs asso-
ciated with blood typing, and complications the logistics for such a scheme would
impose. As a consequence only a handful of blood group antigens are matched,
placing transfusion recipients at risk for alloimmunization and associated transfu-
sion complications. An ideal matching strategy would be one that minimizes the
risk of alloimmunization, is cost-effective, and fits within the practical limitations
of the blood supply chain. In the past, matching strategies have been guided by
the frequency of alloimmunization incidents, without systematically considering all
consequences such strategies impose on the blood supply. Since a selected match-
ing strategy will either directly or indirectly affect the entire blood supply chain
(Figure 2.1), an integrated approach is required. Such an approach would, for any
particular blood matching strategy, allow balancing the costs of donor recruitment,
donor typing, inventory management, blood product logistics, patient blood typing,
and alloimmunization complications in transfusion recipients. Besides costs also
the effects of transfusion complications on patients’ health should be taken into
account. This article describes the outline of a generic integrated blood manage-
ment model, its components, their interaction and potential complicating factors
and limitations currently foreseen for such a model.

We will first provide a description of all elements within the blood transfusion
chain that are relevant to such a blood management model. Next we will describe
how various elements are combined into an integrated model. Finally, we will
discuss which challenges are foreseen with the implementation of the model and

9
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Donor Stock Patient

Antigens in
patient

Matching

1. Depending on the demand of blood types and the distribution of blood
products currently available in stock, donors with particular blood types are
needed.

2. The requirement of particular blood types directly affects the availability of
blood products in stock. This is therefore directly affected by the patient’s
characteristics (blood type and blood use) in combination with the matching
strategy applied.

1 2

Figure 2.1: Schematic overview of blood type matching and its impact on the blood
supply chain.

potential prospects. Challenges will concern knowledge required for shaping the
modeling structure and the availability of data for various model parameters. Not
only will the model guide the search for a rational choice of an optimal matching
strategy, it will create transparency for the decision arena: the balance between
costs and patient outcomes will become explicit for whatever optimal decision is se-
lected. Secondly, by developing an integrated model, any blind spots in knowledge
regarding any of the elements of the decision model will become visible.

The elements identified for the integrated blood management model are: the
patient population, transfusion practice, pre-disposition of transfusion complica-
tions, typing and matching strategies, and the donor population. Note that as the
patient is the primary concern, it is the patient that should be the starting point of
the analysis. From there we will work our way back through the blood transfusion
chain towards the donor population.
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2.2 Transfused patients, exposure and transfusion com-
plications

Blood transfusion is a common medical procedures performed in hospitals. Despite
its benefits, patients exposed to red blood cell (RBC) antigens may produce anti-
bodies, which can cause acute or delayed hemolytic transfusion reactions (HTR).
In addition, upon pregnancy in alloimmunized women, hemolytic disease of the fe-
tus and new-born (HDFN) may occur. Not all patients form antibodies after RBC
transfusion. According to current views, most are so-called ‘non-responders’ and
will never form antibodies despite numerous transfusions. Others seem to have an
increased immunization risk and develop multiple antibodies after a few antigenic
exposures, these are referred to as the ‘(hyper)responders’ [46]. It is currently not
possible to prospectively identify patients that will form antibodies. In the absence
of phenotypic matching, RBC alloimmunization risks vary between patient groups;
it occurs in less than 5% of all transfusion recipients, increases to about 10 - 30%
in patients with thalassemia, auto-immune hemolytic anemia or myelodysplastic
syndromes, and can be more than 50% in sickle cell anemia patients [123, 124].
In addition, patients with antibodies are at increased risk for additional antibody
development upon subsequent transfusions [59, 103]. During pregnancy, maternal
RBC antibodies against paternal inherited antigens can pose the child at risk for
HDFN. Besides anti-D, anti-E, anti-K, and anti-c are the most frequently encoun-
tered antibodies with the potential to seriously complicate pregnancy if the fetus
carries the cognate antigen. The risk for severe HDFN in these fetuses, requiring
intra-uterine or postnatal (exchange) transfusion, is estimated to be 12% for anti-
K, 8.5% for anti-c and about 1% for anti-E. While for anti-D, administration of
anti-D immunoglobulin (besides preventive D-matching) has reduced the risk of
D immunization from 15 to 0.3 percent, such measures are not available or not
always applied for other antigens, which are in the majority of cases elicited by
previous transfusions [66].

The impact of transfusion reactions may vary widely, ranging from serologic
observations or mild symptomatic anemia only, to life-threatening complications
and death. It is obvious that with increasing severity, costs of treatment will also
increase, although studies reporting on such associations and associated costs are
currently limited or completely lacking [63]. Maximum benefits of alloimmunization
prevention can be obtained by administering extended antigen matched blood to
patients who have an a priori high risk for alloimmunization. Therefore, unravelling
genetic and environmental conditions enhancing RBC immunization would support
preventive strategies. Although most studies on this subject have been performed
in sickle cell disease (SCD) patients, factors such as age, sex, inflammatory sta-
tus, MHC class-II genotype, polymorphisms associated with immune modulation
and altered immune (regulatory) cells and disease or therapy associated immuno-



12 Chapter 2. A conceptual framework for optimizing blood matching strategies

suppression seem to influence the immune response towards transfusion exposed
alloantigens [6, 46, 67, 73, 109, 130, 134]. Due to logistic constraints, elaborate
preventive matching based on a responder-profile is expected to be only feasible for
a small proportion of patients. Targeting patients with (chronic) elective transfu-
sions is likely to be feasible. Also, two recent prospective studies showed that less
than 50% of surgery patients, who according to the local hospital pre-operative
blood-ordering schedule had a high transfusion risk, were actually transfused. Ex-
tensive preventive matching as a routine policy is therefore expected to require
a substantial amount of additional work and costs. Moreover, about 25% of pa-
tients required more than the anticipated number of RBC units during surgery and
extended matched units were not readily available [34, 104].

As the blood management model is aiming to optimize strategies for prevent-
ing HTRs, the risk of alloimmunization in patients, its associated cost and health
impact needs to be defined. The ongoing Dutch R-fact study –in which the predis-
position for formation of antibodies is studied– will allow modelling the likelihood
of antibody formation. This information, combined with data on blood use for
various patient groups, which will be obtained from the Dutch PROTON study
(in which detailed transfusion data from a large number of hospitals are combined
in a Dutch Transfusion Datawarehouse), will provide the information required to
model the likelihood of HTRs in various patient groups. Research on the cost and
health impact associated with HTRs will also be required to complete the model
for patient and health outcome of transfusion complications.

2.3 Current matching strategies in the Netherlands

In the Netherlands all RBC transfusions are compatible for ABO and D antigens.
Since 2011 the guideline for selection of RBC units prescribes preventive matching
for specific blood group antigens for different patient subgroups. Since 2004 it has
been policy to select K-negative RBCs for women aged under 45, which in 2011
was extended with matching for c and E. These measures aim to prevent HDFN.
In the updated guideline four patients groups with a putative increased risk of al-
loimmunization were defined, on grounds of either underlying disease, transfusion
frequency, or potential (hyper-)respondership. The four patient groups concern 1)
patients with autoimmune hemolytic disease; 2) patients with myelodysplastic syn-
drome and 3) patients with an immediate early antibody (IEA) against a clinically
relevant RBC antigen. For these three patient subgroups Rh phenotype (CcDEe)
and K compatible RBCs are selected. Finally, the fourth group consists of patients
with hemoglobinopathies (SCD or thalassemia) for whom Rh phenotype, K and
Fya compatible RBCs are selected, and whenever available, Jkb, S or s compatible
RBCs. The recommended matching strategies formulated in Dutch transfusion
guidelines are summarized in Table 2.1 [18].
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Table 2.1: Matching strategies for various patient groups as recommended in the 2011
Dutch Transfusion guideline.

Patient group Matching strategy

Sickle cell anemia and thalassemia Rh phenotype, K and Fya

(and if available, Jkb, S and s)
Autoimmune hemolytic anemia Rh phenotype and K
Myelodysplastic syndrome Rh phenotype and K
Alloimmunized with clinical important Rh phenotype and K
antibodies
Woman of childbearing age c, E and K

Apart from these specific patient groups, patients in the Netherlands are rou-
tinely tested for the presence of IEAs prior to RBC transfusions. When IEAs are
detected, both their specificity and clinical importance are investigated. In case
of a clinical important IEAs it is essential to select donor erythrocytes that are
negative for corresponding antigens to prevent HTRs. Furthermore, dependent
on the matching strategy, it may be required that donor erythrocytes are com-
patible with other antigens of the patient (extended matched), to prevent the
formation of additional IEAs. Because antibodies may lose detectability over time,
accurate recording and accessibility of patient antibody formation is of the ut-
most importance [93, 95, 102]. Besides in-hospital records, a national database
is available in the Netherlands (TRIX, Transfusion Register Irregular antibodies
and X(cross)-matching), in which hospitals register patients with RBC antibodies
and cross-match problems [120]. This system is accessed for the evanesced an-
tibodies in all patients with a transfusion request to prevent re-exposure to the
cognate antigen. However, these registrations will not prevent re-exposure due to
an inadequate antibody follow-up after transfusion.

The blood management model will have to accommodate matching strategies
currently implemented as well as various extended matching strategies. The model
should incorporate all costs involved for various matching strategies considered (e.g.
costs of personnel and materials used).

2.4 Typing the donor population

Different matching strategies will pose different requirements on the availability of
typed blood products. The required number of typed blood products, the variation
in its demand, and the required service level (the probability of not being able
to deliver a requested typed blood product) will determine the number of typed
blood products that will have to be available in stock at any time, and hence the
level of typed donors. A large typed donor population has the advantage that in
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most cases donor erythrocytes can be selected directly from inventory, even when
blood products need to be typed negative for combinations of antigens. However,
there will always be a balance between the additional efforts required to fulfill
requirements for typed blood products and extending the pool of elaborately typed
donors.

2.5 Donor recruitment

Transfusing matched blood is only feasible if there are enough donors that are
typed negative for specific (combinations of) blood group antigens. For instance,
many Blood Services in Western countries have a structural shortage of Fya-neg,
Fyb-neg, e-neg donors. This blood type is most common in populations from Sub-
Saharan Africa, of which relatively few individuals are enrolled as blood donors
[119]. In addition, in many countries a broad variety of ethnic minority popula-
tions exist. Shifting immigration patterns and mixing of these populations will
increase the demand for rare blood type combinations. A valuable ‘side effect’
of recruiting among minority groups is a potentially increase of donors for HLA-
matched substances of human origin, such as stem cells. Blood Services therefore
need to identify which specific ethnic minority populations to focus on in terms of
rare blood type prevalence.

2.6 Integration

In the previous sections various elements of the blood transfusion chain and their
interdependencies were discussed (see Figure 2.1). Each of these elements and
their interactions need to be modelled to allow evaluation of the impact of a
particular matching strategy on the transfusion risk of patients (i.e., acute and
delayed HTRs) and on other parts of the blood supply chain (e.g., the availability
of matched blood products, costs of type and screen, storage, outdating, and
targeted donor recruitment). The main elements of the blood supply chain and
the associated sub-models describing various interactions required for an integrated
blood management model is depicted in Figure 2.2.

The starting point for any evaluation is the blood matching strategy, as this,
in combination with the patient mix, will determine the demand for particular
blood products. Depending on the matching strategy and patient mix (patient
subgroups) there will be a risk of antibody formation and subsequent risk for
adverse transfusion complications. Moreover, the combination of patient mix and
associated matching strategy will determine the demand for typed blood products
in the inventory. The availability of typed blood products in the inventory is
dependent on the availability of typed blood donors, which again is dependent on
the efforts and requirements of targeted donor recruitment.
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Donor Stock Patient

Antigens in
patient

Donor base
management:

targeted recruitment

Inventory management:
supply and demand of
typed/untyped RBCs

Patient blood
management: needs
and adverse events

Figure 2.2: Main elements of the blood supply chain and associated sub-models of the
blood management system.

The assessment of the transfusion complication risk requires estimates of the
likelihood of antibody formation and subsequent transfusion reactions in patients
given a particular matching strategy. Such estimates should incorporate the trans-
fusion pattern and the ethnic (blood type) composition of various patient sub-
groups. Also, antigen specific estimates for the likelihood of developing antibodies
as well as for transfusion complications are required. The likelihood of transfusion
complications in combination with cost and the health impact will allow estima-
tion and subsequent balancing of the costs and benefits from the matching strategy
applied.

To enable matching blood for transfusion recipients antigen and antibody pro-
files of patient subgroups have to be determined. Next, compatible RBC units
have to be selected from inventory. Detailed information on blood use and the
antigen profiles per patient group allows assessment of the blood inventory re-
quired to meet patient needs. This will be a description of the required inventory
both in terms of amount and composition of RBCs in various stocks along the
blood transfusion chain. Blood product demand will show a stochastic behavior
and a realistic blood management model will therefore have to be able to accom-
modate such random variations. Given the patient mix, matching strategy and
associated transfusion characteristics, for any pre-specified acceptability rate for
the unavailability of (matched) blood products and inventory management strat-
egy, the required blood inventory size and composition can be determined. The
resulting costs and effects for the complete blood transfusion chain (outdating,
size of the inventory, logistics, and material handling costs) can now be estimated.
Note that the unavailability of matched blood products will impact the likelihood
of transfusion complications in patients. Therefore, optimization of the overall
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blood transfusion chain will require a separate sub-optimization for the inventory
management strategy.

The availability of compatible RBC units required in the inventory is directly
linked to the availability of typed donors and hence guides the typing strategy
and targeted donor recruitment efforts. The typing strategy will be aiming at
fulfilling the requirements for maintaining sufficient inventory levels, but this will
be dependent on the availability of specific antigen profiles in the (typed) donor
population. Whenever these are insufficient, targeted donor recruitment efforts
will have to ensure adequacy of the desired antigen profiles in the un-typed donor
population, and ultimately those in the typed donor population. Estimates for
the costs of recruiting specific donor subgroups in order to ensure a sufficient
level of typed blood groups in the donor population are required to estimate the
costs for maintaining the required inventory levels. Other than in the inventory
management, which is an in-line process, it is presumed that the required levels of
typed donors will be met by increasing donor recruitment efforts.

2.7 Discussion

In this article we discussed a conceptual framework for a blood management model
which allows optimization of blood matching strategies. The model links various
elements from the blood transfusion chain to allow an assessment of the full impact
of any particular matching strategy. The approach is unique in the sense that in
the past matching strategies were guided by the prevention of transfusions compli-
cations observed with the administration of blood products, without consideration
its impact on the underlying blood supply process. In theory this new approach
seems sensible, however, in practice there will be a number of complicating factors.

First of all, except for some specific patient subgroups there is only limited
evidence available on the effectiveness of matching strategies for the prevention
of transfusion complications. Despite the fact that transfusion complications are
accurately analyzed, patient exposure is far more difficult to ascertain. More evi-
dence however has been gained for the risks of alloimmunization in various patient
cohorts in the Netherlands in the ongoing Risk-Factors for alloimmunization after
red blood Cell Transfusion (R-FACT) study [133]. This concerted collaboration of
several large hospitals will provide the information required to model risk factors for
some patient subgroups. Also, looking back at the reduction of transfusion compli-
cations after implementation of altered matching strategies may support inference
on its effectiveness. However, this effect may also be confounded by transfusion
practice.

Another complicating factor is the impact of transfusion complications on pa-
tients, as this may vary from serologic observations or mild symptomatic anemia to
life-threatening complications and death. Not only are predictors for predisposing
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factors lacking, but the impact of various levels of transfusion complications on
patient health (apart from death) are not readily available, and neither are the
associated costs. Assessing costs of complications is complex as it requires sep-
aration of the costs of patient treatment from costs of complications which are
confounded by definition. Similar complications occur when estimating the im-
pact on patient health. Nonetheless, an increasing number of publications on the
impact of transfusion complications are becoming available [47, 81, 100].

In most settings detailed information on transfusion practice (number of trans-
fused blood products for specific patient subgroups and the variation herein) is
lacking. In the PROTON II study for a large number of Dutch hospitals detailed
information on blood transfusions administered to patients is collected in one cen-
tral data warehouse [121]. These data consist not only of transfused products, but
also patient diagnosis and lab results. These data are indispensable when mod-
elling the logistics of the blood supply in general, and for specific patient groups.
Optimized inventory and dispatching strategies can be developed for both hospital
and regional distribution centers and may be tailored to specified matching strate-
gies. Note that with data on blood use the requirements and constraints for such
models are available.

For the assessment of the risk of transfusion reactions (depending on the match-
ing strategy) information on historical exposure of patients to blood products is
required in order to assess the likelihood of antibody development. Such data is
at present only available at a large scale for Denmark and Sweden where long
term follow-up data on transfused patients is recorded in the SCANDAT database
[32, 33]. Such information may be used to estimate an approximate risk of exposure
to red blood cells in other settings.

The development of an integrated blood management model will increase trans-
parency in costs and effects of selected matching strategies and is therefore -if
applied- expected to contribute to an improved efficiency in blood transfusion
practice.
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CHAPTER 3

Blood group probabilities by next of kin

3.1 Introduction

3.1.1 Motivation

The challenges faced by blood transfusion services are becoming more complex
and are changing continuously due to growing economic pressure, new technolo-
gies, and increasing customer expectations [26, 127]. One of these expectations
is the ability to select extensively (blood group) matched red blood cells (RBC’s)
for transfusion recipients, to decrease the number and severity of transfusion reac-
tions. However, current blood donor recruitment strategies are based on historical
matching strategies and cannot meet the demand for extensively matched blood
products. Furthermore, due to increasing immigration rates and differences in
blood group distributions between ethnic populations the diversity among blood
groups within the transfusion population increases. For instance, the blood group
profiles of Caucasian individuals (i.e., individuals with European ancestors) and
individuals from African descent differ significantly. In contrast, in the donor base
ethnic minorities are underrepresented, complicating extended blood group match-
ing of donors and transfusion recipients. Hence, one of the major challenges for
current blood donor recruitment practice is to maintain an adequate donor base
with a sufficiently diverse blood group composition [16]. In actual fact, an overrep-
resentation of donors from African descent would be preferable, as individuals from
African descent have a higher probability of requiring repeated blood transfusions
as a result of sickle cell decease, which is uncommon in other populations [14].

In practice, it has been shown to be effective to increase the number of donors
with O, Rhesus-D (RhD) negative blood groups by recruiting among their relatives,
since these are more likely to be O, RhD-negative than individuals in the general
population. Although intuitively this seems to be an effective strategy, it is not
evident to what extent such strategies are more effective than random donor selec-
tion. Moreover, it gives rise to the question whether this also holds for other blood

21
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group combinations. If so, it may inform more effective recruitment strategies.

3.1.2 Approach
To model blood group antigen inheritance quadratic stochastic operators (QSO’s)
are used, as introduced by Bernstein in 1924 [8]. Recently, Ganikhodjaev et al.
[42, 43, 44] applied QSO’s to model the heredity of ABO and RhD blood groups.
However, a general formulation that goes beyond the standard ABO, RhD blood
groups was not given. In addition, an exact computation of the effectiveness of
recruiting relatives of donors with rare blood groups has not been included. Of
course, the idea that relatives have similar blood groups is intuitively correct, but
quantification is insightful and allows balancing recruitment efforts against the
benefits from blood group matching.

This chapter presents a unified mathematical formulation to determine the
probability that two relatives (next of kins) share the same blood group. In short,
the steps and formulation that will be provided, transform phenotype distributions
into genotype distributions, and back. By this generic mathematical approach we
can directly analyse the effectiveness of specific next of kin recruitment strategies,
for any blood group, ethnicity, and population (as numbers may differ worldwide).

The mathematical approach only requires a phenotype distribution as an input,
whereas the population genotype distribution is required for calculating the blood
group distribution probability for the next of kin. Phenotype distributions can be
easily determined by simple blood tests, genotype distributions are more difficult to
obtain. However, these genotype distribution can be derived from the phenotype
distributions using our generic mathematical approach.

This chapter is organized as follows. Section 3.2 starts with a known, but
motivational example for the ABO, RhD blood groups. Next, in Section 3.3, a
unified mathematical formulation of the approach is covered. In section 3.4 this
unified mathematical formulation is used the compute the effectiveness of recruiting
next of kin for blood donorship. Finally, we explore some specific applications of
the approach in Section 3.5. Section 3.7 (Appendix I) provides a clear overview of
the notation used.

3.2 Motivational and illustrative example
In this section, let us first provide the genetic backgrounds and illustrate our steps
and formulation for the ‘standard’ ABO, RhD blood groups. That is, we show

• how the approach for determining the distribution of genotypes in a popula-
tion essentially comes down to a system of quadratic equations,

• how the distribution of genotypes can be used to evaluate the effective-
ness of targeted recruitment strategies for the ABO and RhD blood groups
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separately,

• how the results for both blood groups can be combined.

Later, in Section 3.3 and 3.4, the same steps and approach are provided in a unified
mathematical formulation, such that this formulation can be applied to any blood
group system.

3.2.1 ABO, RhD blood groups
According to the International Society of Blood Transfusion (ISBT) there are more
than 300 different blood group antigens belonging to 36 blood group systems [108].
Each antigen can be either present or absent on the surface of an RBC, leading to
an extremely large number of different blood group profiles. In practice, however,
not all antigens are equally important with regard to transfusion related problems.
The most important antigens are A and B (both belonging to the ABO blood
group system), followed by RhD, which belongs to the Rhesus (Rh) blood group
system. Taking only these three antigens into consideration the total number of
blood group profiles can be compressed into eight major groups, the so-called ABO,
RhD blood groups. These ABO, RhD blood groups consist of a combination of a
blood group belonging to the ABO blood group system (O, A, B, AB) and a RhD
blood group (RhD-neg (d), RhD-pos (D)).

For just the RhD blood groups three different genotypes (GD = {dd,Dd,DD})
and two different phenotypes (FD = {d,D}) exist, where the genotype is a genetic
code that determines which antigen might be expressed on the surface of the
RBC’s. The expression of particular antigen is called the phenotype. Moreover,
multiple genotypes may lead to the same phenotype. The relation between the
different RhD genotypes and phenotypes is shown in the following matrix:

S =

d D dd 1 0
Dd 0 1
DD 0 1

, (3.1)

where a one indicates which genotypes results in a particular phenotype. Note that
genotypes (and genes) are presented in italics and phenotypes (and antigens) are
presented in a regular typeface.

Similarly, the ABO blood group system consists of six different genotypes
(GABO = {OO,OA,OB,AA,AB,BB}) and four different phenotypes (FABO =
{O,A,B,AB}). The relative frequencies for the ABO, RhD blood groups in the
general Caucasian population are given in Table 3.1. The RhD and ABO blood
groups belong to two blood group systems and are inherited independently. There-
fore, in the next sections we will explore which steps are required to investigate
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Table 3.1: Relative frequencies for the ABO, RhD blood groups [94].

O A B AB
0.44 0.43 0.09 0.04

d 0.168 0.074 0.072 0.015 0.007
D 0.832 0.366 0.358 0.075 0.033

the effectiveness of recruiting next of kin with respect to the RhD and ABO blood
groups separately. At the end of this section the results for both blood groups are
combined.

Note that most of the computations performed in this section are similar to
what can be found in the literature [17, 42, 43, 44, 45, 98]. However, the specific
structure of the mathematical approach, the usage of just a known phenotype dis-
tribution, and the connection to the effectiveness of targeted recruitment strategies
(see Section 3.2.4) are new.

3.2.2 Motivational example

Figure 3.1 shows a probability diagram describing the relation between the RhD
genotype of a donor and its parents and siblings (i.e., brothers or sisters). The
probability that a donor has a particular genotype is the a priori probability. From
the figure it is clear that the probability of a sibling having the same genotype
requires information on genotypes of the parents. However, it might be that the
distribution of genotypes in the general population is unknown or difficult to obtain.
On the other hand, the phenotype distribution for the general population is usually
more easily available, so it would be convenient if we could use this instead, to
determine the genotype distribution. This is possible by using quadratic stochastic
operators.

When the a priori probabilities are known, Bayes rule is applied to find the
probability that a relative of a donor has a specific RhD genotype, given the geno-
type of the donor. In order to compute these probabilities, particularly for a sibling
of a donor, we thus need to work top-down.

3.2.3 Finding a stationary distribution

For a particular blood group, a child inherits its genotype from a combination
of genotypes of the parents. For the RhD blood group a genotype consists of
two genes, each of which either d or D, leading to three possible genotype com-
binations: dd, Dd, and DD. Each parent gives one of these two to the child.
The probability that two parents with a particular genotype conceive a child with
a certain genotype is captured by an inheritance matrix P . For the RhD blood
groups, the inheritance matrix is depicted in Figure 3.2. We use this inheritance
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Figure 3.1: Probability diagram which relates the RhD genotype of a donor to the RhD
genotypes of donor’s parents and siblings
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Figure 3.2: Inheritance matrix P for the RhD blood group.
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matrix P ∈ R3×3×3 to compute a stationary distribution of genotypes. The exact
structure of this matrix is explained later in Section 3.3.1.

Let x(n) ∈ R3×1 be a column vector containing the genotype distribution for
the RhD blood groups in generation n. We assume that this genotype distribution
is stationary, which implies that the distribution of genotypes in generation n− 1
is equal to the distribution of genotypes in generation n: x(n−1) = x(n) = x.
Let xfather, xmother, and xchild be the genotype distributions of respectively father,
mother, and child. Then, in a stationary population, the following equation holds:

x>fatherPxmother = xchild ⇒ x>Px = x. (3.2)

Moreover, the genotypes are related to the phenotypes. This relation was given
in the matrix S (equation (3.1)). Besides equation (3.2) the following equation
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should also hold for variable x:

S>x = f , (3.3)

where f ∈ R2×1 is the phenotype distribution. For the RhD blood groups, equa-
tions (3.2) and (3.3) can be solved analytically, which gives:

x2
dd + xddxDd + 1

4x
2
Dd = xdd

xddxDd + 2xddxDD + 1
2x

2
Dd + xDdxDD = xDd

1
4x

2
Dd + xDdxDD + x2

DD = xDD
xdd = fd
xDd + xDD = fD

⇒


xdd = fd
xDd = fD −

(
1−
√
fd
)2

xDD =
(
1−
√
fd
)2 .

Note that this analytic solution is in accordance with the Hardy-Weinberg law [53].
Since f> = (fd, fD) = (0.168, 0.832) we get

x =

 xdd
xDd
xDD

 =

 0.168
0.484
0.348

 . (3.4)

In a similar way equations and computations can be provided for the ABO blood
group system from which we find

x =



xOO
xOA
xOB
xAA
xAB
xBB


=



0.440
0.358
0.087
0.073
0.038
0.004


. (3.5)

In Casas et al. [17] square root expressions have been provided for the ABO blood
group system and are therefore omitted here. However, this reference has not
discussed the concept of effectiveness. This will be elaborated on in the next
section.

3.2.4 Effectiveness of recruiting next of kin for donorship

Donors are recruited for their phenotypes expressions (blood is matched on phe-
notypes), however inheritance is determined by genotypes. Therefore, to compute
the probability that a sibling of a donor with a particular phenotype has the same
phenotype, the stationary genotype distribution is required. Once this genotype
distribution has been obtained the likelihood of a particular blood group for a
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sibling, given the blood group of a relative, can then be computed using Bayes’
rule.

Suppose that we have a RhD-pos donor, the likelihood that its sibling is also
RhD-pos can be computed by calculation the conditional probability:

P (sibling D | donor D) = 0.898. (3.6)

We find that the conditional probability is slightly higher than the probability that a
random individual is RhD-pos (0.850). The effectiveness, defined as the difference
between these two probabilities, is equal to

ED = P (sibling D | donor D)− fD
= 0.066. (3.7)

Figure 3.3 shows the results of an analysis of ABO and RhD blood groups. Espe-
cially for rare blood groups (i.e. B, AB and RhD-neg) it appears to be effective
to recruit among relatives. Here, the likelihood of a similar blood group is consid-
erably higher than that of the general population. For example, for the RhD-neg
blood group the likelihood increases from 0.168 to 0.410 for parents and to 0.497
for siblings. Note that the probability of the siblings is higher than that of the
parents.

The most important ABO, RhD blood group is O, RhD-neg, since this is the
blood group of a so-called universal donor. This means that every individual can
receive RBC’s from a donor with this blood group. Figure 3.3 shows that recruiting
O, RhD-neg donors among relatives of donors with an O, RhD-neg blood group is
five or four times more effective for siblings and parents respectively, than recruiting
donors at random. These computations are insightful when assessing targeted
donor recruitment among relatives.

This section provided an illustration of calculating next of kin blood group
probabilities for the ABO, RhD blood groups. In the next sections we will provide
a more generic mathematical framework to compute i) stationary genotype distri-
bution and ii) effectiveness of recruiting next of kin for blood donorship by using
quadratic stochastic operators and Bayesian statistics. This allows calculating next
of kin probabilities for more complex blood group combinations.

3.3 Generic mathematical approach

As illustrated in Section 3.2.4 we want to calculate the conditional probability that
a relative of a donor has the same phenotype as the donor, or mathematically
stated:

P (relative ϕ | donor ϕ) , (3.8)
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Figure 3.3: Proportion of ABO, RhD blood groups in the general population and condi-
tional probabilities that parents/siblings have the same blood group. The numbers above
the conditional probabilities represent the effectiveness of recruiting relatives of a donor
with a known blood group, where the effectiveness is defined as the difference between the
the proportion of individuals with a particular blood group in the population (see Table
3.1) and the conditional probabilities.
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where ϕ ∈ F is the known phenotype of the donor. We therefore aim to provide a
unified mathematical framework, starting in this section with providing a generic
mathematical approach for computing the stationary genotype distribution. In the
next section it will be shown how this stationary genotype distribution is used to
calculated the effectiveness of recruiting next of kin for blood donorship.

First, in Section 3.1.1, we start with mathematically modelling the blood group
genetics and introduce some notation. Next, In Section 3.3.2 the calculation
steps required are listed and in the remainder of Section 3.3 we elaborate on the
computation of a stationary genotype distribution.
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3.3.1 Blood group genetics

To explain the relation between the blood group of a child and its parents we start
with a compact description of the underlying genetic mechanism of inheritance.
The information of an individual’s blood group is present on the genes, which occur
in pairs on homologous chromosomes at particular positions called loci (singular:
locus). Genes that occur at the same locus are allelic to each other and are
therefore also referred to as alleles. Each allele may encode for the production of
a specific antigen. For example, the ABO blood groups are determined by three
alleles A, B, and O, where A encodes for the production of antigen A, B encodes
for the production of antigen B, and O encodes for no antigen production. To
write this down mathematically we first introduce for each locus a set of alleles L
and a set of antigens A. Then, for each allele ` ∈ L a binary vector of length |A|
is constructed with `a = 1 if allele ` encodes for the production of antigen a ∈ A
and `a = 0 otherwise. Finally, the alleles are sorted into colexicographical order
(expressed as ’�’), i.e., (LABO,�) = {O,A,B} = {[0 0], [1 0], [0 1]}. Hence,
(L,�) is a colexicographically ordered set of alleles.

In contrast to the ABO blood groups, which are determined by alleles lying
on a single locus, the Rhesus blood groups are determined by a combination of
alleles occurring at multiple loci. This combination of alleles is called a haplotype
(the multilocus analogue of an allele at a single locus), where a haplotype consists
of one allele from each of the loci. The set of haplotypes is denoted by H,
where each h ∈ H can be written as a union of alleles belonging to unique loci.
For example, the set of haplotypes for the Rhesus blood groups is determined by
alleles from three loci (LD = {D, d} = {[1], [0]}, LC = {C, c} = {[1 0], [0 1]},
and LE = {E, e} = {[1 0], [0 1]}) leading to eight different Rhesus haplotypes:

binary representation antigens haplotype

[0 0 1 0 1] ce dce
[0 0 1 1 0] cE dcE
[0 1 0 0 1] Ce dCe
[0 1 0 1 0] CE dCE
[1 0 1 0 1] Dce Dce
[1 0 1 1 0] DcE DcE
[1 1 0 0 1] DCe DCe
[1 1 0 1 0] DCE DCE

Although the sets LD, LC, and LE all consist of two alleles, they are different.
On the one hand, the alleles in the sets LC and LE always lead to the production
of antigens, i.e. [1 0] ∈ LC implies production of antigens C, [0 1] ∈ LC implies
production of antigens c, [1 0] ∈ LE implies production of antigens E, and [0 1] ∈
LE implies production of antigens e. On the other hand, the alleles in the set LD
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might lead to the production of an antigen, i.e. [1] ∈ LD implies production of
antigens D, but [0] ∈ LD implies that no antigens are produced. The set H has
cardinality |H| =

∏
i |Li|.

Define G = {γ1, ..., γm} as a set of genotypes consisting of all combinations of
2 haplotypes from H:

G = { {h1, h1}, ..., {h1, h|H|}︸ ︷︷ ︸
|H| elements

, {h2, h2}, ..., {h2, h|H|}︸ ︷︷ ︸
|H|−1 elements

, ..., {h|H|, h|H|}︸ ︷︷ ︸
1 element

}, (3.9)

with cardinality m = |G| = 1
2 |H|(|H| + 1). Finally, let F = {ϕ1, ..., ϕn} be

the lexicographic ordered set of phenotypes, with cardinality n = |F|. These
phenotypes determine which antigens are present on the red blood cells. Define S ∈
{0, 1}m×n as a matrix describing the relation between genotypes and phenotypes,
that is

Sij =
{

1, if genotype γi ∈ G leads to phenotype ϕj ∈ F ,
0, otherwise.

(3.10)

Children inherit blood group antigens from their parents. Which antigens are
inherited depends on the genotypes of both parents. Suppose that the father
has genotype γi ∈ G (γi = {hi1 , hi2}), the mother has genotype γj ∈ G (γj =
{hj1 , hj2}) and they have a child with genotype γk ∈ G. Clearly, this child could
have four different genotypes, since there are four different combinations of the
haplotypes of the parents: {hi1 , hj1}, {hi1 , hj2}, {hi2 , hj1}, and {hi2 , hj2}. We
assume that Mendelian rules hold, which implies that each combination occurs
with probability 1

4 . In this section, we will index the the genotypes by

• γi - genotype of the father,

• γj - genotype of the mother,

• γk - genotype of the child,

and use no index if we do not refer specifically to a father, mother, or child.
In order to construct the inheritance matrix P ∈ Rm×m×m we first introduce

vectors vh = [vh(γ1), ..., vh(γm)], h ∈ H, where vh(γi) is the probability that a
parent with genotype γi = {hi1 , hi2} will give haplotype h to the child:

vh(γi) =


1, if γi = {h, h},
1
2 , if γi = {h,�h} or γi = {�h, h},
0, otherwise.

h ∈ H, γi ∈ G, (3.11)

Then the probability that a child has genotype γk = {hi, hj}, where hi is the
haplotype the child inherited from the father and hj is the haplotype the child
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Figure 3.4: Inheritance matrix P , with P (γk | γi, γj) the probability that two individuals
with genotypes γi ∈ G and γj ∈ G conceive a child with genotype γk ∈ G.
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inherited from the mother, is equal to:

P (γk) = P ({hi, hj}) =

vhi
vThj

, if i = j,

vhi
vThj

+ vhj
vThi

, if i 6= j.
(3.12)

Note that P (γk) ∈ Rm×m is a two dimensional matrix as is shown in Figure 3.4.

3.3.2 Steps
The probability that two relatives share the same blood group is substantially
higher than the probability that two individuals from the general population share
the same blood group. For selective donor recruitment it is therefore worthwhile to
quantify these probabilities as a function of the family relation. One might have the
perception that these probabilities can be easily computed by elementary statistics.
This is true, except that the a priori probabilities, i.e. the genotype distributions,
are generally unknown and have to be calculated first. As will be shown, these a
priori probabilities can be determined by a system of quadratic equations or rather
a system of quadratic stochastic operators. Therefore, the mathematical approach,
combining both elementary statistics and operations research related methods, can
be divided into the following three steps:

• Determine the stationary distribution of genotypes.

• Compute the probability that a relative of a donor has a particular phenotype
given that this donor has a particular phenotype.
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• Compute the effectiveness of recruiting a next of kin donor instead of an
individual from the general population.

3.3.3 Determine a stationary distribution of genotypes

By performing simple tests it is possible to determine the distribution of phenotypes
in a population for a (combination of) blood group(s). Genotype distributions or
allele frequencies are more difficult to obtain. A way to obtain estimates of these
genotype distributions is by using QSO’s. These estimates are based on the known
phenotype distributions and the assumption that the genotype distributions within
a population are stable.

First, we explain how we can model the inheritance of antigens by using a
quadratic stochastic operator. This leads to a system of quadratic equations.
Next, we show how this system of quadratic equations can be solved, by iteratively
solving a least squares problem.

Consider a set G of genotypes. Let xγ be a variable that describes the frequency
of genotype γ ∈ G in a population and let P (γk | γi, γj) be the probability that
two individuals with genotypes γi ∈ G and γj ∈ G conceive a child with genotype
γk ∈ G. Now, as in Section 3.2.3, let x = xfather = xmother = xchild, then the
following equations hold:

x>fatherPxmother = xchild ⇒ x>Px = x, (3.13)

where P (γk | γi, γj) is the heredity matrix which satisfies the following three prop-
erties: P (γk | γi, γj) ≥ 0, P (γk | γi, γj) = P (γk | γj , γi),

∑
γk∈G P (γk | γi, γj) =

1.
Since we have a system of quadratic equations, there could be multiple sta-

tionary solutions x. Based on the phenotype distribution f we can investigate
which of these solutions is correct, requiring S>x = f . Hence, we need to solve
the following system of equations:{

x>Px = x,

S>x = f .
(3.14)

To compute a solution x that satisfies (3.14) we are first going to rewrite this
system of quadratic equations as:

{
x>Px = x

S>x = f
⇒


(
x>P − I

)
x = 0

S>x = f
⇒
[
x>P − I
S>

]
︸ ︷︷ ︸

A(x)

x =
[

0
f

]
︸ ︷︷ ︸

b

,

(3.15)
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where I ∈ Rm×m is the identity matrix and 0 ∈ Rm×1 is the zero vector. In short,
we thus get

A(x)x = b, (3.16)

with A(x) ∈ R(m+n)×m, x ∈ Rm×1, and b ∈ R(m+n)×1. Since this is not a linear
but an implicit equation, an iterative approximate procedure is proposed. For given
x0 let x(n) for n = 1, 2, ... be determined by

A(x(n−1))x(n) = b. (3.17)

In Section 3.3.5 we will make this more explicit. To this end, since there are
different methods possible, let us first provide the one that will be used.

3.3.4 QR-factorization

To support iteration (3.17), if we regard the matrix A independent of x(n−1), then
we just have a system of linear equations. Normally, a linear system can easily
be solved by applying Gaussian elimination. However, in this specific case an
exact solution may not exist, since this system has more equations than unknown
variables. Accordingly, we propose to solve a least squares problem. Let r =
Ax(n) − b, or simply r = Ax − b, be the vector of residuals. Next, we want to
find a solution x that minimizes the sum of squared residuals:

min
x∈Rm

{
‖r‖22

∣∣∣ r = Ax− b
}
. (3.18)

Different methods are known to solve least squares problems. One of them, based
upon QR factorization [114], will be applied here. If the matrix A has full column
rank, then it can be decomposed into the matrices Q and R (A = QR), such
that the matrix Q ∈ R(m+n)×(m+n) has orthonormal columns and the matrix
R ∈ R(m+n)×m is upper triangular (see Figure 3.5). In Section 3.8 (Appendix II)
we prove that the matrix A has indeed full column rank and hence the residuals
can be written as r = QRx− b.

Define r̄ = Q>r as a linear transformation of the residuals. Then minimizing
‖r̄‖22 is equivalent to minimizing ‖r‖22, since

‖r̄‖22 =
(
Q>r

)>
Q>r = r>QQ>r = r>r = ‖r‖22 . (3.19)

Moreover, note that r̄ = Rx−Q>b and hence (3.18) is equivalent to

min
x∈Rm

{
‖r̄‖22

∣∣∣ r̄ = Rx−Q>b
}
. (3.20)

We can find an exact solution to (3.20) by exploiting the specific structure of R.
Partition R into an upper triangular matrix R1 and a zero matrix. Similarly, we can
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Figure 3.5: QR decomposition of the matrix A, where Q is a orthogonal matrix and R is
an upper triangular matrix. Matrices Q and R can be partitioned, such that Q = [Q1 Q2],
R> = [R1 0], and R1 is an upper triangular matrix.

A

=

Q

Q2Q1

R

R1

0

write Q = [Q1 Q2] and r̄> =
[
r̄>1 r̄

>
2

]
(see Figure 3.5). Hence, r̄ = Rx − Q>b

can be split into two sets of equations

{
r̄1 = R1x−Q>1 b,
r̄2 = −Q>2 b,

(3.21)

and (3.20) is equivalent to

∥∥∥−Q>2 b∥∥∥2

2
+ min
x∈Rm

{
‖r̄1‖22

∣∣∣ r̄1 = R1x−Q>1 b
}
. (3.22)

Note that Q>1 b = R1x consist of m equations with m unknowns and can be solved
by backward substitution since R1 is an upper triangular matrix. Or by multiplying
both side by R−1

1 : x = R−1
1 Q>1 b. Hence, the second part of (3.22) is equal to

zero and therefore the sum of squared residuals is equal to

‖r̄‖22 =
∥∥∥Q>2 b∥∥∥2

2
. (3.23)

This implies that if
∥∥∥Q>2 b∥∥∥2

2
= 0 all equations Ax = b are satisfied. Moreover the

minimizer of (3.20) is equal to

x = R−1
1 Q>1 b. (3.24)
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3.3.5 Iterative procedure

In Section 3.3.4 we included x(n−1) in A. This suggests the following iterative
procedure: choose an initial solution x(0) and find a new solution x(1) by solving
the least square problem described in the previous section. Hence, a solution to
equations (3.17) can be found by iteratively solving

x(n) = R1
(
x(n−1)

)−1
Q1
(
x(n−1)

)>
b, n = 1, 2, ..., (3.25)

where the sum of squared residuals equals

‖r‖22 =
∥∥∥∥Q2

(
x(n−1)

)>
b

∥∥∥∥2

2
, n = 1, 2, .... (3.26)

A solution x(n) is defined satisfactory when
∥∥∥x(n) − x(n−1)

∥∥∥
1
< 10−6. Hence, we

consider (3.16) to be solved numerically.

3.3.6 Convergence of the algorithm
To support the iterative procedure from Section 3.3.6 we have performed numerical
experiments for different blood group systems (e.g., ABO, Rhesus, Kell, Duffy,
Kidd, MNS), phenotype distributions, and populations (e.g., European, African).
We took x(0) ∈ X0, where X0 is the set of all identity vectors of size |G|. This
means that every starting position x(0) represents an initial population with only
one genotype. Despite these extreme starting points all experiments converged
to the same stationary solution x within 37 iterations. For the Rhesus system,
which will be presented in Section 3.5.1 there are 36 starting points. In Figure 3.6,
the fasted, slowest, and average convergence rates from these experiments for the
Rhesus system are shown.

3.4 Effectiveness of recruiting next of kin for blood donor-
ship

The effectiveness of recruiting a next of kin for donorship for phenotype ϕ ∈ F
is defined as the difference between the conditional probability that a relative of a
donor has the same phenotype ϕ as the donor and the probability that an arbitrary
individual in the population has this phenotype, i.e.,

Eϕ = P (relative ϕ | donor ϕ)− P (individual ϕ) , ∀ϕ ∈ F . (3.27)

We would like to rewrite this equation into the known phenotype distribution (f),
the heredity matrix (P ), and the stationary genotype distribution (x).
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Figure 3.6: Convergence speed of the iterative procedure for the Rhesus blood group
system.

0 10 20 30 40

0

0.1

0.2

0.3

Iteration number (n)

su
m

of
sq

ua
re

d
re

sid
ua

ls
(‖
r

‖2 2
)

slowest
average
fastest

The conditional probability in equation (3.27) is, according to Bayes’ rule, equal
to

P (relative ϕ | donor ϕ) = P (donor ϕ ∩ relative ϕ)
P (donor ϕ) ,

= 1
fϕ
P (donor ϕ ∩ relative ϕ) .

(3.28)

Since every genotype is related to a single phenotype the probability that the donor
and its relative have the same phenotype can be computed by summing over all
combinations of genotypes that they can have. Hence, if we denote the genotype
of the donor by γi ∈ G and the genotype of its relative by γj ∈ G, then we should
sum over those combinations of genotypes for which Siϕ and Sjϕ are both equal
to one:

P (relative ϕ | donor ϕ) = 1
fϕ

∑
γi∈G
Siϕ=1

∑
γj∈G
Sjϕ=1

P (relative γj ∩ donor γi) . (3.29)

Applying Bayes’ rule for the second time gives

P (relative ϕ | donor ϕ) = 1
fϕ

∑
γi∈G
Siϕ=1

∑
γj∈G
Sjϕ=1

[
P (donor γi) · P (relative γj | donor γi)

]
,

= 1
fϕ

∑
γi∈G
Siϕ=1

∑
γj∈G
Sjϕ=1

[
xγi · P (relative γj | donor γi)

]
,
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Relative P (relative γj | donor γi)

Sibling
∑
γv∈G

∑
γw∈G

P (γj | γv, γw) · xγvxγwP (γi | γv, γw)
xγi

Parent
∑
γv∈G

xγjxγvP (γi | γj , γv)
xγi

Child
∑
γv∈G

xγvP (γi | γj , γv)

Uncle / Aunt
∑
γv∈G

[
P (sibling γj | parent γv) · P (parent γv | donor γi)

]

Nephew / Niece
∑
γv∈G

[
P (child γj | sibling γv) · P (sibling γv | donor γi)

]

Grandparent
∑
γv∈G

[
P (parent γj | parent γv) · P (parent γv | donor γi)

]
Table 3.2: Probability that a relative of a donor has genotype γj given that the donor
has genotype γi.

(3.30)

where P [relative γj | donor γi] can be expressed in terms of P and x according
to the relation between the donor and its relative, as is indicated in Table 3.2.
The second probability in equation (3.27) equals the frequency of ϕ in the general
population. Hence, the effectiveness of recruiting a next of kin for donorship for
phenotype ϕ ∈ F is equal to

Eϕ = 1
fϕ

∑
γi∈G
Siϕ=1

∑
γj∈G
Sjϕ=1

[
xγi · P (relative γj | donor γi)

]
− fϕ. (3.31)

3.5 Application to multiple blood groups
In Section 3.2 we illustrated the effectiveness of a targeted donor recruitment
strategy for siblings and parents of donors with particular ABO, D blood groups.
To demonstrate the generic feature of our mathematical approach we analyse the
more complicated Rhesus blood group system. Patients with sickle cell disease
or thalassemia require regular (life-long) blood transfusions. To prevent these
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Relative Effectiveness
minimum average maximum

Sibling 0.197 0.275 0.361
Parent 0.068 0.156 0.245
Child 0.068 0.156 0.245
Uncle / Aunt 0.028 0.078 0.122
Nephew / Niece 0.028 0.078 0.122
Grandparent 0.034 0.078 0.122

Table 3.3: Effectiveness of recruiting new donors among relatives of donors with a known
Rh phenotype. Whereas this effectiveness depends on the specific phenotype sought for
we reported a minimum, average and maximum effectiveness measure.

recipients from forming antibodies against foreign RBC antigens, they are matched
for a relatively large number of antigens. However, it is not easy to ensure that
there is a sufficient number of required blood units available. We show how our
generic model can be used to find more donors with the desired blood group
combinations.

3.5.1 Rh blood group system
In contrast to the well known RhD blood group consisting of just 3 genotypes
and 2 phenotypes, the full Rh system consists of 36 different genotypes and 18
different phenotypes. To compute the effectiveness of recruiting relatives of donors
with desired Rh phenotypes, we first have to computed the stationary distribution
based on Rh phenotype probabilities.

We computed these stationary probabilities by solving equations (3.14) via an
iterative procedure (3.25) (see Table 3.4). Next, we can apply use Bayes rule to
compute the effectiveness of recruiting relatives as compared to random individuals
from the general population. In Table 3.3 the calculated effectiveness of recruiting
new donors among relatives is presented. Dependent of the family relationship
effectiveness changes. Note that the effectiveness is variable, as it is dependent on
the phenotype considered.

3.5.2 Recruitment of special blood groups
In the Netherlands, for some patient groups (e.g. women of reproductive age,
patient with hemoglobinopathies) blood for transfusion is matched for up to thir-
teen antigens. With current recruitment strategies it can be difficult to find
enough donors with particular blood groups combinations. Moreover, due to the
fact that the donor population in the Netherlands is mainly Caucasian, the pa-
tient population increasingly diversifying, and blood group frequencies differ be-
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Phenotype f Genotype x

DCce 0.349 dce /DCe 0.326
Dce /DCe 0.022
dCe /Dce 0.001

DCe 0.185 DCe/DCe 0.176
dCe /DCe 0.009

ce 0.151 dce /dce 0.151

DCcEe 0.133 DcE/DCe 0.119
dcE /DCe 0.010
dCe /DcE 0.003
dce /DCE 0.002
dCE/Dce 0.000
Dce /DCE 0.000

DcEe 0.118 dce /DcE 0.110
Dce /DcE 0.007
dcE /Dce 0.001

DcE 0.023 DcE/DcE 0.020
dcE /DcE 0.003

Dce 0.021 dce /Dce 0.020
Dce /Dce 0.001

cEe 0.009 dcE /dce 0.009

Cce 0.008 dCe /dce 0.008

DCEe 0.002 DCe/DCE 0.002
dCe /DCE 0.000

DCcE 0.001 DcE/DCE 0.001
DcE/dCE 0.000

other 0.000

Table 3.4: Phenotype distribution of the Rh blood group system and the corresponding
genotype distribution computed by the generic mathematical approach.

tween ethnic populations, the likelihood of finding suitable blood units for non-
Caucasian individuals decreases. One of the main differences between pheno-
type frequencies of the Caucasian and African population is located in the so-
called Duffy blood group system. This blood group system is similar to the
ABO blood group system as it consists of six genotypes, four phenotypes F =
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(Fy(a-b-),Fy(a+b-),Fy(a-b+),Fy(a+b+)) and two antigens (Fya, and Fyb). The
phenotype frequencies for the Caucasian and African population are f = (0, 0.18, 0.33, 0.49)
and f = (0.68, 0.06, 0.25, 0.01) respectively [94]. The probability that an African
individual is Fy(a-b-) is 0.68 whereas the probability that a Caucasian individual
has this combination is rare (< 0.0001). Hence, recruiting donors for this spe-
cific blood group randomly within the Caucasian population is virtually impossible.
However, for a donor with this blood group combination the probability that a
sibling has the same combination is 25% if the donor is Caucasian and 83% if the
donor is African.

3.6 Conclusions
The generic mathematical approach described in this chapter allows computing a
stationary genotype distribution for a given set of blood groups, which may even
belong to multiple blood group systems. The input for the model consists of the
phenotype distributions in a population only. This stationary genotype distribution
allows answering a number of interesting questions using elementary statistics.

This chapter was tailored to quantify the effectiveness of targeted recruitment
strategies aiming for relatives of donors with specific blood groups. It shows that
the impact, in terms of the efficiency of targeting the next of kin of donors with
known blood groups as potential new donors, can be substantial.

Recently, another application was found in computing the probability of a blood
group mismatch between mother and fetus during pregnancy. This analysis also
required an estimate of the stationary distribution of genotypes as a basis for further
calculations. The approach outlined in this chapter therefore seems promising for
answering various question related to genetic counseling.
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3.7 Appendix I

Sets

A Set of antigens
L Set of alleles
H Set of haplotypes (index h)
G Set of genotypes, with cardinality |G| = m (index γ)
F Set of phenotype, with cardinality |F| = n (index ϕ)

Matrices

S ∈ {0, 1}m×n Matrix mapping blood group genotypes to blood group
phenotypes

P ∈ Rm×m×m Heredity matrix, with P (γk | γi, γj) the probability that
two parents with genotypes γi and γj conceive a child
with genotype γk

A ∈ R(m+n)×m Matrix used for the linearization of a system of quadratic
equations, (A> = [x>P − I S>])

I ∈ Rm×m Identity matrix
Q ∈
R(m+n)×(m+n)

Orthogonal matrix used for QR factorization, Q =
[Q1 Q2], Q1 ∈ R(m+n)×m, Q2 ∈ R(m+n)×n

R ∈ R(m+n)×m Upper triangular matrix used for the QR decomposition,
R> = [R1 0], R1 ∈ Rm×m, 0 ∈ Rn×m

Vectors

x ∈ Rm×1 Column vector representing a stationary genotype distri-
bution

f ∈ Rn×1 Column vector representing the distribution of phenotypes
in the general population

vh ∈ Rm×1 Column vector containing the probabilities that a parent
transmits haplotype h ∈ H to the child

b ∈ R(m+n)×1 Column vector used for the linearizion of a system of
quadratic equations (b> = [0 f ])

r ∈ R(m+n)×1 Column vector for the residuals r = Ax− b

The symbols H′, G′, B, em, π, and a are omitted here, as they will be defined
and only used in Section 3.8 (Appendix II).
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3.8 Appendix II

In this appendix we fix ourselves to one and the same male genotype distribution
x (as to be conceived for one iteration step as x = x(n−1)). We only include x
in the representation of H′(x) and G′(x) as these can be explicitly different for
different x.

Now, for given x, let A ∈ R(m+n)×m be defined as follows:

A =
[
x>P − I
S>

]
, (3.32)

where x ∈ Rm×1 is the genotype distribution, P ∈ Rm×m×m is the heredity matrix,
I ∈ Rm×m is the identity matrix, and S ∈ {0, 1}m×n is the matrix mapping blood
group genotypes to blood group phenotypes. It needs to be shown that A has full
column rank. Let B ∈ Rm×m be the matrix (B> = x>P ), with

Bjk =
∑
γi∈G

P (γk | γi, γj)xγi , (3.33)

where Bjk can be interpreted as the probability that a mother with genotype γj
conceives a child with genotype γk, given that the genotype distribution of the
father equals x. Clearly, B is a stochastic matrix.

We can now regard B as a transition matrix of a Markov chain with state
space G. Hence, purely abstractly, the outcomes of the Markov chain can be
seen as keeping track of the genotype distribution of mothers, which are based on
the heredity matrix P and a fixed genotype distribution x. (For the simple RhD
example, Table 3.5 shows Markov chains for different x.)

Let H′(x) ⊆ H be defined as the set of haplotypes that a father may transmit
to his child, or differently stated: for every haplotype h ∈ H′(x) there exists a
genotype γi ∈ G, γi = {h, ·} and/or γi = {·, h}, such that xγi > 0. This implies
that the following two conditions should be satisfied:

∑
γi∈G:h∈γi

xγi > 0 if h ∈ H′(x),∑
γi∈G:h∈γi

xγi = 0 if h /∈ H′(x).
(3.34)

As a consequence, roughly speaking, the haplotypes that are not present in the male
population will eventually disappear. More precisely, the Markov chain, depending
on the given genotype distribution x, will always have a single closed class given
by

G′(x) =
{
γk ∈ G

∣∣ γk = {hk1 , hk2}, hk1 , hk2 ∈ H′(x)
}
. (3.35)
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Table 3.5: Markov chains for the RhD example.

x
dd Dd DD
[ ]1 0 0

dd Dd DD
[ ]0 1 0

dd Dd DD
[ ]0 0 1

dd Dd DD
[ ]1
2 0 1

2

B

 1 0 0
1
2

1
2 0

0 1 0


 1

2
1
2 0

1
4

1
2

1
4

0 1
2

1
2


 0 1 0

0 1
2

1
2

0 0 1


 1

2
1
2 0

1
4

1
2

1
4

0 1
2

1
2



dd

DdDD

dd

DdDD

dd

DdDD

dd

DdDD

H′(x) {d} {d,D} {D} {d,D}

G′(x) {dd} {dd,Dd,DD} {DD} {dd,Dd,DD}

Note that for x1, x2, two fixed genotype distributions, and a ∈ (0, 1) the following
relation holdsH′ (ax1 + (1− a)x2) = H′ (x1)∪H′ (x2), but G′ (ax1 + (1− a)x2) =
G′ (x1) ∪ G′ (x2) is generally not true (see also Table 3.5).

Since the Markov chain has a single closed class, there exists a unique stationary
distribution π satisfying{

B>π = π

e>mπ = 1
⇒

[
B> − I
e>m

]
π =

[
0
1

]
,

where em is the all ones vector of length m. What remains, is to use this statement
to proof the full column rank property of A.

The only candidate vector y (up to a constant), such that Ay = 0, is y = π,
the stationary distribution of the matrix B. Now note that column sum of each
column of S ∈ {0, 1}m×n is at least one (i.e., S>en ≥ em) and therefore S>y = 0
if y = 0. Hence, the only vector satisfying Ay = 0 is y = 0, which implies that
the matrix A has full column rank.
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CHAPTER 4

Blood groups: a binary representation

This chapter is a preliminary chapter for Chapters 5, 6, and 7. It introduces a
binary representation for general blood groups (i.e., beyond the ABO, Rhesus-
D blood groups), which provides an efficient way to determine the compatibility
between blood groups of donors and transfusion recipients. In addition, it presents
how the blood group distribution can be computed for an arbitrary set of antigens.

4.1 Introduction

Currently, the International Society of Blood Transfusion (ISBT) recognizes 38
different blood group systems, containing more than 300 different blood group
antigens [108]. These antigens are surface markers on the outside of the RBC
membrane and determine the blood group of an individual. As each antigen is
either present or absent, the number of different blood groups is theoretically at
least

2× 2× 2× ...× 2︸ ︷︷ ︸
300 times

= 2300. (4.1)

To illustrate the magnitude of this number, we might compare it to the number of
particles on earth and conclude that the number of possible blood groups exceeds
the number of particles!

In practice, however, the importance for matching on a specific antigen depends
on the immunogenicity of this antigen, which is defined as the ability to provoke an
immune response in the human body. More specifically, exposure to RBCs carrying
antigens not present on the RBCs of a recipient itself might elicit an immune
response in some individuals. The recipient develops antibodies against the foreign
antigens and becomes immunized (alloimmunization). These antibodies could
destroy the donor’s RBCs during a subsequent blood transfusion, if the donor’s
RBCs carry the cognate antigen. In a similar way, antibodies might also cause
problems during pregnancy. Most antibodies are small enough to pass the placenta
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Table 4.1: Blood group systems considered in this thesis and the corresponding antigens
that belong to these blood groups systems. Antigens k, M, and N are excluded, as we regard
them of minor clinical importance (high/low-incident antigens or antigens corresponding
to cold antibodies).

Blood group system ABO Rhesus Kell Duffy Kidd MNS

Antigens 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A B D C c E e K k Fya Fyb Jka Jkb M N S s

Antigens excluded ∗ ∗ ∗

and enter the bloodstream of the fetus, where they can destroy the fetus’s RBCs.
Alloimmunization due to a blood transfusion can be prevented by selecting a donor,
whose RBCs lack the antigens that are not present on the RBCs of the recipient.
Though, alloimmunization as a result of pregnancy is hard to prevent. Only ABO
incompatibility between mother and child and anti-D immunoglobulin are known
to reduce the probability of becoming immunized. However, no immunoglobulins
have been developed against non-D antigens [135].

The mathematical models presented in this thesis could theoretically be ap-
plied to any number of antigens. Nevertheless, the numerical experiments will
be limited to the six major blood group systems containing the fourteen clinically
most relevant antigens, as presented in Table 4.1. This set of fourteen antigens
coincides with the antigens considered in the current blood transfusion practice,
both in the Netherlands and worldwide.

The remainder of this chapter is organized as follows. In Section 4.2, we first
introduce a binary representation for the well-known ABO blood groups, followed
by a binary representation for general blood groups in Section 4.3. This binary rep-
resentation provides a clear and unique way to represent blood groups, irrespective
of the number of antigens considered. Finally, in Section 4.4, we compute the
blood group distribution for an arbitrary set of antigens.

4.2 ABO blood groups

The ABO blood groups are determined by just two antigens, A and B, which are
either present or absent on the surface of the individual’s RBCs. With these two
antigens four different blood groups can be formed: O, A, B, and AB. Each blood
group can also be represented by a set, whose elements are the antigens that are
present on the RBCs. The empty set { } refers to blood group O (lacking both
antigens A and B), {A} refers to blood group A (lacking antigens B),{B} refers to
blood group B (lacking antigens A), and {A,B} refers to blood group AB (lacking
no antigens), see Table 4.2. The set of ABO blood groups can then be presented
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Table 4.2: Two mathematical representations of the ABO blood groups: a set represen-
tation (I) and a binary vector representation (i).

O A B AB

I { } {A} {B} {A,B}
i> [0 0] [1 0] [0 1] [1 1]

as

B = {{ }, {A}, {B}, {A,B}} , (4.2)

which is equal to the power set of the set of antigens, i.e., B consists of all possible
subsets of the set {A,B}.

With respect to blood group matching, however, it is more convenient to
describe blood groups by binary vectors instead of sets of antigens, as this simplifies
the comparison of blood groups. To illustrate this binary vector representation,
introduce for each blood group I ∈ B a binary vector i = [i1 i2]> with

i1 =
{

1 if A ∈ I,
0 if A 6∈ I,

and i2 =
{

1 if B ∈ I,
0 if B 6∈ I.

(4.3)

Note that each binary vector corresponds to a unique decimal number (i.e., the
binary vector representations of blood groups O, A, B, and AB refer to the binary
numbers 00, 01, 10, and 11 respectively, which are equal to the decimal numbers
0, 1, 2, and 3). The ABO blood groups can thus be ordered according to their
binary vector representation.

4.2.1 ABO compatibility
The general principle of blood group matching is based on the compatibility be-
tween the blood groups of donors and transfusion recipients. Let i = [i1 i2]> be
the blood group of a donor and let j = [j1 j2]> be the blood group of a transfusion
recipient. Their blood groups are called compatible if all antigens that are present
on the RBCs of the donor are also present on the RBCs of the recipient (donor to
recipient), or similarly, all antigens that are absent on the RBCs of the recipient
are also absent on the RBCs of the donor (recipient to donor), i.e.,

jk =
{

1 if ik = 1,
0 or 1 if ik = 0,

and ik =
{

0 or 1 if jk = 1,
0 if jk = 0,

(4.4)

with k ∈ {1, 2}. Hence, the compatibility between blood groups of donors and
transfusion recipients can be determined by an element-wise comparison of two
binary vectors, as elaborated in Table 4.3a. The traditionally used compatibility
matrix, presented in Table 4.3b, is thus no longer required.
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Table 4.3: Two ways to determine the compatibility between ABO blood groups: by an
element-wise comparison of binary vectors (i ≤ j) and by using a compatibility matrix
(Cij).

(a) Element-wise comparison of binary vectors.

j> (donor to recipient) i> (recipient to donor)

[0 0] [0 0], [1 0], [0 1], [1 1] [0 0]
[1 0] [1 0], [1 1] [0 0], [1 0]
[0 1] [0 1], [1 1] [0 0], [0 1]
[1 1] [1 1] [0 0], [1 0], [0 1], [1 1]

(b) Compatibility matrix.

i>/j> [0 0] [1 0] [0 1] [1 1]

[0 0] 1 1 1 1
[1 0] 0 1 0 1
[0 1] 0 0 1 1
[1 1] 0 0 0 1

Remark 4.1 (Blood groups). In the remainder of this thesis, the vectors i and j are
reserved for the blood groups of the donor and transfusion recipient, respectively,
i.e.,

i: blood group donor,
j: blood group recipient.

4.3 General blood groups

To represent general blood groups, let A = {a1, a2, ..., an} be a finite set of
antigens and let B = {I1, ..., Im} be a finite set of blood groups, where n =
|A| represents the number of antigens considered and m = |B| represents the
number of blood groups considered. A blood group I ∈ B is defined as a unique
combination of antigens ak ∈ A that are either present (ak ∈ I) or absent (ak 6∈ I)
on the surface of an RBC. An individual with blood group I ∈ B is called ak-
positive if antigen ak ∈ A is present on the individual’s RBCs and ak-negative if
this antigen is absent. Due to the dichotomous structure of an antigen (i.e., it is
either present or absent) the set of blood groups B that can be composed from
antigens ak ∈ A is equal to the power set of A:

B = {{ } , {a1} , {a2} , {a1, a2} , ..., {a1, .., an}} . (4.5)

This implies that the cardinality of the set B grows exponentially with the number
of antigens considered (i.e., m = 2n), which may complicate computations when
n is large.

4.3.1 Binary representation

From a mathematical and computational point of view, it is more convenient to
describe a blood group I ∈ B by a binary vector instead of a set of antigens. This
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largely simplifies the mathematical representation, as already illustrated in Section
4.2 for the ABO blood groups. Therefore, for each blood group I ∈ B a binary
vector i = [i1 i2 · · · in]> is introduced with

ik =
{

1, if ak ∈ I (individual is ak-positive),
0, if ak 6∈ I (individual is ak-negative),

(4.6)

for all k ∈ {1, ..., n}. This binary representation of a blood group is particularly
useful to investigate whether two blood groups are compatible, but also provides
an intelligent way to order them, as specified in Section 4.3.2.

Remark 4.2 (Set of blood groups). As each set of antigens I ∈ B corresponds to
a unique binary vector i ∈ {0, 1}n, in the remainder of this thesis the set B is used
to refer to a set of blood groups, whose elements can be either sets of antigens
(I ∈ B) or binary vectors (i ∈ B).

4.3.2 Ordered set of blood groups

Colexicographical order

The set of binary vectors of length n can be ordered in multiple ways, of which the
lexicographical order would probably be the most obvious one. Nevertheless, we
prefer to order them differently, into a colexicographical order. The colexicograph-
ical order (expressed as ‘�’) formally states that a vector i ∈ B precedes a vector
j ∈ B if for some k ∈ {1, ..., n} it holds that ik < jk and i` = j` for all ` > k.
The colexicographically ordered set of binary vectors of length n is therefore given
by

(B,�) =




0
0
...
0

 ,


1
0
...
0

 ,


0
1
...
0

 ,


1
1
...
0

 , ...,


1
1
...
1




a1
a2
...
an

0 1 2 3 2n − 1

. (4.7)

The same order can be obtained by transforming each binary vector i = [i1 i2 · · · in]>
into a decimal number and ordering these decimal numbers from 0 to 2n − 1.

Product order

In contrast to the colexicographical order, which belongs to the class of total
orders, the so-called product order belongs to the class of partial orders, implying
that there might not exist a precedence relation between some pairs of vectors
i, j ∈ B. The product order (expressed as ‘≤’) formally states that
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[0]

[1]

[0 0]

[0 1][1 0]

[1 1]

[0 0 0]

[0 0 1]
[0 1 0]

[1 0 0]

[1 0 1]
[1 1 0] [0 1 1]

[1 1 1]

level 0

level 1

level 2

level 3

Figure 4.1: Hasse diagram of the partially ordered set of blood groups (B,≤) for n =
1, 2, 3.

• i precedes (or coincides with) j, if ik ≤ jk for all k ∈ {1, ..., n},

• j precedes (or coincides with) i, if jk ≤ ik for all k ∈ {1, ..., n},

• i and j are incomparable otherwise,

for each pair of vectors i, j ∈ B. The partially ordered set (B,≤) can be visualized
by a Hasse diagram; an upward oriented directed graph with vertex set B and edge
set {[i, j] ∈ B × B | i ≤ j, ‖i‖1 + 1 = ‖j‖1}, as illustrated in Figure 4.1 for
n = 1, 2, 3. In other words, each vector i ∈ B is assigned to a level based on the
number of ones appearing in this vector, and comparable vectors are connected by
an edge if they are assigned to consecutive levels.

4.3.3 Blood group compatibility

The partially ordered set (B,≤) and the corresponding Hasse diagram appear to be
perfectly suited to describe the compatibility between the blood groups of donors
and transfusion recipients. A match between a donor with blood group i ∈ B and
a transfusion recipient with blood group j ∈ B is called

• identical, if all antigens present on the RBCs of the donor are also present
on the RBCs of the recipient and all antigens absent on the RBCs of the
donor are also absent on the RBCs of the recipient (i.e., ik = jk for all
k ∈ {1, ..., n}),

• compatible, if all antigens present on the RBCs of the donor are also present
on the RBCs of the recipient, or similarly, if all antigens absent on the RBCs
of the recipient are also absent on the RBCs of the donor (i.e., ik ≤ jk for
all k ∈ {1, ..., n}),
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• incompatible, if there exists at least one antigen present on the RBCs of the
donor, but absent on the RBCs of the transfusion recipient (i.e., ik > jk for
some k ∈ {1, ..., n}).

Remark 4.3 (Compatibility matrix). The compatibility between the blood groups
of a donor with blood group i ∈ B and transfusion recipient with blood group
j ∈ B can be determined by an element-wise comparison of these binary vectors.
The matrix C ∈ {0, 1}m×m, with

Cij =
{

1 if i ≤ j,
0 otherwise,

(4.8)

for all i, j ∈ B, which was previously used to model the compatibility between
blood groups [29, 35, 56, 60, 132], is no longer required. This substantially reduces
the computational complexity when general blood groups are considered, as the
number of elements in this matrix grows exponentially with the number of antigens
considered (i.e., m2 = 4n).

4.4 Blood group distribution
As stated in Section 4.3, a blood group I ∈ B is defined as a unique combination
of antigens a ∈ A that are either present or absent on the surface of the RBCs.
Let fa(A) indicate the probability that a particular antigen is present and 1 −
fa(A) indicate the probability that a particular antigen is absent, then the relative
frequency of a blood group I ∈ B would simply be a product of these probabilities,
i.e.,

fI(A) 6=
( ∏
a∈I

fa (A)
)
·
( ∏
a6∈I

(1− fa (A))
)

(4.9)

if these probabilities are mutually independent. This relation of mutual indepen-
dence does, however, not hold for antigens belonging to the same blood group
system. The distribution of antigens within a blood group system has, therefore,
first to be determined for each system separately. These antigen distributions can
be found in [94] (for convenience also included in Section 4.5, Appendix I), but
still have to be aggregated based upon the specific set of antigens considered.

Let Sk be a set containing the antigens that belong to blood group system k.
Define Ak = A ∩ Sk and Ik = I ∩ Sk. The sets A and I are both partitioned
into mutually disjoint sets, such that A = ∪kAk and I = ∪kIk. The relative
frequency of Ik can be computed by the following formula:

fIk(Ak) =
∑
L∈Uk

fL(Sk) (4.10)
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where Uk =
{
Ik ∪ T

∣∣∣ T ∈ P {Sk\Ak}}. Finally, as antigens between blood
group systems are mutually independent, the relative frequencies of antigen com-
binations within blood group system are multiplied to obtain the relative frequency
for blood group I ∈ B, i.e.,

fI(A) =
∏
k

fIk(Ak), (4.11)

as elaborated in Example 4.1.
These formulas will thoroughly be used in Chapter 7 as to compute antigen

distributions for more than a thousand different matching strategies.

Example 4.1 (Relative frequency of a blood group). Consider the following set of
antigens A and let a specific blood group I ∈ P (A) be given by:

A =
{
{A,B}︸ ︷︷ ︸
A1

| {D,C,E}︸ ︷︷ ︸
A2

| {K}︸︷︷︸
A3

| {Fya}︸ ︷︷ ︸
A4

| { }︸︷︷︸
A5

| {S, s}︸ ︷︷ ︸
A6

}
,

I =
{
{ }︸︷︷︸
I1

| {D,E}︸ ︷︷ ︸
I2

| { }︸︷︷︸
I3

| {Fya}︸ ︷︷ ︸
I4

| { }︸︷︷︸
I5

| {s}︸︷︷︸
I6

}

respectively, which are both partitioned into six sets, one for each blood group
system. The relative frequency of blood group I is equal to

fI(A) = fI1(A1) × fI2(A2) × fI3(A3) × fI4(A4) × fI5(A5) × fI6(A6)

= 0.44 × 0.14 × 0.91 × 0.66 × 1 × 0.45

= 0.017,

where fIk(Ak), k ∈ {1, ..., 6}, is computed by equation (4.10).

Remark 4.4 (Blood group distribution). In this thesis, we assume that the distri-
bution of blood groups in the donor and transfusion recipient population are both
equal to the distribution of blood groups in a Caucasian population (a population
consisting of individuals with European ancestors) [94]. However, all mathematical
models presented can also be applied for other blood group distributions. Moreover,
the distribution of blood groups in the donor and transfusion recipient population
might actually differ.
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4.5 Appendix I
This appendix contains antigen distributions for the six blood group systems con-
sidered in this thesis: ABO, Rhesus, Kell, Duffy, Kidd, and MNS. Note that for the
Rhesus and MNS blood group systems, not all antigen combinations are included,
since these do not exsist and are, therefore, also not included in [94]. Antigen
combinations classified as ’rare’ are assumed to have a relative frequency of zero.

Table 4.4: Relative frequency of antigen combinations in a Caucasian population for the
ABO, Rhesus, Kell, Duffy, Kidd, and MNS blood group systems. This table is based on
tables presented in [94], but extended with the columns ’set representation’ and ’binary
representation’.

Blood group
system

Specific
name

Set repre-
sentation

Binary rep-
resentation

Relative
frequency

ABO

O { } [0 0] 0.44
A {A} [1 0] 0.43
B {B} [0 1] 0.09
AB {A,B} [1 1] 0.04

Rhesus

rr {c, e} [0 0 1 0 1] 0.15
r”r” {c,E} [0 0 1 1 0] rare
r”r {c,E, e} [0 0 1 1 1] 0.01
r’r’ {C, e} [0 1 0 0 1] rare
ryry {C,E} [0 1 0 1 0] rare
r’ry {C,E, e} [0 1 0 1 1] rare
r’r {C, c, e} [0 1 1 0 1] 0.01
r”ry {C, c,E} [0 1 1 1 0] rare
r’r” {C, c,E, e} [0 1 1 1 1] rare
R0r {D, c, e} [1 0 1 0 1] 0.02
R2R2 {D, c,E} [1 0 1 1 0] 0.02
R2r {D, c,E, e} [1 0 1 1 1] 0.12
R1R1 {D,C, e} [1 1 0 0 1] 0.19
RzRz {D,C,E} [1 1 0 1 0] rare
R1Rz {D,C,E, e} [1 1 0 1 1] 0.00
R1r {D,C, c, e} [1 1 1 0 1] 0.35
R2Rz {D,C, c,E} [1 1 1 1 0] 0.00
R1R2 {D,C, c,E, e} [1 1 1 1 1] 0.13

Kell

{ } [0 0] rare
{K} [1 0] 0.00
{k} [0 1] 0.91
{K, k} [1 1] 0.09

continued on next page
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continued from previous page
Blood
group
system

Specific
name

Set repre-
sentation

Binary rep-
resentation

Relative
frequency

Duffy

{ } [0 0] rare
{Fya} [1 0] 0.17{

Fyb
}

[0 1] 0.34{
Fya,Fyb

}
[1 1] 0.49

Kidd

{ } [0 0] rare
{Jka} [1 0] 0.26{

Jkb
}

[0 1] 0.23{
Jka, Jkb

}
[1 1] 0.50

MNS

{M} [1 0 0 0] rare
{N} [0 1 0 0] rare
{M,N} [1 1 0 0] rare
{M,S} [1 0 1 0] 0.06
{N, S} [0 1 1 0] 0.01
{M,N, S} [1 1 1 0] 0.04
{M, s} [1 0 0 1] 0.08
{N, s} [0 1 0 1] 0.15
{M,N, s} [1 1 0 1] 0.22
{M,S, s} [1 0 1 1] 0.14
{N, S, s} [0 1 1 1] 0.06
{M,N, S, s} [1 1 1 1] 0.24



CHAPTER 5

A microscopic mathematical description for
optimal blood issuing

5.1 Introduction

5.1.1 Motivation

Blood service organizations collect blood from donors and, after rigorous testing
and processing, fractionate it into red blood cells (RBCs), platelets and plasma.
RBCs and platelets have limited shelf lives and have to be discarded once passing
their shelf lives. A blood bank is responsible for an adequate supply of blood (blood
components) to hospitals. A shortage in supply may put the lives of patients at
risk. Hence, blood banks usually keep a sizable safety stock to avoid such an event.
However, as RBC units are perishable, too much stock on hand increases outdating
imposing additional costs to the system. Moreover, as these blood components
are drawn from voluntary non-remunerated donors, whose main motivation is to
help patients, outdating should be prevented.

Blood banks issue items according to hospital orders. Hospitals do not specify
the age or the distribution of age of items in their orders, however, receiving fresher
RBC units reduces outdating at hospitals. In addition, recent studies show that
transfusing fresh blood may lead to an improvement of patient outcomes and
prospective studies are currently being performed to check whether fresh RBCs are
clinically preferred for certain patient groups [39].

5.1.2 Literature

Inventory management of perishable products is a well-studied topic within the
field of Operations Research with over a hundred papers in the last decades, see for
example [4, 50, 62, 79] for a review on this topic. Also the inventory management
of blood products garners much attention itself and in the last years three review
papers about this topic appeared [7, 83, 86].

57
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Literature on inventory management of perishable products often assumes that
replenishment is controllable, which implies that products can be produced, or in
case of a blood bank, donors can be invited to donate. Moreover, to prevent
outdating items are often issued according to a FIFO policy. In fact, a FIFO issuing
policy does not only prevent outdating, but also shortages as the probability that
the inventory runs empty decreases when outdating decreases.

An important difference between inventory management of RBC units and
other perishable products is that the replenishment is less controllable, because the
inputs to the inventory (i.e. donations) are stochastic. To consider the stochastic
behavior in the blood inventory system, it can be regarded as a queuing system.

In most of these queuing models, it is assumed that fresh RBC units (donations)
and requests arrive, one-by-one, according to independent Poisson processes with
rates λ and µ, respectively. The maximum shelf life of an RBC unit is equal to a
finite constant R. Requests are either satisfied according to a predetermined issuing
policy (i.e., FIFO, LIFO, threshold) or lost when the inventory is empty. Under
these assumptions, the inventory of RBC units can be regarded as an M/M/1+D
queue, where the +D at the end of Kendall’s notation (usually referring to the
distribution of customer impatience) stands for the deterministic maximum shelf
life of an RBC unit. Hence, RBC units that are not issued within R days expire
and are removed from the inventory system.

As stated in Sarhangian et al. [101], the assumption of one-by-one arrivals of
donations and requests might seem restrictive and unrealistic in practice. Blood
collection sites transport only once or twice a day the donated whole blood units to
a production center (where they are fractionated into RBC units and other blood
products). Hospitals often request multiple RBC units at the same time to replenish
their inventories. Though, Sarhangian et al. [101] also showed that an M/M/1+D
queuing model provides a very accurate approximation for systems with Poisson
distributed batch donations and Poisson distributed batch requests. Even for non-
Poisson distributed batch arrivals the qualitative observations remained valid.

The queuing model of interest was first introduced by Graves [51], who deter-
mined the stationary distribution of the age of the oldest RBC unit in inventory
under a FIFO issuing policy. This stationary distribution was used to provide an-
alytical expressions for performance measures of the inventory system, i.e., the
probability of shortage, the probability of outdating, the average age of issued
RBC units, and the average number of RBC units in inventory. The M/M/1 +D
queuing model under a FIFO issuing policy was further studied by Kaspi and Perry
[64], Parlar et al. [84], and Sarhangian et al. [101]. They analyzed the so-called
virtual outdating process, which returns the remaining time until the next outdate
occurs, and determined the distributions of the number of RBC units outdated in
a busy period and the number of RBC units short in an idle period.



5.2. Preliminaries 59

5.1.3 Contributions

The main contribution of this chapter to the existing literature is that it provides
a general description and formulation for issuing RBC units upon requests. This
formulation is independent of the number of antigens and blood groups considered
and can thus be applied for general blood groups. In contrast to the papers pre-
sented, we take advantage of the fact that donations and requests arrive according
to independent Poisson processes. We approximate the deterministic maximum
shelf life of an RBC unit by an Erlang distribution. Hence, following Kendall’s
classification, this process can be referred to as an M/M/1 + Erlang queue, which
is equal to a continuous-time Markov chain when the age of the RBC units is part
of the state description. We show that under a fixed issuing policy (i.e., FIFO,
LIFO, threshold) the stationary distribution of the inventory can be computed by
a so-called product form. Moreover, we extend this continuous-time Markov chain
to a continuous-time Markov decision chain by including actions about which RBC
unit to issue.

The remainder of this chapter is organized as follows. First, in Section 5.2,
we discuss preliminary results on blood inventory allocation problem itself. Next,
in Section 5.3, we show that the ageing process of a single RBC unit can be
approximated by a phase-type distribution. Then, in Section 5.4 the inventory
allocation problem, and its structure as a GSMP with actions, will be formulated
as a Markov decision process.

5.2 Preliminaries

The main purpose of this chapter is to transform the blood inventory allocation
problem of which RBC unit to issue for two reasons:

1) to reduce all possible transitions to a small number of neighbouring transi-
tions

2) to come to an iterative and replicable computational scheme.

5.2.1 Inventory allocation problem

This subsection provides a global description for the blood inventory allocation
problem of interest. It behaves like a continuous-time stochastic discrete event
system (with decisions) and describes how the composition of the inventory evolves
over time. For the time being, we assume a FIFO issuing policy and do not
distinguish between different blood groups, implying that the decision about which
RBC unit to issue as to satisfy a particular request is fixed. Later, in Section 5.4
we lift this assumption and elaborate on the decision dimension.
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Assume that donations arrive according to a Poisson process with rate λ and
each donation consists of a single RBC unit. Similarly, assume that requests occur
according to a Poisson process with rate µ and each request consists of a single
RBC unit. When items arrive into inventory, there residual shelf life is set equal
to R. Items that remain in inventory for the entire R time units expire and are
removed from inventory. If no RBC units are present in inventory, when a request
arrives, a shortage occurs. Moreover, no backorders are permitted.

A state, defined as a particular composition of the inventory, can be seen as a
snapshot of the inventory at a specific point in time. It indicates the number of
RBC units in inventory, their blood groups, and their residual shelf lives. Depending
on the state of the inventory three possible events can be distinguished:

• a fresh RBC unit is donated (with rate λ),

– due to which the number of RBC units in inventory increases by one,

• an RBC unit is requested (with rate µ),

– due to which the number of RBC units in inventory either decreases by
one (request satisfied),

– or remains unchanged (request is not satisfied incurring a shortage),

• all RBC units age (linearly with the time spend in inventory),

– due to which the number of RBC units in inventory remains unchanged
– until the residual shelf life of an RBC unit becomes zero, at which point

this unit is removed from inventory, Hence, the number of RBC units
decreases by one.

An action indicates which RBC unit should be selected from inventory to satisfy
a request for an RBC unit with a particular blood group or whether it should be
rejected (introducing a shortage). The system that will be studied in this Chapter
is shown in Figure 5.1.

5.2.2 A Markovian overview
As illustrated by Figure 5.1, at each moment multiple times or clocks can be
running simultaneously: one for the exponential time up to a new donation, one
for the exponential time until a new request, and multiple deterministic ones that
evolve entirely parallel (linear with time) to reflect ageing for each RBC unit in
inventory up to its outdating. This naturally reflects the structure of a so-called
generalized semi-Markov process (GSMP).

Standardly, the concept of a Markov process in discrete-time and continuous-
time are well-known in literature. Loosely speaking, a stochastic process is said to
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Figure 5.1: Continuous-time stochastic discrete event system for the inventory allocation
problem. RBC units are donated according to a Poisson process with rate λ (circles). RBC
units are requested according to a Poisson process with rate µ (squares). Upon arrival of
a request either the oldest RBC unit is issued from inventory to satisfy this request (green
square) or no RBC unit is selected, incurring a shortage (red square). Finally, the RBC
units in inventory ages until they are either issued or expire
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be Markovian, and is formally called a Markov process, if the probability distribution
of future states depends only on the present state, independently of the states that
have been visited in the past. This Markovian property appears to apply to many
real-world systems that evolve dynamically in time, including inventory systems.
In discrete-time and continuous-time Markov chains, there is only a single time
component, up to a next state change. This can be

• a fixed time unit (for discrete-time Markov chains),

• an exponential time duration (for continuous-time Markov chains),

• or even a non-exponential time duration (for semi-Markov processes)

The distinctive character of a GSMP is that multiple non-exponential durations can
begin or end at different times. As we will not be using these concepts explicitly
in this chapter, we only give a brief formal description of a DTMC and a GSMP
in Section 5.6, Appendix I. With reference to Remark 5.1, in Figure 5.2 we just
present a schematic overview for conceptualization. In addition, as in line with the
inventory allocation problem, in this figure we also incorporate the possibility of
decisions upon a transition.

In the subsequent sections, the inventory allocation problem will be specified
in a self-contained manner.

Remark 5.1. Figure 5.2 is intended to just present a schematic overview for struc-
turing this chapter. By no means, does it aims to be fully defining. In fact, as
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it turns out after thorough inspection of literature, no unique or fully distinctive
consistent use of the words chain or process are generally found. Other than the
”Markovian property” to relate to the history independence at a given state, the
word ”decision”, in case actions can be involved, and the word ”semi-”, in case
inter-jump times are not given by a fixed time unit (in discrete time) or one or
multiple (general) exponential times (in continuous time).

5.3 Ageing of RBC units

The GSMP, as described in Section 5.2.1, can be transformed into a continuous-
time Markov chain by approximating each non-exponential delay distribution by a
continuous phase-type distribution [80, 91, 131]. The only non-exponential delay
distribution in the GSMP concerns the maximum time that an RBC unit can be
kept in inventory before it expires, which is given by a known parameter R.

First, in Section 5.3.1, a single RBC unit is considered. We argue that the
maximum residual shelf life of an RBC unit can be approximated by a phase-type
distribution, or more precisely, by an Erlang distribution. Next, in Section 5.3.2,
the same approximation is expanded to multiple RBC units. The aggregated phase-
type distributions can be regarded as infinite server tandem queues, used to describe
how the composition of the inventory evolves over time.

Figure 5.2: Relation between a Markov chain (MC), Markov process (MP), semi-Markov
process (SMP), generalized semi-Markov process (GSMP), and their decisional counter
parts: discrete / continuous-time Markov decision process (MDP), semi-Markov decision
process (SMDP), and generalized semi-Markov decision process (GSMDP). Referring to
Remark 5.3 below, this figure is inspired by figures in references [91, 131], but it has not
been presented in this specific way.
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5.3.1 Single RBC unit
The ageing process (or residual shelf life) of a single RBC unit can formally be
described as a deterministic continuous-time process ρ = {ρ(t) | t ≥ 0}, with

ρ(t) =
{
R− t if 0 ≤ t < R,

0 if t ≥ R,
(5.1)

where R is a known parameter, representing the maximum residual shelf life of an
RBC unit. In other words, when a fresh RBC unit enters the inventory its residual
shelf life is set equal to R. Its residual shelf life decreases linearly with the time
spent in inventory. If the RBC unit is not issued within R days, it expires and is
removed from inventory.

Deterministic approximation

In practice, it is realistic to discretize the residual shelf life of an RBC unit to a more
natural counting parameter, i.e., the number of weeks or days left until expiration,
as illustrated in Figures 5.3a and 5.3b respectively. The ageing process can then
be regarded as a deterministic continuous-time (jump) process ρ̂ = {ρ̂(t) | t ≥ 0},
with

ρ̂(t) =
{
R− (k−1)R

N if tk−1 ≤ t < tk,

0 if t ≥ tN ,
(5.2)

where tk = kR
N , k ∈ {0, 1, ..., N} are fixed time moments at which jumps occur

and N is the number of segments in which the time-interval [0, R] is divided. The
time between two consecutive jumps τk = tk − tk−1 is constant, implying that the
length of each segment [tk−1, tk) is deterministic. Moreover, since ρ(t) is linear
in t, the jump size ρ̂(tk)− ρ̂(tk−1) is also a constant. The continuous-time jump
process ρ̂ converges to ρ when the number of jumps N tends to infinity.

A disadvantage of this deterministic approximation is that it cannot be aligned
with the exponential behavior of the other two events (i.e., donations and requests
arrive according to independent Poisson processes). Therefore, instead of approxi-
mating the ageing process of an RBC unit by a deterministic time grid, it can also
be approximated by an exponentially thinned time grid.

Stochastic approximation

Assume that the time between two consecutive jumps τk is exponentially distributed
with mean ν−1

N = R/N . The ageing process can then be regarded as a continuous-
time jump process ρ̃ = {ρ̃(t) | t ≥ 0}, with

ρ̃(t) =
{
R− (k−1)R

N if Tk−1 ≤ t < Tk,

0 if t ≥ TN ,
(5.3)
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Figure 5.3: The ageing process of a single RBC unit can be approximated by a deter-
ministic continuous-time (jump) process ρ̂, consisting of N jumps, such that both the
time between two consecutive jumps and the jump size are constant (τk = R/N and
ρ̂(tk)− ρ̂(tk−1) = −R/N).
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where Tk, k ∈ {0, ..., N}, are stochastic time moments at which jumps occur, equal
to the sum of k independent identically distributed exponential random variables,
as illustrated in Figure 5.4. The maximum shelf life of an RBC unit, denoted by
TN , is thus no longer equal to the known parameter R, but approximated by an
Erlang distribution with parameters N and νN . The expectation and variance of
this distribution are given by

E (TN ) = Nν−1
N = R and Var (TN ) = Nν−2

N = R2/N, (5.4)

respectively. As N and νN can be taken arbitrarily large – keeping Nν−1
N = R –

the variance of TN converges to zero. This implies that the Erlang distribution
converges to a deterministic distribution when the number of jumps N tends to
infinity, as stated more formally in Proposition 5.1.

Proposition 5.1. Let X = P (ρ(t) = 0) be a deterministic random variable with
cumulative distribution function

FX(t) =
{

1 if t ≥ R,
0 if 0 ≤ t < R,

(5.5)

and let Y = P (ρ̃(t) = 0) be an Erlang random variable with cumulative distribution
function

FY (t) = 1−
N−1∑
k=0

e−νN t (νN t)k

k! t ≥ 0, (5.6)
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Figure 5.4: The ageing process of a single RBC unit can be approximated by a continuous-
time jump process ρ̃, consisting of N jumps, such that the time between two consecutive
jumps is exponentially distributed (τk ∼ Exp(νN )) and the jump size is constant (ρ̃(Tk)−
ρ̃(Tk−1) = −R/N).
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where νN = N/R, then limN→∞ FY (t) d−→ FX(t) for all t ≥ 0.

Proof. Observe that FY (t) = P (Z ≥ N), where Z ∼ Poisson(νN t). By applying
Chebyshev’s inequality, i.e., for any real number k > 0

P (|Z − νN t| ≥ k) ≤ νN t

k2 , (5.7)

it can be shown thatFY (t) ≥ 1−N−1 Rt
(R−t)2 if t > R,

FY (t) ≤ N−1 Rt
(R−t)2 if 0 ≤ t < R.

(5.8)

These expressions converge to one and zero, respectively, when N tends to infinity.
Hence, limN→∞ FY (t) d−→ FX(t) for all t ≥ 0.

Note that the outcomes of the processes ρ̂ and ρ̃ can be mapped to an integer
r ∈ {N,N − 1, ..., 1, 0}, by multiplying these outcomes by N/R. This simple
integer state description will be used as an index for the residual shelf life of an
RBC unit.
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Phase-type distribution

The Erlang distribution, denoted by Erl (N, νN ), consists of N sequential phases,
where the time spent in each phase is exponentially distributed with rate νN , as
illustrated in Figure 5.5. It can be seen as a special case of the class of continu-
ous phase-type distributions, which are typically used to model the time before a
continuous-time Markov chain enters the absorbing state [80].

The continuous-time jump process ρ̃ is equivalent to an absorbing Markov chain
with state space R = {N,N − 1, N − 2, ..., 1, 0}, where states N,N − 1, ..., 1 are
transient states and state 0 is an absorbing state, and transition rate matrix

Q =



−νN νN 0 · · · 0

0 −νN
. . . . . . ...

... . . . . . . . . . 0

... . . . −νN νN

0 · · · · · · 0 0


=
[
G g0
0 0

]
, (5.9)

where G ∈ RN×N , g0 ∈ RN×1, 0 ∈ R1×N , and 0 is a scalar. Moreover, the initial
state distribution is given by [α | α0] = [1 0 · · · 0 | 0], where α ∈ R1×N and α0
is a scalar.

Definition 5.1 (Phase-type distribution of TN ). The time until the random vari-
able TN enters the absorbing state has phase-type distribution PH(α, G). The
distribution function of TN can be expressed as

FTN
(t) = 1−α exp(Gt)e,

= 1− exp(−νN t)
∑N−1
k=0

(νN t)k

k! ,
(5.10)

for t ≥ 0, where exp(Gt) is the matrix exponential, and e is the all ones vector.
The moments of TN are given by

E
(
T kN

)
= (−1)kk!αG−ke,

= (N+k−1)!
(N−1)! ν

−k
N ,

(5.11)

implying that E (TN ) = Nν−1
N and Var (TN ) = Nν−2

N .

As mentioned before, the main advantage of approximating the maximum shelf
life of an RBC unit by a phase-type distribution (i.e., we keep track of the number
of residual phases left before the RBC unit expires) is that the GSMP description of
the inventory allocation problem can be transformed into continuous-time Markov
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Figure 5.5: Phase diagram of an Erl(N, νN ) distribution.
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chain. This entire setup can also be expanded to multiple RBC units, as will be
shown in the next section. Eventually, in Section 5.4, this will lead to a relatively
simple formulation of the GSMDP as a discrete-time MDP with just a discrete
state, a discrete action, and discrete time description and three types of transitions:
donations, requests, and ageing.

Remark 5.2 (Ageing parameter). In the remainder of this chapter we will use ν
instead of νN to refer to the ageing parameter.

5.3.2 Multiple RBC units

The same approach as in Section 5.3.1 can also be applied to multiple RBC units.
The original outdating process has the natural structure of GSMP , i.e., at arbitrary
times elements can be triggered or enabled that exist for random periods of time.
These period run parallel or synchronously but independent. For the current special
case of blood inventory, however, these times incorporate:

• an exponential time for a next donation,

• an exponential time for a next request,

• deterministic times for experiation of the individual RBC units in inventory

This system can be modeled as a continuous time Markov process. One char-
acterization of the state space is by complete account of the inventory. That is,
the state variable would be{

r1(t), ..., rL(t)(t)
}
, (5.12)

where L(t) is the number of units in inventory at time t and rk(t) is the residual
shelf life of the kth RBC unit in inventory where the units are ranked by their
residual shelf life, for k = 1, ..., L(t). In this form, however, the analysis of the
process is difficult, if not impossible, due to the varying dimensions of the state
space. As an alternative, we might aggregate RBC units with the same residual
shelf life, i.e., s = [s1, ..., sN ]>, where sr indicates the number of RBC units in
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Figure 5.6: Tandem queue consisting of N infinite server queues.
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inventory with residual shelf life r ∈ R and transition rate matrix Q ∈ RS×S , with

q
(
s′
∣∣ s) =



λ,

{
s′N = sN + 1
s′` = s` ` < N

νsr,


s′` = s` − 1
s′` = s` + 1
s′` = s`

` = r
` = r − 1
` 6= r

∀r > 1

νs1

{
s′1 = s1 − 1
s′` = s` ` > 1

(5.13)

for s′ 6= s and q(s′|s) = −
∑
s′∈S:s′ 6=s q(s′|s) if s′ = s

Independent infinite-server tandem queues

A different way of viewing the Erlangian phase-type distribution is by regarding
it as a tandem queue, with single server stations (for a single RBC unit) or with
infinite servers stations (for multiple units). More detailed, for the multiple unit
case, consider a tandem network of N queues that are placed in series. Each queue
has an infinite number of servers with exponentially distributed service time, with
mean ν. Fresh RBC units arrive according to a Poisson process with rate λ. Upon
service completion at queue r the RBC unit routes to queue r−1, r = N, ..., 2, and
finally departs from queue 1, as illustrated in Figure 5.6. For each residual shelf
life r ∈ R the amount of RBC units in inventory behaves like an infinite-server
tandem queue.

Steady state distribution

The major advantage of this representation is that we only need to keep track
of the total number for different blood groups i ∈ B and phases r ∈ R and not
the individual blood units themselves. This will become important in Section 5.4,
where the RBC unit to issue will be selected. By the representation given here,
and in line with the inventory, the following result can already be concluded from
literature on so-called product forms (e.g., [116]) if no demands would take place.

P [SN = sN , ..., S1 = s1] = P [S = s] = exp
(
−Nλ

ν

) N∏
r=1

1
sr!

(
λ

ν

)sr

. (5.14)
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This theoretical result could be of interest to compare with an actual distribution
of RBC units in inventory as due to blood units meanwhile been issued, with and
without compatibility taken into account

5.4 Markov decision process for blood issuing

Now that the structure of the underlying blood dynamics has been brought down to
a GSMP and even, due to the exponential age modelling, a continuous time Markov
process, more precisely chain as the states are discrete, CTMC, the optimization
of issuing actions can be incorporated. This involves two additional main steps:

• to adopt and apply the theory of Markov decision processes, generally referred
to as MDP,

• to transform a continuous-time MDP into a discrete-time MDP

So far, no requests for RBC units nor issuing decisions have been considered.
Therefore, this section describes the blood inventory management process as a
Markov decision process (MDP). This is a mathematical framework for sequential
decision making in a stochastic environment based on the Markovian assumption.

For the inventory allocation problem, it implies that the MDP model determines
which RBC unit should be selected from inventory to satisfy a request for a RBC
unit with a particular blood group, such that

• the selected RBC unit is compatible with the RBC unit requested,

• the probability that future requests can be satisfied is maximized,

• the probability that units get outdated is minimized.

5.4.1 Continuous-time MDP

An infinite horizon continuous time MDP is generally defined by a quin-tuple
(T ,S,X , Q, c), corresponding with decision epochs, state space, action space,
transition matrix, and cost matrix respectively.

Decision epochs

The set of time epochs is given by T = [0,∞), where an epoch t ∈ T represents
either the arrival of a fresh RBC unit (at a rate λ), the ageing of an RBC unit (at
a rate ν), or the a request for a single RBC unit (at a rate µ) each of which can
take place any time.
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State space

The state of the inventory can mathematically be described by a vector

s = [s11 · · · s1N︸ ︷︷ ︸
N

s21 · · · s2N︸ ︷︷ ︸
N

· · · sm1 · · · smN︸ ︷︷ ︸
N

]> (5.15)

where sir indicates the number of RBC units in inventory with blood group i ∈ B
and residual shelf life r ∈ R. To limit the size of the state space, the maximum
number of RBC units in inventory can be bounded by a constant S.

Action space

Although three different types of events can occur (see Section 5.2.1), only one of
them is associated with an action. Upon arrival of a request for RBC units with a
particular blood group, a double decision is to be made: the decision maker either
selects compatible RBC units from inventory to satisfy this request or leaves it
unsatisfied. A request can be left unsatisfied if their are either no compatible RBC
units present in inventory or the optimal action is not to satisfy the request, even
when there are compatible units available. In both cases, we will refer to such
an event as a shortage. Given that blood group j ∈ B is requested the possible
actions are:

Xj(s) = {(i, r) | sir > 0, i ≤ j} ∪ {u} , (5.16)

with

|Xj(s)| =
∑

i∈B | i≤j

∑
r∈R

sir + 1. (5.17)

Moreover, for each blood group j ∈ B an action has to be chosen from the set
of feasible actions, given by

X (s) = {x ∈ Rm | xj ∈ Xj(s)} . (5.18)

Transition rates

Assume that fresh RBC units arrive at the inventory according to a Poisson process
at rate λ and that requests occur according to an independent Poisson process at
rate µ. Moreover, assume that the probability that a donated RBC unit has blood
group i ∈ B and the probability that a requested RBC unit has blood group j ∈ B
is consistent with the distribution of blood groups in the Caucasian population.
Hence,

λi = λ · fi and µj = µ · fj (5.19)
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Figure 5.7: Tandem queue consisting of N infinite server queues.

λi

N
νsiN

µj1{xj=(i,N)}

· · ·
νsi3

2
νsi2

µj1{xj=(i,2)}

1
νsi1

µj1{xj=(i,1)}

0

The transition rate matrices Q ∈ R|S|×|S|×|X | for an arbitrary action x ∈ X
can be defined as

q
(
s′
∣∣ s,x) =



λi1{|s|≤S},


s′kN = skN + 1
s′kN = skN
s′k` = sk`

k = i
k 6= i
` < N

∀i ∈ B,

µj1{xj=(i,r)}

{
s′k` = sk` − 1
s′k` = sk`

k = i, ` = r
k 6= i, ` 6= r

∀j ∈ B,

νsir,


s′k` = sk` − 1
s′k`−1 = sk`−1 + 1
s′k` = sk`

k = i, ` = r
k = i, ` = r
k 6= i, ` 6= r

∀i ∈ B
∀r ∈ R
r > 1,

νsi1


s′k1 = sk1 − 1
s′k1 = sk1
s′k` = sk`

k = i
k 6= i
` > 1

∀i ∈ B,

(5.20)

for a transition from state s ∈ S into another state s′ 6= s, with s′ ∈ S, under
decision x ∈ X (s), and for the diagonal elements s′ = s:

q (s′ | s,x) = −
∑
s′∈S
s′ 6=s

q (s′ | s,x)

= −
(
λ1{|s|≤S} + µ+ ν |s|

)
+
∑
j∈B

µj1{xj=u}︸ ︷︷ ︸
refused request

. (5.21)

Here it is indicated that the last term in equation (5.21), which corresponds to the
action that a request is refused, as will be relevant for cost inclusion.

Costs

A second aspect for the CTMC description to be expanded to a MDP is to include
a cost or reward structure. For the blood inventory problem three different types
of costs can be thought of:
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• cijr: costs for allocation an RBC unit with blood group i ∈ B and residual
shelf life r ∈ R to a request for an RBC unit with blood group j.

• cs: shortage costs if a request is refused.

• co: outdating costs if an RBC unit expires.

Due to the additive structure for an expected cumulative reward measure, these
can be aggregated as the costs per unit of time in a given state and action [89]:

c (s,x) =
∑
i∈B

∑
j∈B

∑
r∈R

cijrµj1{xj=(i,r)}+ cs
∑
j∈B

µj1{xj=u}+ co
∑
i∈B

νsi1. (5.22)

5.4.2 Uniformization
Now that a discrete and relatively simple state transition structure has been es-
tablished, a computational scheme is required to determine ’optimal’ actions for
any state s ∈ S. Here different cost aspects can be incorporated as specified in
equation (5.22). The general objective is to minimize average costs, i.e., as the
average over a long period of time, expressed by

G(s) = min
δ∈∆

lim
Z→∞

1
Z

∫ Z

0
E [c (Sτ , δ (Sτ )) | S0 = s] dτ (5.23)

where δ represents a decision rule, which prescribes a decision vector x ∈ X for
any possible state s ∈ S, and ∆ = {δ : S → X} is a set of decision rules. Note
that the cost function c itself already includes an expectation with respect to
possible blood groups requested, as specified in equation (5.22). Furthermore, the
average expected values G(s), conditional on the initial state s, can be assumed
to be independent of the initial state under general ergodic conditions for the
continuous-time Markov chains and decision rule δ (e.g. see [89]). G(s) can
therefore be defined as a scalar

g∗ = G(s) ∀s ∈ S. (5.24)

In addition, as also justified in [89], a stationary decision rule, (i.e., independent
of time) can be shown to be average optimal, among all possible strategies that
in principle allow a different rule at any time.

Despite the discrete state description, from a computational point of view, the
optimal value g∗ still involves the computation of the minimum of a limit integral
in continuous time. This will remain highly complex, if not impossible. As a final
essentially simplifying step, the approach of uniformization (or randomization) will
be brought in. Intuitively, this approach can be regarded as a time discretization.
More precisely, let B be an arbitrarily large finite number such that

λ+ µ+ νS ≤ B <∞. (5.25)
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We can then transform the continuous-time MDP into a more computable
discrete-time MDP by regarding small time steps of length h = 1/B. We refer to
remark 5.3 below for more details on this approach and related literature. Define
the discrete-time MDP by the one-step transition probabilities

p
(
s′
∣∣ s,x) =



λi
B 1{|s|≤S}


s′kN = skN + 1
s′kN = skN
s′k` = sk`

k = i
k 6= i
` < N

∀i ∈ B,
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B

λ1{|s|≤S} +
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j∈B

µj1{xj 6=u} + ν |s|

 s′ = s

(5.26)

Remark 5.3 (Uniformization). For a more extensive and intuitive insight in the
approach of uniformization, the interested reader is referred to [118]. Like in
this reference, equality of a continuous-time and uniformized discrete-time Markov
chain (or Markov Process) is intuitively obvious for an average cost case or perfor-
mance measure. As proven in [72, 105], for the average case it can be extended
to also include actions to compute an average optimal strategy. As in [118], a
uniformization equivalence can be shown for any finite time period and any given
set of actions. This, however, would need a Poissonian expansion. In addition,
time dependent strategies could then be expected. In order to justify a more simple
formula for approximate iteration, similar to equation (5.29) in the next section,
a discrepancy arises. An error bound on the accuracy can then be proven to be
linear in h [115]. As a result, it vanishes if h is taken arbitrarily small [115]. In
this chapter we just consider the average cost case.

5.4.3 Stochastic Dynamic Programming

Now that the original blood inventory allocation has been fully taken down to
a discrete-state as well as discrete-time MDP, the standard procedures for MDP
modelling and computation, as extensively described in [89], can be applied. More
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precisely, based on uniformization and MDP the average optimal value can be
presented as

g∗ = lim
N→∞

1
Nh

N−1∑
k=0

[
P δ
∗]k

c(s, δ∗(s)) for any initial state s ∈ S. (5.27)

where
δ∗: the decision rule with optimal actions x∗ = δ∗ (s) in any state s ∈ S,
P δ
∗ : the one-step transition probability matrix p (s′ | s,x) as by (5.26) with

x = δ∗(s).
The optimal value g∗, the optimal decision rule δ∗, and its corresponding optimal
actions x∗ are implicitly determined by the following equation:

H(s) = min
x∈X (s)

[c(s,x)− g∗] · h+
∑
s′∈S

p
(
s′
∣∣ s,x)H(s′)


= [c (s, δ∗ (s))− g∗] · h+

∑
s′∈S

p
(
s′
∣∣ s, δ∗(s))H(s′)

(5.28)

for all states s ∈ S, where H(s) is a function still to be determined. In words, δ∗
determines an action in which the minimum value in equation (5.28) is achieved.
Here the function H is known as the so-called relative gain function (see for
example [89] and [13] Chapter 1). Particularly, for the study of the function H in
depth the interested reader is referred to [111]. However, as (5.28) still involves
an implicit equation, either of two iterative approaches are generally followed:

• policy improvement,

• successive approximation.

In fact, as the first is not necessarily guaranteed to always work and generally more
complicated, the second approach is chosen and is briefly presented below. Here,
for interpretation,

Vk(s) can be seen as the optimal cumulative expected costs over k steps
(each of time length h) when starting in state s at time 0.

First, let us start by setting V0(s) = 0 for all s ∈ S. Next, we iterate according to
the successive approximation and the following backward recursive equation:

Vk+1(s) = min
x∈X (s)

h · c (s,x) +
∑
s′∈S

p
(
s′
∣∣ s,x)Vk (s′)

 , (5.29)
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Note that for different values of k different optimizing actions might appear in
one-and-the-same state, it is at least intuitively appealing that

lim
k→∞

1
k
Vk(s)→ hg∗ (5.30)

independent of s. In fact, the so-called ’Odoni bounds’ can be used to capture the
value g∗ up to some inaccuracy (see [82, 111]). Assuming that the cost function
is non-negative, let

g∗k = min
s∈S
{Vk+1(s)− Vk(s)} /h

g∗k = max
s∈S
{Vk+1(s)− Vk(s)} /h

where gk and gk are the minimum and maximum difference of the value function
over two iterations steps, k and k + 1 respectively. Then it can be shown that

g∗k ≤ g∗k+1 ≤ g∗ ≤ g∗k+1 ≤ g∗k (5.31)

Furthermore, after a finite number of steps the optimizing actions will generally
appear to remain unchanged. In line of the approach of policy improvement, these
actions can then be expected to be optimal, or at least ε-optimal (up to a small
inaccuracy ε) to obtain g∗.

5.5 Evaluation
In this chapter, a microscopic computational structure has been established for
RBC issuing. It incorporates the realistic aspects of donations and requests at
arbitrary times, as well as ageing of RBC units and blood group compatibility.
For realistically sized situations this chapter and its formulations provides a base
description for other approximative techniques (i.e, approximate dynamic program-
ming or reinforcement learning), which are based upon MDP formulations.



76 Chapter 5. A microscopic mathematical description for optimal blood issuing

5.6 Appendix I

5.6.1 Markov processes
The most standard Markov process is a discrete-time Markov chain, where the
times between successive events are deterministic, implying that state transitions
occur at unit time moments (i.e., k = 1, 2, 3, ...). In practice, events may occur
at any point in time. In the continuous-time analogue of discrete-time Markov
chains the times between successive state transitions are not deterministic, but
exponentially distributed. For more properties of Markov processes we refer the
reader to, for example, [97, 110].

Definition 5.2 (Markov process). The stochastic process X = {X(t) | t ≥ 0}
with discrete state space S is called a Markov process if for each t ≥ 0,

P [X(tk+1) = s(tk+1) | X(t0) = s(0), ..., X(tk) = s(k)]
= P [X(tk+1) = s(k + 1) | X(tk) = s(k)] ,

for all 0 ≤ (t0) < ... < tk+1 and s(0), ..., s(k + 1) ∈ S.

If the time between two state transitions follows an arbitrary continuous distri-
bution, so it is no longer deterministic or exponentially distributed, then it is called
a semi-Markov process (SMP).

5.6.2 Generalized semi-Markov process
As mentioned in Section 5.2, the dynamics between the supply and demand of
RBC unit possesses, to a large extent follow the structure of a generalized semi-
Markov (decision) process, which preserves the typical structure of a continuous-
time stochastic discrete event system (with decisions) [49, 91, 131]. The abstract
description of a GSMP given below is based on these three papers.

A time-homogeneous GSMP consists of a countable set of states S and a
countable set of events E . At any point in time, the system occupies a state
s ∈ S in which a subset E(s) of the events are enabled. Each event e ∈ E(s) is
associated with a positive distribution Ge –governing the time until event e triggers
if it continuously enabled– and a next-state probability distribution pe (s′ | s). The
events represent concurrent processes competing for the next state transition. To
each enabled event e ∈ E(s), we associate a clock ce reading the remaining time
until event e occurs. Let e∗ be the event with the smallest clock value, i.e.,

e∗ = arg min
e∈E(s)

{ce} .

When e∗ triggers, the next state s′ ∈ S is sampled according to the probability
distribution pe∗ (s′ | s) and the clocks are updated:
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c′e =


ce − ce∗ if e ∈ Es′ and e ∈ Es\ {e∗}
sampled from Ge if e ∈ Es′ and e 6∈ Es\ {e∗}
∞ if e 6∈ Es′

In other words, events that remain enabled without triggering are not rescheduled,
while the triggering event and newly enabled events are. This procedure is repeated
with s = s′ and ce = c′e.

For a simulation approach this description would be appropriate. For exact and
numerical computations, however, general and in particular deterministic asyn-
chronous clocks are most hard to deal with. In Section 5.3, these timers will
therefore be approximated by so-called phase-type distributions, more precisely Er-
lang distributions. This will transform the natural description for blood units, as in
Section 5.2 into a more tractable continuous-time Markov process. In particular,
the residual shelf life for RBC units in the inventory can be traced in a countable
manner.
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CHAPTER 6

Optimal blood issuing by comprehensive
matching

6.1 Introduction

6.1.1 Blood Management

Hospitals in the Netherlands use approximately 400,000 red blood cell (RBC) units
each year [99]. These units are donated by voluntary non-remunerated donors at
collection sites throughout the country. After collection, the donated blood units
are processed (i.e., separated in red blood cells, platelets, and plasma), typed
for more than fourteen different antigens, tested for several infectious diseases
and finally stored in one of the distribution centers until requested by hospitals.
Although describing the process in this way makes it sound like a straightforward
process, several complications arise, making inventory management of RBC units
an important and interesting topic for research.

First of all, RBC units are used during major surgeries or as treatment for
leukemia, anemia, and blood disorders. Not being able to satisfy requests from
hospitals comes at a very high cost, since this may lead to delays and therefore
places transfusion recipients at risk. Hence, adequate and timely availability of
RBC units is essential.

Second, RBC units are perishable products. After 35 days of storage, the unit
has to be discarded. In the inventory management for perishable products, a bal-
ance has to be found between the probability of outdating and the probability of
shortage, as decreasing one usually increases the other. Moreover, RBC units are
obtained from donations by voluntary, non-remunerated donors. Donors are moti-
vated by the fact that their blood donation is necessary and saves lives. Increasing
outdating would affect their motivation and is therefore undesirable. So, for RBC
units and other blood products, both outdating and shortages should be minimized
at the least, and preferably prevented altogether.

Third, differences in blood groups pose another challenge. The ABO blood

79
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groups are well known, but many more blood groups exist. Although compatible
issuing can be done, identical issuing is to be preferred, as compatible issuing may
cause shortages for RBC units with a rare blood group.

Fourth, inventory management of RBC units has to deal with stochasticity.
Most inventory management systems deal with stochastic demand. However, the
supply side of blood inventory also contains stochasticity. As donors are donating
voluntarily and are non-remunerated, the probability of a no-show for a donation is
substantial. Additionally, as Sanquin does not use appointments for blood donors,
the lead-time between inviting a donor and the donor showing up is highly uncer-
tain, ranging from a week up to a month.

These four complications (i.e., shortage, outdating, blood group compatibil-
ity, and stochasticity in the supply and demand of RBC units) make inventory
management of RBC units non-standard and non-trivial. This chapter presents
a mathematical framework for the inventory management of RBC units. Besides
minimizing outdating and shortages, we will also take the rareness of a blood group
into account.

6.1.2 Approach

To investigate an issuing policy that finds a trade-off between the age and rareness
of the RBC units in inventory, a mathematical framework will be presented, which
consists of three major components:

i) a binary representation of general blood groups (see Chapter 4),

ii) a deterministic minimal cost flow problem (MCFP), which finds an optimal
allocation between the RBC units in inventory and RBC units requested, while
taking all haematological constraints with respect to blood group matching
into account,

iii) a simulation model, which iteratively solves the MCFP, incorporates the stochas-
ticity in the supply and demand of RBC units, and evaluates the long-term per-
formance of a proposed issuing policy (e.g., percentage of RBC units short, per-
centage of RBC units outdated, percentage of blood group identical matches,
average issuing age).

As opposed to literature, the mathematical framework presented in this chapter is
novel in that it can be applied for general blood groups (previously only the ABO,
D blood groups were included) and models the inventory allocation problem as an
MCFP. In addition, the concept of ‘relative opportunity loss’ is introduced to save
RBC units with rare blood groups.
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6.1.3 Outline

This chapter is organized as follows. Section 6.2 provides an overview of the rel-
evant literature on inventory management of blood products. In Section 6.3 we
show 1) that the inventory allocation problem can be described as a transportation
problem, and 2) that the objective function of the MCFP can be used to represent
an issuing policy that balances the rareness and age of the RBC units in inventory.
Next, in Section 6.4, a simulation model is presented to incorporate the stochastic-
ity in the supply and demand of RBC units and evaluate the long-term performance
of the proposed issuing policy. The results of the computational experiments are
discussed in Section 6.5. Finally, Section 6.6 concludes the chapter and indicates
directions for future research.

6.2 Literature

Inventory management of perishable products is an important topic in Operations
Research. [4, 50, 62, 79] gave a review of the available literature with respect to
this topic. A part of this literature consists of the inventory management of blood
products. The management of these specific products also garners much attention
itself. [7, 83, 86] are three recent review papers. [7] classified the papers according
to the blood component under study: platelets, RBCs, plasma, whole blood, frozen
blood, other/unclear. Whereas we are interested in the inventory management of
perishable products we focus on the literature about platelets and RBCs. The most
important difference with respect to the inventory management of these two blood
components is their maximum shelf life. Platelets are considered to be expired
after 7 days and RBCs after 35 days.

In Section 6.2.1 we will review the recent literature on the inventory manage-
ment of platelets, and continue afterwards with the literature on the inventory
management of RBC in Section 6.2.2. Finally, in Section 6.2.3 we will discuss
where our research builds upon current approaches and extends existing literature.

6.2.1 Platelets

Whereas platelets expire after 7 days most papers about platelet inventory man-
agement consider the percentage of outdated units as main performance measure
and apply a First-In-First-Out (FIFO) issuing policy [41, 77, 106]. Though, the
inventory size should be sufficiently large to prevented or control shortages. One
way to control shortages is by using a predetermined maximum shortage level
[30]. Another way to control both outdating and shortages is by including both
performance measures into the objective function [1, 23].

A FIFO issuing policy seemed to be optimal for inventory management of
platelets. However, as for some patient groups fresh platelets increase survival
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rates [54, 117], some papers use different issuing policies. One way to incoporate
this is by making a difference between ’young’ and ’old/any’ platelets [22, 52].
Moreover, whereas [52] looked at the inventory management of hospitals they
incorporated a cross-match-to-transfusion ratio and the cross-match release period
in their models. [23] shortened the maximum shelf life of the platelets to three
days and classified them as ’young’, ’mature’, and ’old’. Moreover, they included
protection levels and substitution costs to limit the amount of ’young’ platelets
issued to satisfy requests where the age of the platelets did not matter.

With respect to replenishment policies [30] considered an old inventory ratio
policy to avoid shortages. This policy states that if the proportion of old units
in stock exceeded a certain threshold, making it likely that some units will get
outdated, some extra donors should be invited. A similarly approach was proposed
by [54, 55] and [28]. They investigated 1D and 2D order-up-to-rules, where in
the 2D order-up-to-rule donors where invited based on both the total amount of
platelet units in stock and the amount of young platelet units in stock. Recently,
[92] analyzed several ordering policies for platelets which also consider hospital size
and demand variation.

6.2.2 Red blood cells

For the inventory management of RBCs the percentage of outdating and shortage
remain important performance measures as well. Though, some papers suggest
that the maximum shelf life of 35 days may be reduced without excessive increases
of outdating and shortage rates [10, 31].

[29] developed a two stage inventory control model, where in the first stage
decisions about the review period and order-up-to-levels are made and in the second
a stage decision about the daily operation of the system are considered. Moreover,
they investigate the difference between exact and compatible issuing policies with
respect to ABO, RhD compatibility. A similar modelling approach is applied by
[56].

[3] apply a single threshold policy in which blood younger than the threshold is
issued according to a FIFO policy and blood that is older is issued according to a
LIFO policy. For a threshold of 14 days they show that the mean age of transfused
blood decreases from 30 to 20 days.

6.2.3 Relevance of this work

Within the existing literature on the inventory management of blood products
no one has yet considered more than the common eight ABO, D blood groups.
However, since the beginning of the 21th century, hospitals are recommended to
extend their matching strategies for some patient categories [18]. As a result,
transfusion recipients belonging to such patient categories are not only matched
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for the standard ABO, D blood groups, but also for some additional blood groups
(e.g., Kell, Duffy, Kidd, MNS). These extended matching strategies lead to a
growing demand for more specific blood groups.

Clearly, by including more antigens both the diversity among the blood units
in inventory and the diversity among the blood units requested increases. Hence,
the likelihood of finding an exact match between a unit requested and a unit
issued decreases. Therefore, we extend the existing performing measures such as
outdating, shortage, and issuing age by a fourth performance measure: the relative
opportunity loss of a match.

In the primary objective of the (mathematical) model that will be presented in
this chapter we aim to balance the relative opportunity loss of a match and the age
of an issued RBC unit (FIFO). Where minimizing the relative opportunity loss of a
match will correspond to saving rare units to prevent shortages and applying a FIFO
policy corresponds to the prevention of outdating, these performance measures are
not explicitly included in the objective of the mathematical model. However, the
simulation that evaluates the quality of a match and age of issued units over time,
also keeps track of these performance measures.

6.3 Inventory allocation problem

In the classical transportation problem products have to be transported from a
set of sources V1 to a set of destinations V2 at minimum costs, such that all
supply and demand constraints are satisfied [9, 128]. Its applicability to blood
inventory allocation seems straightforward, as RBC units have to be transported
from distribution centers to hospitals. However, it is not the transportation issue
itself that is of interest, but the decisions about which RBC units to select from
inventory, such that

• all requests can be satisfied with compatible RBC units from inventory,

• shortages for future requests are avoided,

• outdating is prevented (RBC units are perishable),

as illustrated in Figure 6.1.
To show which steps are required to transform the inventory allocation problem

into a transportation problem, Section 6.3.1 first illustrates them for the well-known
ABO blood groups. In Sections 6.3.2 and 6.3.3 the same steps are described in a
unified mathematical formulation, such that the inventory allocation problem can
be solved for general blood groups.
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Inventory (V1) Requests (V2)

compatibilityoutdating shortages

Figure 6.1: Schematic representation of the inventory allocation problem, where V1 rep-
resents the set of RBC units in inventory and V2 represents the set of RBC units requested.
The aim is to find an antigen compatible match between the RBC units in inventory and
the RBC units requested, such that both shortages and outdating are minimized.

6.3.1 Illustrative ABO example

Consider an example of the inventory allocation problem as presented in Figure
6.2, where V1 represents the set of RBC units supplied and V2 represents the set
of RBC units requested. A vertex (i, r) ∈ V1, with

i: blood group supplied,
r: residual shelf life,

refers to all RBC units in inventory with blood group i and a residual shelf life of
r days. A vertex j ∈ V2, with

j: blood group requested,

refers to all RBC units requested with blood group j. Two vertices (i, r) ∈ V1 and
j ∈ V2 are connected by an edge [(i, r), j], if blood group i is compatible with
blood group j. The number of RBC units supplied by a vertex (i, r) ∈ V1 and the
number of RBC units requested by a vertex j ∈ V2 are given by the parameters
sir and dj respectively.

The objective function of the inventory allocation problem aims to control the
inventory of RBC units, such that shortages for future requests are avoided and
outdating is prevented. Shortages can be avoided by saving RBC units with a
rare blood group. Outdating can be prevented by issuing RBC units with a short
residual shelf life. We therefore take the following objective function

c[(i,r),j] = γ ·∆ij + (1− γ) · r2 , (6.1)
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Figure 6.2: ABO-example of the inventory allocation problem, with sir the number of
RBC units in inventory with blood group i ∈ B and a residual shelf life of r days and dj

the number of RBC units requested with blood group j ∈ B.

where γ ∈ [0, 1] is parameter balancing relative opportunity loss ∆ij ∈ [0, 1] with
the residual shelf life of the RBC units in inventory r

2 ∈ [0, 1]. To illustrate how the
choice of γ influences the optimal allocation, consider the following three values
for γ:

• γ = 0: the issuing policy minimizes the residual shelf life of the RBC units in
inventory (c[(i,r),j] = r

2), a First-In-First-Out (FIFO) issuing policy is applied,

• γ = 1: the issuing policy minimizes the relative opportunity loss (MROL) of
a match (c[(i,r),j] = ∆ij),

• γ = 1
2 : the issuing policy balances the relative opportunity loss of a match

and the residual shelf life of the RBC units in inventory, which are weight
equally.

For the FIFO strategy (γ = 0) all units with blood group O are issued. It is
therefore likely that future request cannot be satisfied. For the MROL strategy
(γ = 1), where the focus is purely on minimizing the relative opportunity loss, two
units with blood group O get outdated. For the combined strategy (γ = 1

2) no
units get outdated while also 2 units with blood group O remain in the inventory.
Hence, the trade-off between the quality of a match and the age of the RBC units
in inventory seems beneficial (Table 6.1).
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Table 6.1: Inventory of the RBC units that remains after an optimal allocation of RBC
have been determined for γ = 0, 1

2 , 1.

Issuing policy O A B AB

4 2 0 0 1 5 0 1 3 0 0 2

FIFO (γ = 0) 0 0 0 0 0 5 0 0 3 0 0 2
FIFO/MROL (γ = 1

2 ) 0 2 0 0 0 5 0 0 3 0 0 0
MROL (γ = 1) 2 2 0 0 0 4 0 0 2 0 0 0

6.3.2 Mathematical optimization model
Now that the appropriate abstractions of haematological concepts have been made,
the inventory allocation problem can be transformed into a classical transportation
problem, as already illustrated in Section 6.3.1 for the ABO blood groups and
described more generally in this section. The power of this transformation is that
all complex haematological concepts are dissolved in the definitions of the sets and
parameters of the transportation problem. As a result, large inventory allocation
problems consisting of 214 different blood groups and expiration dates up to 35
days remain solvable.

Inventory allocation problem

Let G (V, T ) be a directed bipartite graph with vertex set V = V1∪V2, V1∩V2 = ∅,
and edge set T , such that

• V1 = {(i, r) | i ∈ B, r ∈ R}, where a vertex (i, r) ∈ V1 represents all RBC
units in inventory with blood group i ∈ B and residual shelf life of r ∈ R,

• V2 = {j | j ∈ B}, where a vertex j ∈ V2 represents all RBC units requested
with blood group j ∈ B,

• T = {τ = [(i, r), j] | i ≤ j, (i, r) ∈ V1, j ∈ V2}, where an edge τ ∈ T in-
dicates that vertex (i, r) ∈ V1 is connected with vertex j ∈ V2, or stated
differently, blood group i ∈ B is compatible with blood group j ∈ B,

as illustrated in Figure 6.3. Note that the connection between two vertices (i, r) ∈
V1 and j ∈ V2 only depends on the compatibility between the blood groups i and
j, and is independent of the residual shelf life of the issued RBC units. The vertices
(i, r) ∈ V1 can thus be clustered based upon their common blood group i.

Each vertex (i, r) ∈ V1 has a non-negative supply sir ∈ N0, which indicates
the number of RBC units in inventory with blood group i ∈ B and residual shelf
life r ∈ R. Similarly, each vertex j ∈ V2 has a non-negative demand dj ∈ N0,
which indicates the number of RBC units requested with blood group j ∈ B. The
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V1 V2

Figure 6.3: Graph G(V, T ) underlying the transportation problem, with vertex set V =
V1 ∪ V2 and edge set T . A vertex (i, r) ∈ V1 represents all RBC units in inventory with
blood group i ∈ B and residual shelf life of r ∈ R. A vertex j ∈ V2 represents all RBC
units requested with blood group j ∈ B.

maximum number of RBC units that can be allocated to an edge τ = [(i, r), j]
equals the minimum of the number of RBC units supplied by vertex (i, r) ∈ V1
and the number of RBC units demanded by vertex j ∈ V2. Hence, the capacity
of edge τ ∈ T is equal to uτ = min {sir, dj}. Finally, the cost for allocating one
RBC unit to an edge τ = [(i, r), j] is given by cτ .

Let x ∈ X be an allocation between the RBC units in inventory and the RBC
units requested, where

X =
{
x ∈ N|T |0

∣∣∣∣∣ ∑
j∈V2

x[(i,r),j] ≤ sir, ∀ (i, r) ∈ V1, (supply constraints)∑
(i,r)∈V1

x[(i,r),j] ≤ dj , ∀ j ∈ V2, (demand constraints)

0 ≤ xτ ≤ uτ , ∀ τ ∈ T , (capacity constraints)
}

(6.2)

represents the set of feasible allocations (i.e., an allocation x should satisfy the
supply, demand, and capacity constraints). The goal is to find an allocation x ∈ X
that maximizes the number of outstanding requests that can be satisfied with com-
patible RBC units, but has minimum costs among those maximum flow allocations:

min
x∈X

{∑
τ∈T

cτxτ

∣∣∣∣∣ ∑
τ∈T

xτ = max
y∈X

{∑
τ∈T

yτ

}}
. (6.3)
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p q

Figure 6.4: Graph Gpq(Vpq, Tpq) underlying the circulation problem, with vertex set Vpq =
{p} ∪ V ∪ {q} and edge set Tpq = Tp ∪ T ∪ Tq ∪ {[q, p]}. V1 represents the inventory of
RBC units and V2 the blood groups requested.

This optimization problem is known as a minimum cost flow problem (MCFP),
which can be solved efficiently due to its specific structure [9, 128].

Solving the minimum cost flow problem

To find an optimal allocation between the RBC units in inventory and the RBC units
requested, or more mathematically, a maximum flow from the set of sources V1
to the set of sinks (destinations) V2 with minimum costs, the inventory allocation
problem is transformed into a circulation problem (Figure 6.4). First, the vertex set
of G is extended with a source vertex p and a sink vertex q. Second, two new edge
sets are introduced: Tp and Tq. Tp = {τ | τ = [p, (i, r)], (i, r) ∈ V1} consists of
edges from p to all vertices in V1. The edges τ ∈ Tp have capacity uτ = sir and unit
cost cτ = 0. Tq = {τ | τ = [j, q], j ∈ V2} consists of edges from all vertices in V2
to q. The edges τ ∈ Tq have capacity uτ = dj and unit cost cτ = 0. Third, an edge
[q, p] from the sink node to the source node is constructed. This edge might have
infinite capacity, but for computational convenience the capacity of this edge can be
restricted by the number of units requested, i.e., u[q,p] =

∑
j∈V2 dj . The unit cost

of edge [q, p] is set equal to c[q,p] = −maxτ∈T {cτ} − 1. Summarizing, the graph
Gpq(Vpq, Tpq) underlying the circulation problem has vertex set Vpq = {p}∪V∪{q}
and edge set Tpq = Tp ∪ T ∪ Tq ∪ {[q, p]}, where each edge τ ∈ Tpq has capacity
uτ and cost cτ .

By transforming the inventory allocation problem into a circulation problem (a
network flow problem without any source or sink vertices, but only transshipment
vertices), a new set of constraints has to be introduced. These constraints ensure
that the amount of flow that enters a vertex w ∈ Vpq is equal to the amount of
flow that leaves this vertex. As the capacity constraints remain, the set of feasible
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solutions to the circulation problem is given by

Xpq =
{
x ∈ N|Tpq |

∣∣∣∣∣ ∑
τ∈T in

pq(w)
xτ =

∑
τ∈T out

pq (w)
xτ , ∀ w ∈ Vpq

0 ≤ xτ ≤ uτ , ∀ τ ∈ Tpq

} (6.4)

where T in
pq (w) = {τ ∈ Tpq | τ = [v, w], v ∈ Vpq} represents the set of edges that

enter a vertex w ∈ Vpq and T out
pq (w) = {τ ∈ Tpq | τ = [w, v], v ∈ Vpq} represents

the set of edges that leave this vertex. A minimum cost circulation can be found
by solving the following optimization problem:

min
x∈Xpq

 ∑
τ∈Tpq

cτxτ

 . (6.5)

Remark 6.1 (LP-relaxation). As the capacities uτ are integer for all τ ∈ Tpq,
the LP-relaxation of optimization problem (6.5) has an integer optimal solution
[9, 128]. Therefore, the integrality constraints can be omitted. This substantially
enhances the practical applicability, as computational experiments have shown that
an optimal solution to the LP-relaxation of the inventory allocation problem can
be found within seconds.

6.3.3 Issuing policy

The rareness of a blood group is based on prevalence of a blood group in the
general population, often measured as a percentage (0.1%), or as a numerical
rate (1 in 1000). However, the likelihood that an RBC unit can be used issued
before it expires, also depends on the prevalence of compatible blood groups in
the transfusion recipient population. Similarly, the likelihood that a request for an
RBC unit can be satisfied, also depends on the prevalence of compatible blood
groups in the donor population. Therefore, two new measures are introduced: the
usability factor and the receivability factor.

Definition 6.1 (Usability factor). The usability factor of an RBC unit with blood
group i ∈ B is defined as

F si =
∑
j:i≤j

fj , (6.6)

with fdj the proportion of RBC requested with blood group j ∈ B.
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Figure 6.5: Relative opportunity loss (∆ij) of a match τ = [(i, r), j], with F s
i the usability

factor the RBC unit supplied and F s
j the usability factor of the RBC unit requested.

Definition 6.2 (Receivability factor). The receivability factor of an RBC unit with
blood group j ∈ B is defined as

F dj =
∑
i:i≤j

fi, (6.7)

with fsi the proportion of RBC supplied with blood group i ∈ B.

The proposed issuing policy has to find a trade-off between ‘relative opportunity
loss’, as specified below, and the age of the issued RBC unit. Therefore let us first
define the concept of ‘relative opportunity loss’.

Definition 6.3 (Relative opportunity loss). Let F si be the usability factor of the
RBC unit supplied and let F sj be the usability factor of the RBC unit requested.
The relative opportunity loss of a match τ = [(i, r), j] is given by

∆ij =
F si − F sj
F si

. (6.8)

It indicates the potential loss of an RBC unit with blood group i is issued to satisfy
a request for an RBC unit with blood group j (Figure 6.5).

In the illustrative example from Section 6.3.1 we used a linear cost function for
the allocation of an RBC unit to an edge τ = [(i, r), j] of the form cτ = γ ·∆ij +
(1 − γ) · rR . This would imply a linear trade-off between the relative opportunity
loss and age. However, the relation between costs and relative opportunity loss or
age might have any form, with function g1(∆) and g2(r)

cτ (∆ij , r) = γg1 (∆ij) + (1− γ) g2 (r) (6.9)
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where g1 (∆ij) and g2 (r) should be seen as functions to reflect the quality of the
match and the outdating respectively. Note that the choice of functions g1 and
g2 does not influence the solvability of the inventory allocation problem as the
objective function remains linear in x. To be able to let the effect of either the
matching quality or future consequences be more distinctive (or dominant), in the
numerical experiments that will be discussed later we choose the form

g1(∆ij) = 1− exp(−α ·∆ij) and g2(r) = 1− exp(−β · r
R

). (6.10)

where the parameters α, β can be interpreted as discount factors. For the com-
putational experiments we will take α = β = 7 log(2). This would roughly imply
that the costs double for any identical RBC unit that is one week older.

Remark 6.2 (Cost function). Clearly, the specific choice of cost functions is arbi-
trary. Nevertheless, the results in Section 6.5.2 as based on the MCFP optimization
with these cost functions show that this function performs well in practice.

6.4 Evaluation model
In the previous section, the inventory allocation problem has been described as an
MCFP, which finds an optimal allocation between RBC units in inventory and the
RBC units requested. This allocation is optimal when it minimizes the objective
function, which represents a static issuing policy as discussed in Section 6.3.3.
However, so far no stochastic effects with respect to the supply and demand of
RBC units have been taken into account The incorporation of these effects will be
discussed in this section.

6.4.1 Simulation setup

A simulation study is conducted in which the optimal deterministic MCFP solutions
are incorporated in a stochastic setting, i.e., the deterministic inventory allocation
model from Section 6.3.2 is integrated with a stochastic supply and demand of
RBC units. Its performance is evaluated over time. A schematic representation of
the setup of the simulation is given in Figure 6.6. The stochasticity incorporated
involves:

1. requests for particular blood groups,

2. response rates of donors,

3. lead time distributions,

4. distribution of antigens within the donor population.
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Figure 6.6: Schematic representation of the simulation model. It incorporates the stochas-
ticity in the supply (1) and demand (2) of RBC units, and evaluates the impact of the
issuing policy on the percentage of units short (3) and the percentage of units outdated
(4).

Sections 6.4.2 and 6.4.3 discuss how historical data on supply and demand of RBC
units was obtained from the central information system of the Dutch blood bank
(eProgesa) for each of these random features.

6.4.2 Demand distributions
A database containing information on all requested RBC units between 01/01/2014
and 31/12/2016 was extracted from the Dutch blood bank information system
eProgesa. A single record (or row) in this database indicates the amount of RBC
units requested with a particular blood group on a specific date by a hospital.
Records for which no ABO, D blood group was specified (1.3%), or had a date that
coincided with a national holiday (1.3%) were excluded. The remaining records
(97.3%) were divided into 56 groups based on the eight ABO, D blood groups, and
seven days of the week (i.e., Monday, Tuesday, ..., Sunday). Within each group, all
RBC units that were requested on the same date were aggregated, resulting in 56
empirical demand distributions consisting of approximately 156 data points (i.e.,
number of Mondays, Tuesdays, etc. in the period 01/01/2014 to 31/12/2016).

Each empirical demand distribution was approximated by a discrete distribu-
tion based on the fitting procedure of Adan et al. [2], which preserves the mean
and coefficient of variation of the empirical distribution. This implied that each
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empirical distribution could be approximated by a mixture of two negative binomial
distributions (Supplemental Figure 6.8). Based upon the prevalence of non-ABO,
D antigens in the Caucasian population [94] an extended blood group was assigned.

6.4.3 Supply distributions

A databases containing information on all invitations and donations between 01/01/2014
and 31/12/2016 were extracted from the Dutch blood bank information system
eProgesa. Each donations was linked to an invitation based on donor identification
number. Donations during weekend days (0.03%) and with a lead time of more
than four weeks (3.7%) were excluded. The average response rate was equal to 0.4
and independent of the ABO, D blood group of the donor. Lead time distributions
were computed by counting the number of days between donation and invitation.

6.5 Computational experiments and results

This section describes the experiments and results that were conducted by the
integrated approach presented in Section 6.4 to analyze the long-term performance
of the proposed issuing policy, which takes both the age and rareness of the RBC
units in inventory into account. Section 6.5.1 first discusses the setup of the
experiments followed by the computational results in Section 6.5.2.

6.5.1 Simulations performed

Each experiment starts with the initialization of the simulation model. A run spans
over one year (365 days). This is preceded by 56 days establish an equilibrium in the
model states. Starting values form a uniformly distributed inventory from 0 days
to k weeks old, where k is the shelf life parameter. For the first and second antigen
sets, 100 runs are used to compute the average performance and the confidence
intervals, for the third antigen set, only 1 run was used to reduce computation
time. This results from the fact that thousands of decisions have to be taken.
The decision at one decision moment, as would be required in practice, still only
requires a few seconds. We have analyzed three different antigen sets:

• A1 = {A,B,D},

• A2 = {A,B,D,C, c,E, e,K},

• A3 =
{

A,B,D,C, c,E, e,K,Fya,Fyb, Jka, Jkb,S, s
}

The other parameters that are varied in the evaluation model are the maximum
residual shelf life of an RBC unit (R = 14, 21, 28 or 35 days), the size of the
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inventory (k = 0.5, 1, 1.5 and 2 weeks), and the parameter indicating the trade off
between the rareness and age of the RBC unit supplied (γ = 0, 1, and 1

2).
The inventory allocation model from Section 6.3 and the simulation model

from Section 6.4 have both been implemented in Matlab R2017b and solved on
a laptop with an Intel Core i5-4210U CPU and 8GB of RAM. In each iteration of
the simulation model, an optimal allocation between the RBC units in inventory
and the RBC units requested was determined using Gurobi 8.1.0 (a tool for solving
linear programming problems). As this optimal allocation was found within seconds
for all investigated parameter settings, the inventory allocation model might be
converted into a practical decision making tool to support real-time matching.

6.5.2 Computational results and analyses

The number of units short and the number of units outdated are described for
all three antigen sets, all combinations of the inventory parameters R (maximum
residual shelf life), k (inventory size in weeks), and the cost parameter γ. Sections
6.5.2 and 6.5.2 are concentrated on three specific scenarios (R = 35, k = 1,
γ = 0, 1, 1

2), which is most similar to the current inventory management. In the
following sections we will investigate the impact of γ on the percentage of requests
that can be satisfied with antigen identical RBC units and the average age of RBC
units when issued.

Shortage versus outdating

Both shortage (η) and outdating (ω) are very small in all scenarios. There is no
shortage for any of the runs with antigen sets A1. The results for antigen sets A2
and A3 are given in Table 6.2 and 6.3. For the runs with antigen set A2 there is
some shortage, but this is at most 0.1%. Interestingly, even when an inventory of
only k = 0.5 weeks is kept. Outdating is dependent on k, and becomes problematic
when the maximum residual shelf life becomes R = 14 days and more than one
week of inventory is kept. Outdating is negligible for a maximum residual shelf of
21, 28, and 35 days.

For antigen set A3 the results become more interesting and it seems that there
is a choice to be made: when the inventory size k is 0.5 weeks, shortages become
more than 2% for almost all parameter settings. However, shortage decrease to less
than 1% if 2 weeks of inventory is kept. The drawback of two weeks of inventory is
that it increases the level of outdating, which is problematic if the maximal residual
shelf life (R) is small. However for R = 35 a relatively low outdating rate is found,
if a FIFO issuing policy is applied (in the order of 0.5% up to 1.5%).

Looking at the impact of parameter γ that balances the preference between
age and rareness of blood product, for γ = 0 and γ = 0.5 we see that the issuing
policy that combines both age and rareness of blood product performs only slightly
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Table 6.2: Percentage of unit short (η) and outdated (ω) for antigen set A2 =
{A,B,D,C, c,E, e,K}.

FIFO MROL FIFO / MROL
(γ = 0) (γ = 1) (γ = 1

2 )

R k η ω η ω η ω

14 days

0.5 week 0.1% 0.2% 0.1% 0.4% 0.1% 0.2%
1.0 week 0.0% 0.7% 0.0% 1.0% 0.0% 0.8%
1.5 week 0.0% 4.4% 0.0% 4.8% 0.0% 4.7%
2.0 week 0.0% 11.9% 0.0% 12.4% 0.0% 12.4%

21 days

0.5 week 0.1% 0.1% 0.1% 0.2% 0.1% 0.1%
1.0 week 0.0% 0.2% 0.0% 0.3% 0.0% 0.2%
1.5 week 0.0% 0.3% 0.0% 0.5% 0.0% 0.4%
2.0 week 0.0% 1.3% 0.0% 1.7% 0.0% 1.5%

28 days

0.5 week 0.1% 0.0% 0.1% 0.1% 0.1% 0.1%
1.0 week 0.0% 0.1% 0.0% 0.2% 0.0% 0.1%
1.5 week 0.0% 0.1% 0.0% 0.2% 0.0% 0.1%
2.0 week 0.0% 0.2% 0.0% 0.3% 0.0% 0.2%

35 days

0.5 week 0.1% 0.0% 0.1% 0.1% 0.1% 0.0%
1.0 week 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
1.5 week 0.0% 0.1% 0.0% 0.1% 0.0% 0.1%
2.0 week 0.0% 0.1% 0.0% 0.2% 0.0% 0.1%

worse with respect to outdating for all scenarios investigated. Similarly, comparing
the values for the parameters γ = 1 and γ = 0.5, we see that the combined
issuing policy also performs only slightly worse with respect to shortage. Hence,
the currently applied cost function that takes both the age and rareness of a RBC
units into account seems to perform very well.

Percentage of requests satisfied with antigen identical red blood cell unit

Let us now restrict ourselves to only 3 out of the 144 different scenarios by fixing
the set of antigens considered, the maximum residual shelf life, and the inventory
size and only differ in the cost parameter γ. Let us divide the different blood
groups into five categories based on their receivability factor (Definition 2). Table
6.4 shows the results for the percentage of request that could be satisfied with an
antigen identical RBC unit when looking at the receivability factor of the requested
blood groups. From this table, it can be concluded that if the receivability factor
decreases (RBC units become more rare), it is less likely that identical RBC units
can be issued. Moreover, the probability that a request cannot be satisfied with
either an identical or a compatible blood group increases with the rareness of the
RBC unit. The proportion of requests that can be satisfied with an antigen identical
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Table 6.3: Percentage of unit short (η) and outdated (ω) for antigen set A3 ={
A,B,D,C, c,E, e,K,Fya,Fyb, Jka, Jkb, S, s

}
.

FIFO MROL FIFO / MROL
(γ = 0) (γ = 1) (γ = 1

2 )

R k η ω η ω η ω

14 days

0.5 week 2.9% 2.3% 1.8% 5.8% 2.1% 2.8%
1.0 week 1.4% 4.6% 0.8% 9.8% 0.9% 5.4%
1.5 week 0.7% 9.4% 0.4% 14.3% 0.4% 10.1%
2.0 week 0.3% 15.4% 0.2% 19.1% 0.2% 16.3%

21 days

0.5 week 3.3% 1.2% 2.4% 3.2% 2.4% 1.2%
1.0 week 1.7% 1.9% 1.1% 5.7% 1.3% 2.1%
1.5 week 1.1% 3.2% 0.6% 7.3% 0.7% 3.5%
2.0 week 0.6% 5.6% 0.4% 10.5% 0.4% 6.2%

28 days

0.5 week 3.6% 0.8% 2.4% 2.1% 2.8% 0.7%
1.0 week 2.1% 1.1% 1.3% 3.3% 1.5% 1.2%
1.5 week 1.1% 1.5% 0.8% 4.7% 0.9% 1.6%
2.0 week 0.9% 2.5% 0.4% 5.9% 0.5% 2.6%

35 days

0.5 week 3.7% 0.5% 2.7% 1.5% 2.8% 0.5%
1.0 week 2.2% 0.7% 1.2% 2.2% 1.3% 0.8%
1.5 week 1.4% 0.9% 0.9% 3.2% 0.8% 1.0%
2.0 week 1.0% 1.4% 0.5% 3.7% 0.5% 1.5%

RBC unit increases if more weight is put on minimizing the relative opportunity
loss, which is exactly what we would expect. As already said in the previous
section, also the percentage of RBC units short decrease when more weight is put
on minimizing the relative opprtunity loss. However, the difference between γ = 1

2
and γ = 1 is small (0.1%).

Table 6.5 shows the results for the percentage of requests that could be sat-
isfied with an antigen identical RBC unit, but now looking at the usability factor
of the issued RBC unit (Definition 1). In general it holds that rare RBC units
have a high usability factor, as they are negative for many antigens and there-
fore compatible with many blood groups. Surprisingly, the percentage of identical
matches decreases when RBC units are less rare. The percentage of units outdated
increases when the usability factor decreases, which is exactly what we would ex-
pect. The FIFO issuing policy has the lowest percentage of units outdated, but
the difference with the combined issuing policy is small. When comparing a FIFO
policy (γ = 1) with the combined FIFO/MROL policy (γ = 1

2) we see that the
percentage of requests that can be satisfied with identical RBC units is higher for
the combined issuing policy. This is due to the fact that 1.4% of outdating is
prevented by issuing older units earlier.
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Table 6.4: All RBC units requested were classified into five based on their receivability
factor. For each requested RBC unit we investigated whether the issued RBC unit was
identical, compatible or not available.

(a) FIFO (γ = 0)

receivability identical compatible shortage

[10−0, 10−1) 14.2% (88.2%) 1.9% (11.8%) 0.0% (0.0%) 16.1%
[10−1, 10−2) 50.6% (89.8%) 5.6% (10.0%) 0.1% (0.2%) 56.4%
[10−2, 10−3) 21.4% (81.5%) 3.3% (12.4%) 1.6% (6.1%) 26.3%
[10−3, 10−4) 0.6% (49.4%) 0.2% (12.0%) 0.5% (38.6%) 1.3%
[10−4, 10−5) 0.0% (11.9%) 0.0% (0.0%) 0.0% (88.1%) 0.0%

86.8% 10.9% 2.2% 100%

(b) MROL (γ = 1)

receivability identical compatible shortage

[10−0, 10−1) 15.7% (97.7%) 0.4% (2.3%) 0.0% (0.0%) 16.1%
[10−1, 10−2) 54.2% (96.1%) 2.2% (3.8%) 0.0% (0.0%) 56.4%
[10−2, 10−3) 23.2% (88.3%) 2.3% (8.6%) 0.8% (3.0%) 26.3%
[10−3, 10−4) 0.7% (56.1%) 0.2% (12.8%) 0.4% (31.1%) 1.3%
[10−4, 10−5) 0.0% (10.4%) 0.0% (9.0%) 0.0% (80.6%) 0.0%

93.8% 5.0% 1.2% 100%

(c) FIFO / MROL (γ = 1
2 )

receivability identical compatible shortage

[10−0, 10−1) 15.4% (95.8%) 0.7% (4.2%) 0.0% (0.0%) 16.1%
[10−1, 10−2) 54.0% (95.8%) 2.4% (4.2%) 0.0% (0.0%) 56.4%
[10−2, 10−3) 23.3% (88.6%) 2.1% (8.0%) 0.9% (3.4%) 26.3%
[10−3, 10−4) 0.7% (57.1%) 0.1% (11.5%) 0.4% (31.5%) 1.3%
[10−4, 10−5) 0.0% (10.4%) 0.0% (0.0%) 0.0% (89.6%) 0.0%

93.4% 5.3% 1.3% 100%

Issuing age

Figure 6.7 shows box plots for the issuing age of RBC units stratified by both their
usability and receivability factor. Note that on the left y-axis the age the issued
RBC unit is displayed and on the right y-axis the residual shelf life (= 35− age).
Looking at Figure 6.7a we see that RBC units with a high usability factor are issued
at a younger age than RBC units with a low usability factor. RBC units with a
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Table 6.5: All RBC units in inventory were classified into five based on their usability
factor. For each RBC unit in inventory we investigated whether the it was eiter issued
identical, compatible or expired.

(a) FIFO (γ = 0)

usability identical compatible outdated

[10−0, 10−1) 29.0% (94.7%) 1.6% (5.3%) 0.0% (0.0%) 30.6%
[10−1, 10−2) 50.7% (89.9%) 5.8% (10.1%) 0.0% (0.0%) 56.4%
[10−2, 10−3) 8.2% (68.8%) 3.3% (27.6%) 0.4% (3.6%) 11.9%
[10−3, 10−4) 0.3% (30.0%) 0.5% (46.5%) 0.2% (23.4%) 1.0%
[10−4, 10−5) 0.0% (0.0%) 0.0% (53.6%) 0.0% (46.4%) 0.0%

88.2% 11.1% 0.7% 100%

(b) MROL (γ = 1)

usability identical compatible outdated

[10−0, 10−1) 30.0% (97.2%) 0.6% (2.1%) 0.2% (0.7%) 30.8%
[10−1, 10−2) 52.9% (94.2%) 2.3% (4.1%) 1.0% (1.7%) 56.2%
[10−2, 10−3) 9.5% (78.6%) 1.7% (14.2%) 0.9% (7.2%) 12.1%
[10−3, 10−4) 0.2% (53.7%) 0.3% (28.0%) 0.2% (18.2%) 0.9%
[10−4, 10−5) 0.0% (15.0%) 0.0% (46.7%) 0.0% (38.3%) 0.0%

92.9% 4.9% 2.2% 100%

(c) FIFO / MROL (γ = 1
2 )

usability identical compatible outdated

[10−0, 10−1) 30.3% (97.6%) 0.7% (2.4%) 0.0% (0.0%) 31.0%
[10−1, 10−2) 53.5% (95.2%) 2.6% (4.7%) 0.1% (0.1%) 56.2%
[10−2, 10−3) 9.7% (81.2%) 1.7% (14.5%) 0.5% (4.3%) 11.9%
[10−3, 10−4) 0.5% (57.1%) 0.2% (26.0%) 0.2% (16.8%) 0.9%
[10−4, 10−5) 0.0% (13.0%) 0.0% (40.6%) 0.0% (46.4%) 0.0%

93.9% 5.3% 0.8% 100%

usability factor between 0.1 and 1 are issued within one week, when a FIFO issuing
policy is used and within two weeks when an MROL issuing policy is used. This
increase can be explained by the fact that with an MROL issuing policy rare units
will remain longer in stock.

In Figure 6.7b blood groups were classified on the receivability factor of the
units requested. From the figure it is clear that the age of the RBC units issued
decreases with a decreasing receivability factor of the requested RBC units.
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Figure 6.7: Issuing age of the RBC units in inventory, classified on blood group identical
and blood group compatible matches.

(a) Blood groups i ∈ B were aggregated based on usability factor (F s
i ) of the RBC units

issued.
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6.6 Conclusions
This chapter presents a mathematical framework that can be used to evaluate the
long-term performance of a predetermined issuing policy, which prioritizes between
the age and rareness of the RBC units in inventory. Daily decisions about which
RBC units to select from inventory to satisfy requests from hospitals are optimized
by modeling the inventory allocation problem as an MCFP. A simulation study,
which incorporates the stochasticity in the supply and demand of RBC units, is
conducted to assess the impact of these (optimal) daily decisions on the percentage
of units short and percentage of units outdated.

Currently the selection of RBC units to be issued is a manual process. This
will no longer be possible when the number of antigens that have to matched is
extended, as the inventory will rapidly become far too complex for a human to
manage. Hence, a system that is able to provide a fast and smart selection of RBC
units to be issued is urgently needed. The model presented in this chapter seems
appropriate to fulfill this need. More specifically, the inventory allocation model,
presented in Section 6.3, can be seen as the engine of a decision support system
that guides the issuance of extensively matched RBC units.

The proposed issuing policy that is investigated in this chapter, based on a
specific choice of the cost function, seems to perform well with respect to the
percentage of units short and percentage of units outdated. However, it does not
explicitly take potential future shortage or outdating into account. By a modelling
this problem as a Markov Decision Process, as was done in Chapter 5, the decision
concerning which RBC units to select from inventory can be optimized exactly. The
drawback of this approach is that the number of states (inventory composition)
grows exponentially with the number of RBC units in inventory considered, which
prevents the application of this approach in practice. Our results show that the
mathematical framework proposed in this chapter performs well with respect to
both the percentage of units short and percentage of units outdated.
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CHAPTER 7

Mathematical optimization for
alloimmunization prevention

7.1 Introduction

The most common adverse event associated with blood transfusion is the formation
of alloantibodies due to incompatibilities between the red blood cell (RBC) antigens
of donors and transfusion recipients. Alloantibodies may cause acute or delayed
hemolytic transfusion reactions during subsequent transfusions and may lead to
hemolytic disease of the foetus and newborn (HDFN) [27, 58, 96, 113]. Alloim-
munization can be prevented by matching RBC antigens of donors and transfusion
recipients, however this requires that antigen profiles are known in both populations
and compatible RBC units are available [38, 65].

At present, antigen typing is mainly done by serology and only a limited num-
ber of antigens can be tested. In contrast, genotyping can correctly predict the
expression of hundreds of antigens in a single assay. In the last decade, several
high throughput platforms have been developed and molecular profiling of donors
and transfusion recipients is likely to become common practice [20, 21, 40, 57, 74,
75, 122, 126].

Currently, extended preventive matching strategies are only applied for specific
groups of transfusion recipients and include a limited number of antigens. In the
Netherlands, women under 45 years of age receive c, E, and K compatible units;
individuals with myelodysplastic syndromes, alloantibodies, and autoantibodies,
receive at least C, c, E, e, and K compatible units; and individuals with sickle
cell disease and thalassemia are in addition matched for the antigens Fya, (and
if possible for) Jkb, S, and s [18]. Preventive matching strategies have led to a
notable reduction in the formation of alloantibodies [19, 70, 81, 104].

The availability of completely matched RBC units for all transfusion recipients
would eliminate transfusion-induced alloimmunization. However, given the large
number of antigens, this is thought to be infeasible in practice, even when consid-
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104 Chapter 7. Mathematical optimization for alloimmunization prevention

ering only the most clinically relevant antigens. RBC inventory sizes in blood banks
and hospitals are finite, which limits the likelihood that matched RBC units are
available. The feasibility of preventive matching when RBC antigens of donors and
transfusion recipients would be comprehensively typed has never been determined.

The goal of this study is to compute the proportion of alloimmunization that
can be prevented, when all donors and recipients are typed for A, B, D, and
twelve other minor blood group antigens, together responsible for the far majority
of alloimmunization events [36]. This includes an optimal sequence for antigen
matching, when the inventory contains an insufficient number of RBC units to
match a transfusion recipient on all fifteen antigens considered.

The current assumption in transfusion medicine is that there are numerous lo-
gistical and financial challenges when complete donor-recipient antigen matching
is attempted. Therefore, the next best alternative is to apply preventive matching
only for those transfusion recipients that are at high risk for alloimmunizaiton.
By mathematical modeling, we will show that preventive matching is feasible for
all transfusion recipients and not only for those at high risk. Our study paves
the way for a shift in transfusion policy from preventing the consequences of al-
loimmunization by screening for alloantibodies to preventing alloimmunization by
matching.

7.2 Study design and methods

To quantify and optimize the proportion of alloimmunization that can be prevented
by extending matching strategies up to fifteen antigens, information is required
concerning

1) the probability that a recipient would form antibodies against particular
antigens

2) the availability of extensively matched RBC units.

7.2.1 Antibody formation

Estimates on RBC alloimmunization risks against the selected antigens (C, c, E,
e, K, Fya, Fyb, Jka, Jkb, M, S, and s) in an incident new-user cohort of previ-
ously non-transfused, non-alloimmunized Caucasian transfusion recipients receiv-
ing non-extended matched RBC transfusions are used to calculate the proportion
of transfusion-induced alloantibodies formed against these antigens (Table 7.1)
[36]. These proportions are calculated by dividing the number of alloimmuniza-
tions against a selected antigen by the total number of alloimmunizations against
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Table 7.1: Specificity and proportion (pa) of selected first-time formed clinically relevant
alloantibodies.

Alloantibody anti-E anti-K anti-Jka anti-c anti-Fya anti-C anti-M

pa 0.373 0.257 0.105 0.078 0.051 0.046 0.038

Alloantibody anti-S anti-Jkb anti-Fyb anti-e anti-s total

pa 0.017 0.015 0.011 0.008 0 1

all selected antigens.

7.2.2 Availability of matched RBC units

Three inventory allocation models with increasing levels of complexity are applied
to quantify the likelihood that RBC units with a particular blood group are present
in inventory. The models differ in inventory composition (i.e., dynamics between
the distribution of blood groups in the donor and transfusion recipient population)
and issuing policy (Table 7.2). The distribution of blood groups in the donor
and transfusion recipient populations are assumed to be equal to the distribution
of blood group in a Caucasian population. They are obtained by combining the
antigen frequency tables of the ABO, Rhesus, Kell, Duffy, Kidd, and MNS blood
group systems (as presented in Section 4.4).

Inventory allocation model 1 is based on two assumptions:

1) the composition of the inventory is a reflection of the distribution of blood
groups in the donor population and remains unchanged after issuing RBC
units (static inventory composition),

2) any compatible RBC unit can be issued (antigen compatible issuing policy).

The second assumption implies that a transfusion recipient, who is positive for
particular minor blood group antigens might be transfused with blood from a
donor who is negative for these antigens. As a result, RBC units that are nega-
tive for many antigens will be issued more frequently than can be expected from
their occurrence in the donor population. Inventory allocation model 1, therefore,
overestimates the practical matching capacity and will not accurately reflect the
likelihood of having compatible RBC units in inventory.

Inventory allocation model 2 differs from model 1 in that it applies an antigen
identical issuing policy instead of an antigen compatible issuing policy, i.e., RBC
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Table 7.2: Inventory allocation models used to quantify the likelihood that RBC units are
available from inventory. The inventory allocation models differ with respect to inventory
composition and issuing policy.

Inventory composition Issuing policy

Inventory allocation model 1 Static Antigen compatible
Inventory allocation model 2 Static Antigen identical
Inventory allocation model 3 Dynamic Antigen identical

units that are negative for particular minor blood group antigens are only issued to
transfusion recipients who are also negative for these antigens. An antigen identical
issuing policy results in a realistic average in- and outflow of blood groups, since
the distribution of blood groups in the donor and transfusion recipient population
was assumed to be the same.

Inventory allocation models 1 and 2 do not consider any variability in the com-
position of the inventory, as issued RBC units are immediately replaced by RBC
units with the same blood groups. To account for randomness in the blood groups
supplied, the issued RBC units might also be replaced by RBC units whose blood
groups are sampled from the distribution of blood groups in the donor population
(dynamic inventory composition). Although an antigen compatible issuing pol-
icy would reflect current practice best, it also conflicts with the aim to match all
transfusion recipients on every selected antigen. More specifically, an antigen com-
patible issuing policy could result in shortages of antigen-negative blood groups.
Therefore, the dynamic inventory composition was only applied in combination
with an antigen identical issuing policy (inventory allocation model 3).

For inventory allocation models 1 and 2, due to their limited complexity, an
exact computation of the availability of matched RBC units can be derived by prob-
ability calculations. In contrast, for model 3 simulations were required to calculate
an average availability of antigen identical RBC units (Section 7.5, Appendix I).

7.2.3 Maximum proportion of alloimmunization prevented

Completely matched RBC units would eliminate all transfusion-induced alloimmu-
nization. However, as inventory sizes are finite, a perfect match on all antigens is
often impossible in practice. A match on a smaller number of antigens, in contrast,
is feasible, but might lead to alloimmunization against antigens excluded from the
matching strategy. To maximize the proportion of alloimmunization prevented, a
dynamic programming approach is used to find an optimal sequence for antigen
exclusion.

The dynamic programming approach decomposes all possible sequences con-
taining up to twelve minor RBC antigens (∼ 109) into a small number of levels
and connected states (∼ 104) (Figure 7.1). This reduces computational complexity
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=⇒ practical mathematical ⇐=

level 12

{a1, ..., a12}

level `

M`

level 11

{a1, ..., a11,��a12}

{a1, ..., a10,

��a11, a12}
{a1, ..., a9,

��a10, a11, a12}
...

{��a1, a2, ..., a12}

level 10

{a1, ..., a10

��a11,��a12}
{a1, ..., a9,

��a10, a11,��a12}
{a1, ..., a9,

��a10,��a11, a12}
...

{��a1,��a2
a3, ..., a12}

. . . level 0

{��a1, ...,��a12}

Figure 7.1: State transition diagram, which forms the basis for the dynamic programming
approach. It consists of 4,096 different states (i.e., matching strategies) connected by
24,576 arcs. It decomposes all possible sequences (∼ 109) in which up to twelve minor RBC
antigens can be either included in (⇐= mathematical) or excluded from (=⇒ practical) a
matching strategy.

drastically [87]. Each state represents a unique matching strategy M, consisting
(next to antigens A, B, D) of ` minor RBC antigens:

M = {A,B,D} ∪ {µ1, ..., µ`} . (7.1)

As antigens A, B, and D are always included and therefore non-distinctive, we only
refer to the set minor RBC antigens, which is denoted by M` = {µ1, ..., µ`}.

As illustrated in Figure 7.1, matching strategies can be ordered into a state
transition diagram, where each matching strategyM` is assigned to a level ` equal
to the number of minor RBC antigens considered. Moreover, matching strategies
between two consecutive levels are connected if the matching strategy at level `
contains exactly one antigen that is not part of the matching strategy at level `−1.
All sequences in which antigens could be excluded from a matching strategy can
be found by traversing the state transition diagram from left to right (=⇒). A
realistic approach in practice is to exclude antigens whenever the inventory is too
small to allow matching for all antigens considered. However, to find the order of
antigens to be excluded maximizing the proportion of alloimmunization prevented,
the state transition diagram has to be solved in the opposite direction, i.e., from
right to left (⇐=).

The maximum proportion of alloimmunization prevented, given a particular
matching strategyM`, was calculated iteratively by combining the maximum pro-
portion of alloimmunization prevented at the previous level plus the effect of adding
one additional antigen at level `. More specifically, for each level ` and for each
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mathematical ⇐=

level 12

{a1, ..., a12}

. . . level `

M`

level ` − 1

M` − µ1

M` − µ2

...
M` − µ`

. . . level 0

{��a1, ...,��a12}

Figure 7.2: State transition diagram. It illustrates how the maximum proportion of
alloimmunization prevented for matching strategy M` = {µ1, ..., µ`} is computed.

matching strategy M` at level `, the maximum proportion of alloimmunization
prevented was calculated by considering all paths up to level ` − 1 (which have
already been optimized) and selecting the path leading to the highest proportion
of alloimmunization prevented (Figure 7.2). Note that this is not the same as
optimizing the effect of adding one additional antigen to the optimal sequence
obtained so far, as the order in which antigens are added might change as all paths
for the new matching strategy are reconsidered.

In essence, given that level `− 1 has been solved, yet a separate optimization
problem exists in each state M` = {µ1, ..., µ`} at level `, which maximizes the
proportion of alloimmunization prevented by matching strategy M`, i.e.,

V (M`) = max
k=1,...,`

{r(M` − µk →M`) + V (M` − µk)} (7.2)

where

• V (M`) represents the maximum proportion of alloimmunization prevented
by matching strategy M` (consisting ` minor RBC antigens in addition to
A, B and D),

• V (M` − µk) represents the maximum proportion of alloimmunization pre-
vented by matching strategyM`−µk (consisting `− 1 minor RBC antigens
in addition to A, B and D),

• r(M` − µk →M`) represents the effect of adding antigen µk to matching
strategy M` − µk.

The value of each matching strategy M` can be computed by one-and-the-
same recursive formula, which is used repeatedly. The value of r(M`−µk →M`)
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is not simple an incremental effect of one additional antigen, but depends on the
antigens that were already included in matching strategyM`−µk (Appendix 7.5).

In short, the dynamic programming approach determines the optimal sequence
in which antigens have to be included, such that the proportion of alloimmunization
prevented is maximized. Here, the position of an antigen indicates the importance
of matching on this specific antigen. Hence, antigens that are added at a lower
level will prevent more alloimmunization than antigens that are added at a higher
level. From a practical perspective, in fact, the reverse sequence must be thought
of. It can be interpreted as the optimal sequence in which antigens have to be
excluded from a matching strategy when completely matched RBC units cannot
be found in inventory.

7.2.4 Scenarios analyzed
In this study the frequencies of fifteen antigens (and cognate antibodies) in Cau-
casians were taken into consideration: A, B, D, C, c, E, e, K, Fya, Fyb, Jka, Jkb,
M, S, and s. Computations are performed for:

• matching strategies from three (A, B, D) up to fifteen antigens,

• three inventory allocation models, which differed in inventory composition
(static / dynamic) and issuing policy applied (compatible / identical),

• inventory sizes of a small hospital (60 units), a large hospital (120 units), an
academic hospital (250 units), and a distribution centre (1000 units) (these
numbers are chosen according to inventory sizes in the Netherlands),

• requests for 1, 2, 3, 5, and 10 units, compatible or identical with the blood
group of a single transfusion recipient.

7.3 Results

7.3.1 Proportion of alloimmunization prevented
Computations using inventory allocation model 1 show that, when two RBC units
with a particular blood group are requested, the proportion of alloimmunization
prevented equals 0.90, 0.95, 0.98, and 1.00 for inventory size of 60, 120, 250, and
1000 units, respectively (Figure 7.3a-d). For inventory allocation model 2, these
proportions decrease to 0.72, 0.81, 0.88, and 0.95 (Figure 7.3e-h), and for inventory
allocation model 3 to 0.46, 0.63, 0.78, and 0.94 (Figure 7.3i-l). Moreover, when
the number RBC units requested increases, these proportions further decrease,
where magnitude of the decline strongly depends on the inventory size n.

An important similarity between the graphs in Figure 7.3, is that most of the
gain already can be obtained by matching on the two to four most important



110 Chapter 7. Mathematical optimization for alloimmunization prevention
sm

al
lh

os
pi

ta
l

la
rg

e
ho

sp
ita

l
ac

ad
em

ic
ho

sp
ita

l
di

st
rib

ut
io

n
ce

nt
er

(n
=

60
)

(n
=

12
0)

(n
=

25
0)

(n
=

10
00

)
model1

alloimmunization
prevented

0.
95

0.
90

0.
85

0.
76

0.
58

(a
)

0.
97

0.
95

0.
92

0.
88

0.
75

(b
)

0.
99

0.
98

0.
96

0.
93

0.
88

(c
)

1.
00

1.
00

0.
99

0.
99

0.
97

(d
)

model2

alloimmunization
prevented

0.
82

0.
72

0.
64

0.
51

0.
39

(e
)

0.
88

0.
81

0.
75

0.
67

0.
49

(f
)

0.
93

0.
88

0.
84

0.
78

0.
69

(g
)

0.
98

0.
95

0.
94

0.
91

0.
85

(h
)

model3

alloimmunization
prevented

12
10

8
6

4
2

0

0.
65

0.
46

0.
32

0.
13

0.
00

(i)

12
10

8
6

4
2

0

0.
78

0.
63

0.
53

0.
38

0.
11

(j)

12
10

8
6

4
2

0

0.
88

0.
78

0.
70

0.
59

0.
38

(k
)

12
10

8
6

4
2

0

0.
97

0.
94

0.
91

0.
85

0.
74

(l)

N
um

be
ro

fa
nt

ig
en

s
N

um
be

r
of

an
tig

en
s

N
um

be
r

of
an

tig
en

s
N

um
be

ro
fa

nt
ig

en
s

k
=

1
k

=
2

k
=

3
k

=
5

k
=

10

Fi
gu

re
7.

3:
M

ax
im

um
pr

op
or

tio
n

of
al

lo
im

m
un

iza
tio

n
pr

ev
en

te
d

fo
rn

=
60
,1

20
,2

50
,1

00
0

(in
ve

nt
or

y
siz

e)
;k

=
1,

2,
3,

5,
10

(n
um

be
ro

f
un

its
re

qu
es

te
d

fo
ra

sin
gl

e
tr

an
sfu

sio
n

re
cip

ien
t)

;a
nd

in
ve

nt
or

y
al

lo
ca

tio
n

m
od

els
1,

2,
an

d
3.

Th
e

in
cr

em
en

t
be

tw
ee

n
tw

o
co

ns
ec

ut
iv

e
po

in
ts

on
a

cu
rv

e
in

di
ca

te
s

th
e

co
nt

rib
ut

io
n

of
an

ad
di

tio
na

la
nt

ig
en

on
th

e
to

ta
lp

ro
po

rt
io

n
of

al
lo

im
m

un
iza

tio
n

pr
ev

en
te

d.



7.3. Results 111

minor RBC antigens (i.e., E, K, Jka, and c), together responsible for 0.63 up
to 0.80 of the alloantibodies formed by transfusion recipients (Table 7.1). For
example, for inventory allocation model 3 and an inventory size of 60 units, the
proportion of alloimmunization prevented, equals 0.60 (for 1 unit) / 0.46 (for 2
units), when matching on these four antigens. These proportions increase to 0.70
/ 0.61, 0.78 / 0.72, and 0.80 / 0.80 for inventory sizes of 120, 250, and 1000
units respectively. Moreover, even when 5 up to 10 units are requested from a
distribution center, a match on the four most important antigens prevents 0.71 up
to 0.78 of alloimmunization events.

7.3.2 Optimal order for antigens exclusion

The increment between two consecutive points on a curve (Figure 7.3) indicates
the contribution of the addition of a single antigen on the total proportion of al-
loimmunization prevented. As these proportions are computed sequentially, the
contribution of a particular antigen does not only depend on the proportion of
antibodies directed against this antigen (Table 7.1), but also on the antigens that
are already matched. This has a substantial impact on the likelihood that a trans-
fusion recipient can be matched for this additional antigen, since it might still be
excluded in case insufficient matched RBC units are available from inventory.

The optimal matching strategy at each matching level provides an order in
which antigens have to be added. The optimal matching strategy can vary per sce-
nario (inventory size and number of RBC units requested) and was determined for
20 different scenarios (four inventory sizes, five numbers of RBC units requested).
Figure 7.4 shows the frequency that antigens occur at a particular position in the
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Figure 7.4: Distribution of the optimal positions per antigens within the matching strategy
over all 20 scenarios considered. The grey-scale corresponds to the frequency indicated.
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Figure 7.5: Average number of minor RBC antigens for which a transfusion recipient was
matched for n = 60, 120, 250, 1000 (inventory size); k = 1, 2, 3, 5, 10 (number of units
requested for a single transfusion recipient); and inventory allocation models 1, 2, and 3.

sequence of matched antigens for inventory allocation model 3. This figure shows
that the antigen order is hardly affected by the number of units requested or the
size of the inventory. For most scenarios antigen E is added first to the matching
strategy, followed by K, c and Jka as the majority of the antibodies are directed
against these antigens.

Note that not all rows and columns add up to 20. This is because in some
situations the likelihood of an increase in the prevention of antibody formation
becomes near negligible (< 10−3), in which case no further antigens were added
to the matching strategy.

7.3.3 Number of minor RBC antigens matched

As antigens might be excluded when the inventory contains an insufficient number
of matched RBC units, some transfusion recipients are not matched for all twelve
minor RBC antigens consider, but only for a limited number of antigens. Figure
7.5 shows the average number of minor RBC antigens for which a transfusion re-
cipient was matched for each of the three inventory allocation models. A complete
representation of the underlying distributions can be found in Supplemental Table
7.5 (Section 7.5).
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7.4 Discussion

When genotyping of donors and transfusion recipients becomes affordable in the
near future, comprehensive preventive matching might become possible. Up until
now, the effect of preventive matching on the rate of alloimmunization has never
been determined. In this study we applied mathematical techniques to calculate
the proportion of transfusion-induced alloimmunization that might be prevented
when both donors and transfusion recipients are comprehensively typed. In the
situation where all donors and transfusion recipients are typed for the fifteen most
clinically relevant antigens (responsible for the far majority of the immunizations
encountered in practice) and all transfusion recipients are optimally matched, this
proportion was 94% when two RBC units are requested from an inventory of 1000
RBC units. When preventive matching is applied for a limited number of patients
and compatible matching may be applied (inventory allocation model 1), even with
smaller inventories of 120 RBC units still 95% of alloimmunization events can be
prevented.

An optimal sequence for antigen matching was determined for different in-
ventory sizes and number of units requested with a particular blood group. This
sequence does not only depend on the immunogenicity of the antigens, but also
by the availability of requested blood groups. As a result, for each model and
inventory size a slightly different optimal antigen sequence was obtained. In most
models E and K were on the first 2 positions, followed by either c or Jka, C, or
Fya, and eventually by M, S, Jkb, Fyb, or e. We used the immunogenicity of the
blood group antigens as determined in a prospective study in an incident new-user
cohort study among patients transfused in the Netherlands [36]. In this study pa-
tients who received other than routinely matched (A, B, D) units were excluded.
Although this study is the largest study to date (i.e., 472 immunizations in 21,512
recipients), the immunogenicity values are still approximations. The optimal anti-
gen sequence found in our study might therefore change when more accurate or
different estimates for the immunogenicity of antigens become available.

In practice, the majority of transfusion recipients still receive two RBC units
per transfusion episode [12]. Therefore, we explicitly discuss the results that were
obtained for a request of two units (k = 2) and its implications for transfusion
practice. Three different models were tested for this situation. Inventory allocation
model 1 provides estimates in case a limited number of high risk transfusion recip-
ients receive extensively matched RBC units. The proportion of alloimmunization
that can be prevented against selected antigens equals 100% for a distribution cen-
tre with 1000 units in stock. However, even if compatible units are selected from a
large hospital with only 120 RBC units in stock, the proportion of alloimmunization
preventable would still be 95%. This latter result implies that at present 95% of
immunizations can be prevented in selected high risk patients.

To model the effects of a preventive matching strategy that is applied for
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all transfusion recipients, the inventory allocation strategy had to be adapted to
prevent inventory depletion. Therefore, with model 2, first the effect of saving
homozygous RBC units for patients that are also homozygous for the respective
antigens (antigen identical issuing policy) was tested. As expected, this strategy
reduces the level of alloimmunization prevention, but still 95% of antibodies against
selected antigens can be prevented if two RBC units are issued from a distribution
centre and 72% when issuing from a small hospital. Next, the dynamic inventory
composition with an identical issuing policy (inventory allocation model 3) was
assessed. The proportion of alloimmunization prevented is more than 91% if three
or less RBC units are issued from an inventory of 1000 RBC units. But also a
considerable proportion of alloimmunization can be prevented from smaller stocks,
ranging from 70% to 32% from inventories with 250 to 60 RBC units.

Our results clearly demonstrate that it is feasible to prevent the majority of
transfusion-induced antibodies when both donors and transfusion recipients are
comprehensively typed and the inventory from which matched RBC units are is-
sued is sufficiently large. In practice, however, the inventory of RBC units in
hospitals is limited, indicating that logistics and inventory management will have
to be redesigned to achieve the theoretical gain of preventive matching predicted.
On the other hand, the majority of all transfusions are elective [37, 112], which
implies that matched blood products are not required instantly. Hence, instead
of putting unassigned stock in hospital inventories, it might be worthwhile inves-
tigating the feasibility of installing a combined stock for several hospitals as this
would increase the overall availability of extensively matched RBC units. However,
our results demonstrate that even with the current organization of the blood sup-
ply a substantial amount of antibody formation may be prevented when extensive
preventive matching is implemented.

Limitations of our study concern first of all the fixed inventory sizes. Once
RBC units are issued from inventory these are immediately replaced. In practice
however, the total number of RBC units in inventory will fluctuate which will affect
the likelihood that a particular RBC unit will be available. Second, we assumed
that the number of RBC units requested with a particular blood group (k) was
fixed. Especially for (relatively) large k and a dynamic inventory composition this
can destabilize the inventory as k RBC units with antigen identical blood groups
are extracted from inventory per request, while the blood groups of the new RBC
units are randomly selected. The likelihood of finding a set of matching RBC
units for a single requests for 10 units will therefore be higher than the likelihood
calculated, as there will be a mix of the number of RBC units requested. Third,
when a match on all fifteen antigen cannot be found, antigens are excluded until
an optimal match on a reduced number of antigens is found. The antigens that
are ignored are not revisited, so it might be that a match on more antigens was
possible.

Besides the availability of matched RBC units, the blood group of the transfu-



7.4. Discussion 115

sion recipient has to be known to apply preventive matching strategies. Due to the
expansion of genetic diagnostics and technical improvements and cost reduction
of genotyping platforms, the number of transfusion recipients whose exomes have
been fully sequenced will increase and algorithms are available that can extract the
blood group of a donor from exome or whole genome sequencing data [69]. Geno-
typing platforms that can rapidly and accurately determine the most important
blood groups are available [122]. However, our study also demonstrates that the
majority of alloimmunizations can already be prevented when recipients are only
typed for one to four additional antigens, which can also be achieved by serologic
typing methods.

The results presented in this study were obtained by using blood group fre-
quencies and estimates of immunogenicity for a Caucasian population. However,
our models are generic, and can be applied to any designated donor and patient
population with other blood group frequencies and/or immunogenicity data to find
a tailored optimal sequence for antigen matching.

In conclusion, we have demonstrated that with present inventory sizes and
the proposed sequence for antigen matching, most transfusion-induced alloim-
munization events in Caucasian recipients can be prevented when both donors
and recipients are comprehensively typed. This means that preventive matching
is a strategy that might deserve serious consideration for practical implementa-
tion once comprehensive (geno)typing of donors and patients becomes affordable.
Reduced alloimmunization events will not only lower the costs associated with
antibody identification, but also improve patient health by decreasing the risk
of (alloantibody-induced) hemolytic transfusion reactions and HDFN. Our study
shows that alloimmunization is not an inevitable risk of blood transfusion, but that
it (in analogy to infectious risks) can be prevented. With the availability of blood
group genotyping platforms transfusion policy can be changed to the prevention
of alloimmunization by matching.
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7.5 Appendix I

Before the mathematical description of the three inventory allocation models and
the dynamic programming approach is provided, we first present some details about
the mathematical notation of haematological concepts (see also Chapter 4). Table
7.3 provides an overview of the different sets, parameters, and variables used in
this chapter.

Table 7.3: Overview of the different sets, parameters, and variables used in this section.

Sets

P Power set (P (S): the set of all subsets of S, including the
empty set and S itself)

A Set of RBC antigens (index a)
M⊆ A Matching strategy (index a)
M` ⊆M Set of minor RBC antigens (index µ)

Parameters

n Inventory size
k Number of RBC units requested for a single transfusion

recipient
fi(M), fj(M) Proportion of donors and recipients with blood groups i ∈

P(M) and j ∈ P(M) respectively
gj(M) Proportion of donors having a blood group compatible with

blood group j ∈ P(M)
pa Proportion of alloantibodies directed against antigen a ∈

A

Variables

Xj ∼ Bin(n, fi(M)) Number of RBC units in inventory with a blood group
identical with blood group j ∈ P(M)

Yj ∼ Bin(n, gj(M)) Number of RBC units in inventory with a blood group
compatible with blood group j ∈ P(M)

Lj(M, n, k) Likelihood that k matched RBC units with phenotype j ∈
P(M) are present in an inventory of size n, when matching
strategy M is applied

r(M` − µk →M`) Incremental proportion of alloimmunization prevented by
adding antigen µk ∈M` to matching strategy M` − µk

V (M`) Maximal proportion of alloimmunization prevented, when
matching strategy M = {A,B,D} ∪M` is applied



7.5. Appendix I 117

7.5.1 Blood group terminology and notation

The blood group of an individual is determined by antigens a ∈ A which are either
present or absent on the surface of the individual’s RBCs, where A = {a1, ..., an}
is a finite set of antigens. An individual is called a-positive if antigen a is present on
surface of the RBCs and a-negative if antigen a is absent. Due to the dichotomous
structure of antigen (i.e., it is either present or absent) the set of blood groups
that can be composed from antigens a ∈ A, denoted by B, is equal to the power
set of A.

A matching strategy M ⊆ A represents a specific set of antigens for which
the blood groups of donors and transfusion recipients have to be matched. As,
with respect to this specific matching strategy, only the antigens a ∈ M are of
interest, the other antigens that do not belong to this set (i.e., a ∈ A\M) can be
ignored. Therefore, the blood groups of donors and transfusion recipients can be
compressed into blood groups that are contained in the set P(M).

Let the relative frequency of blood group i ∈ P(M) in the donor population
and the relative frequency of blood group j ∈ P(M) in the transfusion recipient
population be denoted by fi(M) and fj(M) respectively. For the computation of
these relative frequencies we refer the reader to Section 4.4.

7.5.2 Inventory allocation models

Inventory allocation models 1 and 2 have both a static inventory composition
(i.e., the inventory is a reflection of the distribution of blood groups in the donor
population and remains unchanged after issuing RBC units). Therefore, an exact
computation of the probability that matched RBC units are present in inventory
can be derived.

Let Xj be a random variable representing the number of RBC units in inventory
compatible with blood group j ∈ P (M) Then Xj is binomially distributed with
parameters n and gj(M), where n denotes the inventory size and

gj(M) =
∑
i:i≤j

fi(M)

represents the probability that an RBC in inventory is compatible with blood group
j ∈ P(M). The likelihood that k compatible RBC units are present in inventory,
when matching strategy M is applied, equals

L1
j (M, n, k) = P [Xj ≥ k] .

Similarly, let Yj be a random variable representing the number of RBC units in
inventory identical to a requested blood group j ∈ P(M). Then Yj is binomially
distributed with parameters n and fj(M) and the likelihood that k identical RBC
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Algorithm 1: Inventory allocation model 3
Input : inventory size (n), number of units requested (k), distribution of

blood groups in the donor and transfusion recipient population
(fi(M), fj(M))

Output: likelihood that matched RBC units are present in inventory
(L3

j (M, n, k))

1 Construct an initial inventory by drawing n blood groups from the donor
population;

2 Set tj = 0 and sj = 0 for all j ∈ P(M);
3 for k = 1 to 10, 000 do
4 Draw a blood group j ∈ P(M) from the transfusion recipient

population;
5 tj = tj + 1;
6 if Yj ≥ k then
7 sj = sj + 1;
8 Yj = Yj − k;
9 Refill the inventory by drawing k blood groups from the donor

population;
10 end
11 end
12 return L3

j (M, n, k) = sj/tj ;

units are present in inventory, when matching strategy M is applied, equals

L2
j (M, n, k) = P [Yj ≥ k] .

Inventory allocation model 3 has a dynamic inventory composition. The availability
of identical RBC units is calculated by simulating the supply and demand of RBC
units, where in each iteration it is checked whether the blood group requested
appears at least k times in inventory. For a detailed description, see Algorithm 1.

7.5.3 Dynamic programming approach

To find an optimal order in which antigens a ∈ A\{A,B,D} have to be added to
a matching strategy M that maximizes the total proportion of alloimmunization
prevented a dynamic programming approach is applied. This mathematical ap-
proach computes the maximum proportion of alloimmunization prevented for each
matching strategy

M = {A,B,D} ∪M`, M` ∈ P (A\{A,B,D}) ,



7.5. Appendix I 119

in a recursive manner.
First, a network of matching strategies is constructed, in which each matching

strategy M = {A,B,D} ∪M` is assigned to a level ` ∈ {0, ..., 12} based upon
the number of minor RBC antigens in the matching strategy (i.e., ` = |M`|).
Moreover, matching strategies between two consecutive levels are connected if the
matching strategy at the lower level (M` − µk) contains exactly one antigen less
than the matching strategy at the upper level (M`), as illustrated in Figure 7.1.

The proportion of alloimmunization prevented when transfusion recipients are
only matched for antigens A, B and D (i.e., V (M0)), is set equal to zero. Next,
for any ` = 1, 2, ..., 12 and any matching strategyM` at level `, the maximum pro-
portion of alloimmunization prevented can be calculated by the following recursive
formula:

V (M`) = max
k=1,...,`

{r(M` − µk →M`) + V (M` − µk)} ,

where r(M`−µk →M`) evaluates the effect of adding antigen µk to a matching
strategy M` − µk on the total proportion of alloimmunization prevented. More
specifically,

r(M` − µk →M`) = pµk

∑
j∈P(M`)

w(j, µk)Lj(M`, n, k), (7.3)

with

• pµk
– proportion of antibodies formed against antigen µk,

• w(j, µk) – weight function representing the probability that a blood group
j ∈ P(M`) is requested given that it contains antigen µk ∈ M`, which is
defined as

w(j, µk) =


fj∑

i∈P(M`):µk∈I
fi
, if µk ∈ J ,

0, otherwise,

• Lj(M`, n, k) – likelihood that k matched RBC units with blood group j ∈
P(M) are present in an inventory of size n, when matching strategy M` is
applied.

For a detailed description of the dynamic programming approach, see Algorithm
2.
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Algorithm 2: Dynamic programming approach
Input : proportion of alloantibodies directed against antigen a ∈ A (pa),

distribution of phenotypes in the transfusion recipient population
(fj(M)), likelihood that matched RBC units are present in
inventory (Lj(M, n, k))

Output: Maximal proportion of alloimmunization prevented (V (M`))

1 Set V (M0) = 0;
2 for ` = 1, ..., 12 do
3 for M` ∈ P(A\{A,B,D} with |M`| = ` do
4 for k = 1, ..., ` do
5 Compute

r (M` − µk →M`) = pµk

∑
j∈P(M)w(j, a)Lj(M, n, k) ;

6 end
7 Compute V (M`) = max

k=1,...,`
{r (M` − µk →M`) + V (M` − µk)} ;

8 end
9 end

10 return V (M`) for all M` ∈ P (A\{A,B,D});
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7.6 Appendix II

Number of minor RBC antigens matched
n k * 0 1 2 3 4 5 6 7 8 9 10 11 12 average

1 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.01 0.04 0.06 0.06 0.05 0.66 10.60
2 0.00 0.00 0.00 0.03 0.03 0.01 0.07 0.08 0.02 0.07 0.09 0.07 0.05 0.48 9.50

60 3 0.01 0.00 0.00 0.04 0.04 0.02 0.10 0.09 0.08 0.10 0.07 0.01 0.05 0.37 8.42
5 0.05 0.01 0.01 0.05 0.09 0.04 0.12 0.10 0.09 0.10 0.06 0.01 0.04 0.24 7.07
10 0.14 0.01 0.01 0.15 0.13 0.07 0.11 0.10 0.05 0.07 0.04 0.00 0.02 0.11 4.97

1 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.03 0.03 0.04 0.05 0.04 0.78 11.24
2 0.00 0.00 0.00 0.00 0.02 0.01 0.04 0.06 0.02 0.05 0.07 0.07 0.06 0.63 10.52

120 3 0.00 0.00 0.00 0.00 0.03 0.02 0.06 0.08 0.02 0.06 0.08 0.08 0.06 0.52 9.93
5 0.00 0.00 0.00 0.04 0.04 0.02 0.09 0.10 0.08 0.10 0.08 0.01 0.05 0.39 8.72
10 0.05 0.01 0.01 0.06 0.09 0.04 0.12 0.10 0.09 0.10 0.06 0.01 0.04 0.23 6.95

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.02 0.03 0.03 0.87 11.62
2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.03 0.03 0.04 0.05 0.05 0.77 11.24

250 3 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.05 0.04 0.06 0.06 0.06 0.68 10.89
5 0.00 0.00 0.00 0.00 0.02 0.01 0.04 0.07 0.02 0.06 0.08 0.08 0.06 0.56 10.20
10 0.00 0.00 0.00 0.04 0.04 0.02 0.10 0.10 0.08 0.10 0.08 0.01 0.05 0.38 8.74

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.97 11.92
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.93 11.82

1000 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.89 11.72
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.83 11.51
10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.04 0.04 0.06 0.06 0.06 0.71 11.03

(a) Inventory allocation model 1

Number of minor RBC antigens matched
n k * 0 1 2 3 4 5 6 7 8 9 10 11 12 average

1 0.02 0.02 0.04 0.06 0.06 0.02 0.04 0.14 0.12 0.12 0.13 0.06 0.03 0.14 7.02
2 0.04 0.04 0.07 0.11 0.07 0.09 0.20 0.01 0.18 0.07 0.06 0.02 0.01 0.02 4.89

60 3 0.08 0.05 0.09 0.05 0.10 0.20 0.21 0.15 0.04 0.03 0.00 0.01 0.00 0.00 3.82
5 0.17 0.07 0.09 0.10 0.15 0.24 0.14 0.02 0.01 0.00 0.00 0.00 0.00 0.00 2.59
10 0.27 0.07 0.25 0.27 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.30

1 0.01 0.01 0.02 0.04 0.04 0.01 0.03 0.10 0.11 0.11 0.15 0.08 0.05 0.24 8.23
2 0.02 0.02 0.05 0.07 0.05 0.06 0.15 0.02 0.20 0.11 0.11 0.05 0.03 0.06 6.33

120 3 0.03 0.03 0.07 0.04 0.05 0.14 0.20 0.22 0.09 0.08 0.00 0.03 0.01 0.02 5.06
5 0.05 0.05 0.09 0.04 0.08 0.26 0.26 0.10 0.05 0.01 0.01 0.00 0.00 0.00 3.87
10 0.19 0.09 0.06 0.10 0.19 0.28 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 2.42

1 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.06 0.08 0.08 0.14 0.09 0.06 0.39 9.37
2 0.01 0.01 0.02 0.04 0.03 0.05 0.10 0.02 0.15 0.13 0.14 0.09 0.05 0.16 7.79

250 3 0.01 0.02 0.04 0.03 0.04 0.08 0.13 0.20 0.14 0.14 0.01 0.07 0.03 0.07 6.44
5 0.02 0.03 0.06 0.04 0.04 0.11 0.24 0.20 0.14 0.05 0.03 0.00 0.01 0.01 5.13
10 0.05 0.07 0.07 0.03 0.06 0.33 0.25 0.08 0.05 0.02 0.00 0.00 0.00 0.00 3.86

1 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.04 0.04 0.08 0.06 0.05 0.69 10.91
2 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.01 0.07 0.09 0.09 0.09 0.07 0.51 10.06

1000 3 0.00 0.00 0.01 0.00 0.01 0.04 0.06 0.09 0.11 0.11 0.02 0.10 0.07 0.38 9.19
5 0.00 0.01 0.01 0.01 0.02 0.06 0.07 0.12 0.12 0.17 0.12 0.01 0.07 0.21 8.04
10 0.01 0.02 0.02 0.02 0.05 0.08 0.10 0.18 0.19 0.16 0.08 0.04 0.00 0.05 6.43

(b) Inventory allocation model 2
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Number of minor RBC antigens matched
n k * 0 1 2 3 4 5 6 7 8 9 10 11 12 average

1 0.10 0.06 0.12 0.05 0.11 0.07 0.10 0.12 0.12 0.04 0.02 0.03 0.01 0.05 4.38
2 0.19 0.10 0.17 0.16 0.14 0.07 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00 2.15

60 3 0.25 0.16 0.25 0.17 0.06 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.24
5 0.39 0.29 0.29 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35
10 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.04 0.04 0.04 0.06 0.12 0.03 0.11 0.14 0.14 0.06 0.06 0.06 0.02 0.09 5.83
2 0.07 0.07 0.10 0.11 0.23 0.06 0.10 0.18 0.04 0.02 0.01 0.00 0.00 0.00 3.46

120 3 0.12 0.09 0.14 0.14 0.31 0.13 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.00 2.32
5 0.20 0.13 0.25 0.19 0.19 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37
10 0.38 0.33 0.27 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33

1 0.02 0.00 0.04 0.07 0.01 0.09 0.01 0.12 0.16 0.10 0.12 0.05 0.02 0.19 7.40
2 0.03 0.04 0.03 0.13 0.04 0.15 0.20 0.06 0.16 0.08 0.04 0.02 0.01 0.01 4.92

250 3 0.04 0.06 0.05 0.10 0.18 0.18 0.04 0.23 0.08 0.02 0.01 0.00 0.00 0.00 4.00
5 0.08 0.07 0.12 0.14 0.31 0.17 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.00 2.63
10 0.20 0.11 0.28 0.25 0.12 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.34

1 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.04 0.06 0.07 0.07 0.15 0.05 0.51 10.25
2 0.01 0.00 0.00 0.01 0.02 0.02 0.02 0.07 0.16 0.13 0.21 0.10 0.05 0.20 8.70

1000 3 0.01 0.00 0.00 0.02 0.02 0.06 0.03 0.11 0.24 0.16 0.12 0.13 0.03 0.06 7.58
5 0.01 0.00 0.02 0.08 0.01 0.12 0.22 0.06 0.25 0.12 0.05 0.04 0.01 0.01 5.88
10 0.03 0.03 0.06 0.07 0.16 0.23 0.05 0.28 0.07 0.01 0.01 0.00 0.00 0.00 4.22

(c) Inventory allocation model 3

Table 7.4: Number of antigens matched for n = 60, 120, 250, 1000 (inventory size),
k = 1, 2, 3, 5, 10 (number of units requested for a single transfusion recipients). *For some
combinations of n and k a match on only antigen A, B, and D was not possible.

Position
n k 1 2 3 4 5 6 7 8 9 10 11 12

1 E K Jka c Fya C M S Jkb Fyb e
2 E K Jka c C Fya M S Jkb Fyb

60 3 E K Jka c C Fya M S Jkb Fyb

5 E K c Jka C Fya M S Jkb

10 E K Jka c C Fya S

1 E K Jka c Fya C M S Jkb Fyb e
2 E K Jka c C Fya M S Jkb Fyb e

120 3 E K Jka c C Fya M S Jkb Fyb

5 E K Jka c C Fya M S Jkb Fyb

10 E K c Jka C Fya M S Jkb

1 E K Jka c Fya C M S Jkb Fyb e
2 E K Jka c Fya C M S Jkb Fyb e

250 3 E K Jka c C Fya M S Jkb Fyb e
5 E K Jka c C Fya M S Jkb Fyb

10 E K Jka c C Fya M S Jkb Fyb

1 E K Jka c Fya C M S Jkb Fyb e
2 E K Jka c Fya C M S Jkb Fyb e

1000 3 E K Jka c Fya C M S Jkb Fyb e
5 E K Jka c Fya C M S Jkb Fyb e
10 E K Jka c C Fya M S Jkb Fyb e

(a) Inventory allocation model 1
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Position
n k 1 2 3 4 5 6 7 8 9 10 11 12

1 E K Jka c C Fya M S Jkb

2 E K c Jka C Fya S
60 3 E K c C Jka Fya S

5 E K c C
10 E K

1 E K Jka c Fya C M S Jkb

Fyb
e

2 E K Jka c C Fya M S Jkb

120 3 E K c Jka C Fya S
5 E K c C Fya S
10 E K c C S

1 E K Jka c Fya C M S Jkb e Fyb

2 E K Jka c Fya C M S Jkb

250 3 E K Jka c C Fya M S Jkb

5 E K Jka c C Fya S
10 E K c C Jka Fya

1 E K Jka c Fya C M S Jkb Fyb e
2 E K Jka c Fya C M S Jkb Fyb e

1000 3 E K Jka c Fya C M S Jkb e Fyb

5 E K Jka c Fya C M S Jkb e
10 E K Jka c Fya C S M Jkb

(b) Inventory allocation model 2

Position
n k 1 2 3 4 5 6 7 8 9 10 11 12

1 E K c C Jka M Fya e Jkb Fyb

2 E K c C Jka e
60 3 E K c C

5 E K
10

1 E K Jka c C M Fya e Jkb Fyb S
2 E K c Jka C M e Fya

120 3 E K c Jka C
5 E K c C
10 E c

1 E K Jka c C Fya Jkb M S Fyb

2 E K Jka c C Fya M e Jkb

250 3 E K c Jka C Fya e M
5 E K c Jka C
10 E K c

1 E K Jka c C Fya M Jkb S e Fyb

2 E K Jka c C Fya M Jkb e S Fyb

1000 3 E K Jka c C M Fya e Jkb Fyb S
5 E K Jka c C Fya M e Jkb

10 E K Jka c C Fya e

(c) Inventory allocation model 3

Table 7.5: Optimal order in which antigens have to be added to a matching strategy for
n = 60, 120, 250, 1000 (inventory size), k = 1, 2, 3, 5, 10 (number of units requested for a
single transfusion recipients).
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CHAPTER 8

Conclusion and outlook

Healthcare is moving towards precision medicine, which offers a more in-depth un-
derstanding of human physiology using genetic insights and technological advances.
This is pivotal in alleviating unnecessary suffering due to unintended side effects,
which result from the currently applied one-size-fits-all approach [61]. New genetic
insights and technological advances also shape the field of transfusion medicine.
Inexpensive molecular typing paired with powerful bioinformatics has enabled mass-
scale red blood cell genotyping of donors and transfusion recipients [65]. These
will likely replace serology-based methods and increase the availability of extended
antigen matched red blood cell units [15, 65]. Over the past years, extended anti-
gen matching has become standard practice for some transfusion recipients and
has proven to reduce alloimmunization risks. As stated in [15]: ”Genotyping has
the potential to facilitate the optimization of red cell component provisioning on
a mass-scale by improving the efficiency by which the supply of antigen-negative
units meets demand”. This thesis will evaluate this potential by using methods
from the mathematical discipline of Operations Research (OR). To do so, a com-
prehensively antigen-typed donor and transfusion recipient population is presumed.
Accordingly, throughout this thesis, arbitrary blood groups have been considered.
For illustrative purposes, ABO, D examples have been included.

A major challenge faced by blood transfusion services is to maintain an ad-
equate donor base, with a sufficiently diverse age distribution and blood group
composition [16]. This composition may restrict the ability to select extended
matched red blood cell units for transfusion. In fact, an overrepresentation of
donors with antigen-negative blood groups is strived for, so that their red blood
cells can be matched with a larger proportion of the recipient population. Although
the blood group of an individual is normally unknown, relatives are more likely to
have blood groups that are similar. Therefore knowledge of the blood groups of
active donors can be used to target relatives of donors with desirable (rare) blood
groups for recruitment. This has been made practical in Chapter 3 for arbitrary
blood groups beyond ABO, D. Several next of kin relations were computed; this is
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a novel contribution to the literature.
More generally, in this thesis, several mathematical models are developed for

the optimization of blood inventory management and particularly the issuing of
available RBC units. As extended blood groups are to be described, a first major
challenge was to establish an unambiguous mathematical description to represent
arbitrary blood groups, irrespective of the antigens considered. Instead of describ-
ing a blood group by indicating the names of the antigens that are present or
absent, we represented blood groups by binary vectors. By an ordering principle,
this binary description incorporates compatibility between blood groups, implying
that a compatibility matrix is no longer required. By representing blood groups
by binary vectors and disposing of the compatibility matrix, we have provided a
generic representation that can be used to model blood group allocation or match-
ing. Furthermore, this binary representation simplifies the application of advanced
mathematical OR techniques for optimization. This has been made apparent in
Chapters 5, 6, and 7 and has been demonstrated in Chapters 6 and 7 by practical
examples.

An important question addressed in this thesis is how the inventory on hand
should be issued, such that all requests can be satisfied with a compatible RBC
unit, both directly upon requests and for future demands. Outdating levels should
at the same time be minimized as RBC units form a precious good that is volun-
tarily donated by non-remunerated donors. As a result, the ability to issue highly
compatible RBC units eliminates the risk of adverse events as a result of incompat-
ible transfusions. The starting point of issuing RBC units is a matching strategy
that determines which antigens should be matched, and hence, which RBC units
are expected to be compatible with those of a requested blood product. With an
increase in the number of antigens considered in a matching strategy, the level of
alloimmunization prevented will increase as well, but it becomes more challeng-
ing to find compatible units. The matching strategy chosen, therefore, affects
the probability of being able to issue compatible RBC units and the proportion of
alloimmunization prevented by matching.

In Chapter 5, the problem of optimization RBC issuing is transformed into a
discrete and computational feasibile structure by an MDP description. It incorpo-
rates all relevant aspects of donations and requests occurring at arbitrary times, as
well as the ageing of RBC units and blood group compatibility. The mathematical
model developed allows derivation of an optimal issuing policy for any possible
blood group requested and for any possible inventory composition. However, this
model is still computational prohibitive, as the number of possible inventory com-
positions grows rapidly with the number of antigens considered. Nevertheless, by
its discrete and MDP structure, there are several possible directions for further
research to find an approximate optimal allocation strategy. One of them is to pre-
determine an issuing policy in some sub-optimal manner and evaluate its quality.
This was done in Chapter 6. Other approaches could be to consider a limited num-
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ber of states or cluster states with similar structures (e.g., by using approximate
dynamic programming and reinforcement learning).

In Chapter 6, a predetermined issuing policy is search for, which aims to balance
the age and rareness of the RBC units in inventory. This issuing policy is incor-
porated into a deterministic optimization model (a minimum cost flow problem).
For a given inventory composition, the optimization model determines which RBC
units are selected to satisfy requests. Its performance is evaluated by simulation.

When transfusion recipients are matched for just the ABO, D blood groups,
no shortage or outdating occurs. When this predetermined strategy is applied for
extended blood groups (i.e., up to fourteen different antigens), both shortage or
outdating slightly increase. Hence, the majority of requests can be satisfied with
an antigen compatible red blood cell unit. The reasons this works well, is that
we assumed that 1) the distribution of blood groups in the donor and transfu-
sion recipient population to be identical and 2) the inventories to be sufficiently
large, such that in most cases an antigen identical match on all fourteen antigens
considered is possible.

In practice, a shortage can easily be resolved. It merely requires that a sub-
group of antigens is matched. The antigens that are not matched might elicit an
immune response in the transfusion recipient. The probability of such an immune
response depends on the immunogenicity of the antigens. Chapter 7 investigates
which of the antigens are best not to be matched for in these cases. An optimal
matching order could be determined, which maximizes the proportion of alloim-
munization prevented. A vast majority of the alloimmunization events could so be
prevented by extended matching.

Currently, the selection of RBC units to be issued is a manual process. This
will no longer be possible when the number of antigens that have to be matched
is extended, as the inventory will rapidly become too complicated for a human
to manage. Hence, a system that is able to provide a fast and smart selection
of RBC units to be issued is recommended. The models presented in this thesis
will stimulate the development of such systems. The work presented in this thesis
shows that

• the majority of alloimmunization can be prevented by a matching strategy
that is extended with a relatively limited number antigens,

• a practical solution for selecting the most suitable RBC units can be provided
based on mathematical optimization.

These results clearly show that blood safety can be improved by merely enhancing
the distribution and allocation of the blood products currently available. The
cost-effectiveness of the implementation of such a strategy is a topic for further
research.
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Summary

Introduction

A blood transfusion is a safe, common, and potentially life-saving medical proce-
dure in which one or multiple blood components, originating from a donor, are
inserted into the bloodstream of a transfusion recipient. The recipient might, for
example, suffer from a haematological disorder (leukaemia, sickle cell disease, tha-
lassemia) or surgical procedure (organ transplant, heart surgery). With respect to
transfusion of red blood cells, it is important that the blood groups of the donor
and transfusion recipient match.

The blood group of an individual is determined by the presence or absence of
antigens on the surface of the red blood cells. If a particular antigen is present
on red blood cells of a donor but absent on the red blood cells of the transfusion
recipient, the immune system of the transfusion recipient may produce against this
foreign antigen (alloimmunization) These antibodies will cause problems during a
subsequent transfusion or, in the case of a female recipient, a future pregnancy. A
response of the immune system could have been prevented by selecting red blood
cells lacking the relevant antigen.

Donor selection

As blood groups are inherited, the recruitment of donor relatives, for example
siblings, is expected to be effective, since the probability of a similar rare blood
group is likely. However, the likelihood differs between blood groups and is not
commonly available. This paper provides a unified mathematical formulation to
calculate such likelihoods. From a mathematical and probabilistic point of view,
it is shown that these likelihoods can be obtained from the computation of a
stationary genotype distribution. This, in turn, can be brought down to a system
of quadratic stochastic operators. A generic mathematical approach is presented
which directly leads to a stationary genotype distribution for arbitrary blood groups.
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Inventory allocation

The ABO blood group classification as well as the Rhesus-D factor are well known,
which includes three blood group antigens (A, B, D). Within the field of transfusion
medicine, however, more than 15 different blood group antigens are distinguished.
Ideally, each transfusion recipient is matched for these clinically relevant blood
group antigens. If there were unlimited quantities of red blood cell units in inven-
tory, this would in principle be no problem. In practice, however, inventory size are
finite.

We have developed a new mathematical framework that can be applied for an
arbitrary set of antigens. It determines which red blood cell units should be issued
from inventory, such that 1) requests from hospitals can be satisfied with antigen
compatible red blood cell units 2) shortages for future requests are avoided, and
3) outdating is prevented. The potential practical performance of the optimization
model is evaluated by simulation and is based on historical data on supply and
demand of red blood cell units in the Netherlands. The results show that most
requests can be satisfied with antigen identical red blood cell units, while shortages
and outdating can be kept restricted.

In practice, shortages are solved by reducing the number of antigens that are
matched. However, the probablity of alloimmunization increases. This probability
can be minimized by determining an optimal sequence for antigen exclusion in case
insufficient matching red blood cell units are available from inventory.

Conclusion

At present, alloimmunization preventing matching strategies are only applied to
specific transfusion recipient groups and include a limited number of red blood cell
antigens. The general assumption is that providing extensively matched red blood
cell units to all transfusion recipients is not feasible in practice. In this thesis,
we investigate whether this assumption is valid and compute the proportion of
alloimmunization that can be prevented when all donors and transfusion recipients
are comprehensively typed.



Samenvatting

Introductie

Een bloedtransfusie is een veilige, veel voorkomende en soms levensreddende medis-
che behandeling, waarbij rode bloedcellen afkomstig van een donor worden inge-
bracht in de bloedbaan van een transfusieontvanger die deze nodig heeft vanwege
een chirurgische ingreep (orgaantransplantatie, hartchirurgie) of een hematologis-
che aandoening (leukemie, sikkelcelanemie, thalassemie). Bij een bloedtransfusie
is het van belang dat de bloedgroepen van de donor en transfusieontvanger zoveel
mogelijk overeenkomen, of anders gezegd, dat hun bloedgroepen matchen.

De bloedgroep van een individu wordt bepaald door de aan –of afwezigheid van
antigenen op de celwand van de rode bloedcellen. Indien een bepaald antigeen aan-
wezig is op de rode bloedcel van een donor, maar afwezig op de rode bloedcel van
de transfusieontvanger, dan kan het immuunsysteem van de transfusie ontvanger
overgaan tot het aanmaken van antistoffen tegen dit lichaamsvreemde antigeen
(alloimmunisatie). Deze antistoffen kunnen vervolgens problemen veroorzaken
bij een volgende bloedtransfusie, of in het geval van een vrouwelijke ontvanger,
een toekomstige zwangerschap. Een reactie van het immuunsysteem kan echter
voorkomen worden door uit de beschikbare voorraad –indien mogelijk– rode bloed-
cellen te selecteren waarbij het desbetreffende antigeen ook ontbreekt.

Donor selectie

Huidige donor wervingsstrategieën zijn gebaseerd op historische matchingsstrate-
gieën en kunnen niet voldoen aan de vraag naar uitgebreid gematchte rode bloed-
celeenheden. Omdat bloedgroepen erfelijk zijn, is de kans op het vinden van
een vergelijkbaar antigeenprofiel bij naaste familieleden veel groter dan bij een
willekeurig persoon. Voor selectieve werving van potentiële donors is het interes-
sant te weten hoe groot deze kans als functie van de familierelatie is. Dit lijkt
relatief eenvoudig, maar de a priori kansen zijn echter onbekend en zijn bepaald
door het oplossen van een stelsel van kwadratische vergelijkingen.
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Voorraad management

Over het algemeen is de ABO-bloedgroep classificatie evenals de Rhesus-D factor
welbekend, welke een drietal antigenen betreft (A, B, D). Binnen de transfusiege-
neeskunde onderscheidt met echter meer dan 15 verschillende, klinisch relevante,
bloedgroepantigenen. Idealiter zou men bij een bloedtransfusie met al deze anti-
genen rekening willen houden. Indien er onbeperkte hoeveelheidheden rode bloed-
celeenheden voorradig zouden zijn, is dat in principe geen probleem. In de praktijk
zijn voorraden echter eindig.

We hebben een nieuw wiskundig optimalisatie model ontwikkeld dat kan worden
toegepast voor een willekeurige verzameling antigenen. Het bepaalt welke rode
bloedceleenheden uit de voorraad geselecteerd moeten worden zodat 1) aanvragen
van ziekhuizen kunnen worden voldaan met antigeen compatibele eenheden, 2)
tekorten worden vermeden en 3) zo min mogelijk eenheden over de houdbaarheids-
datum gaan. De werking van het wiskundig optimalisatie model wordt geëvalueerd
door middel van simulaties en is gebaseerd op historisch data omtrent vraag en aan-
bod van rode bloedceleenheden in Nederland. Uit de resultaten blijkt dat een groot
aantal van de aanvragen van ziekenhuizen kunnen worden voldaan met antigeen
identieke rode bloedceleenheden, en dat de kans op tekorten en overschotten hierbij
klein is.

In de praktijk worden tekorten opgelost door het aantal antigenen waarop wordt
gematcht te reduceren. Echter neemt de kans op de vorming van alloantistoffen
hierdoor toe. Deze kans kan geminimaliseerd worden door een optimale volgorde
te bepalen waarop antigenen worden weggestreep uit de matchingsstrategie.

Conclusie

Momenteel worden strategieën ter voorkoming van antistofvorming alleen toegepast
op specifieke groepen transfusieontvangers en omvatten slechts een beperkt aantal
rode bloedcelantigenen. De algemene aanname is dat het verstrekken van uitge-
breid gematchte rode bloedceleenheden aan alle transfusieontvangers praktisch niet
haalbaar is. In dit proefschrift onderzoeken we of deze aanname klopt en berekenen
we het percentage antistoffen dat voorkomen kan worden wanneer alle donoren en
transfusieontvangers volledig zijn getypeerd.
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Bruno, Thomas, Maarten, Jasper, Eline, Marelise, Jasmijn, Nikki en alle andere
MOR collega’s wil graag zeggen dat ik elke week met veel plezier naar Enschede
afreisde. Ik heb erg genoten van de congressen, barbecues, lunchwandelingen,
uitjes, en wiskundige discussies bij de koffieautomaat.
Corine, Xinwei, en later Anne, jullie hebben er als kamergenoten voor gezorgd dat
ik me thuis voelde op mijn werkplek op de UT. Corine, ook al zei ik dat ik niet
voor de gezelligheid kwam, wil ik je toch bedanken voor de vele leuke gesprekken
die wij met elkaar hebben gevoerd, eerst op de UT en later ook in de trein terug
naar huis. Xinwei, bedankt voor zowel de rust als gezelligheid die jij in ons kantoor
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