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Abstract—The use of machine learning algorithms to enrich 
agent-based models has increased over the past years. This 
integration adds value when combining the advantages of the 
data-driven approach and the possibilities to explore future 
situations and human interventions. However, this integrating is 
still in its infant stage. Full integration of learning algorithms and 
agent-based models is often technically challenging and can 
make the behavioural rules of the agents less transparent. 
Experiments are needed in which different integration strategies 
are compared using the same agent-based model to determine 
when each of these approaches is most effective. In this paper, we 
present a comparison of two versions of the same cholera model. 
In the initial version, agent behaviour was driven directly by a 
learning algorithm. In our experiments, we replace this strategy 
by applying a learning algorithm directly on the data and 
implement the outcomes as behaviour rules in the model. The 
results showed that when the integration aims to create agents 
that show characteristics that are data-driven, deriving rules 
based on these data is a good alternative. In addition, a key 
element in this strategy is the dataset.  A large dataset 
representing the behaviour of different types of agents over the 
complete time period is needed. 

Keywords—Intelligent agent, disease simulation, agent-based 
simulation, risk perception, decision trees 

I. INTRODUCTION 

Global change, sustainability, and complexity in which the 
behaviour of humans plays a crucial role are targetable 
phenomena in academic research. We need empirical 
methodologies to identify the processes that explain these 
phenomena and provide managerial strategy tools. Agent-
based models (ABMs) have proven to be one of these 
simulation tools that help policymakers to identify and assess 
different strategies [1]. The integration of machine learning 
(ML) algorithms and ABMs has increased over the past years, 
yet it is still in its infant stage. The added value is the 
combination of the advantages of the data-driven approach and 
the possibilities to explore future situations and human 
interventions [2].   In this paper, we present a comparison of 
two versions of the same ABM of cholera diffusion. In the 
initial version, agent behaviour was driven directly by an ML 
algorithm [3]. In our experiments in this paper, we replace this 
strategy by applying ML directly on the data using decision 

tree C4.5 and implement the outcomes as behaviour rules in 
the ABM. 

II. INTEGRATION OF ABM AND ML 

ABMs provide a framework that allows representing a 
spatial environment containing heterogeneous agents, that 
display micro/macro relationships, and have with adaptive 
behaviour [4]. Typically, ABMs are developed to identify the 
realism and level of details required to model and understand 
certain behavioural rules in real-life applications [5].  
In order to make agents behave naturally, ABMs often apply 
ML algorithms governing agents’ behaviour [6]. Behaviour of 
human agents in ABMs may employ various ML algorithms 
to form expectations and opinions about the environment and 
future trends of other variables of interests [7].  

Augustijn et al. (2019) mentioned that the integration  of 
implementing ML algorithms and ABM can be formulated in 
three phases [8]:  
� Learning algorithms driven by data are used to derive 

information to generate agents, agent attributes and agent 
behaviour [9]; 

� ML and ABM are fully integrated to generate agents that 
learn during the ABM simulation [3]; 

� Two individual models (one ML and one ABM) are 
generated and outcomes are matched during the 
calibration/validation process [10], [11].  

However, full integration of ML and ABM is often technically 
challenging and regarded by ABM designers as a Blackbox as 
behaviour rules are less transparent [5], [12], [13]. In addition, 
usually behavioural data that needed to simulate human 
behaviour in models are not available for most of real life 
applications [14]. Therefore, experiments are needed in which 
different integration strategies are compared using the same 
ABM model to determine when each of these approaches is 
most effective. 
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III. METHODS 

A. Case Study: Cholera Diffusion ABM 
To test the benefit of applying machine learning in the 

design of the ABM to determine the behaviour rules of the 
agents, we used the cholera agent-based model (CABM) as a 
testbed. CABM is a geographically explicit model that 
simulates cholera transmission in the urban area of Kumasi, 
Ghana [15]. The goal of CABM is to examine the role of 
runoff water from open dumpsites as a trail for the diffusion 
of cholera. CABM incorporates environmental and human 
behavioural elements. The model has been used to explore the 
impact of implementing ML algorithms to steer the behaviour 
of agents [3],  to compare the individual and collective 
learning [16] and to integrate the spatial intelligence for risk 
perception of agents in the model [17].  CABM contains three 
agent types: households, individuals, and rain particles. 
Household agents are heterogeneous in terms of their 
attributes such as income level, hygiene level, water source, 
and house location. Individual agents have heterogeneous 
attributes including age, gender, blood type, and health status 
(susceptible, infected, and recovered). The agent population 
(households and individuals) is generated using a synthetic 
population generator that provides the model with its largest 
stochastic element. 

Household agents use an ML algorithm to perceive cholera 
risk and, in case of risk, to adapt themselves and making a 
coping decision. Protection motivation theory [18] was 
adapted to simulate the processes of risk perception (threat 
appraisal) and coping appraisal in CABM Fig. 1. Several 
factors impact the risk perception and coping appraisal of 
household agents. These factors vary from environmental to 
demographic characteristics. The factors for threat appraisal 
include: visual pollution (VP) of the river water (spatial 
environment), news of cholera diffusion via media, 
communication with other agents (social interaction with 
neighbours) and previous experience with cholera (memory). 

 
Fig. 1. Protection Motivation Theory Adapted to CABM 

While for coping appraisal the factors: household’ own 
experience of using river water, neighbours’ experience with 
using the river water, income level, and education level are 
concerned. 

In the study area, 14% of low-and middle- income level 
household agents do not have access to tap water. This 

percentage increases when it rains heavily in Kumasi [15].  
Therefore, households need to go to the river and fetch water. 
Based on their risk perception, they evaluate if the water is 
infected with cholera or not. Then accordingly, they need to 
make one of the decisions shown in Fig. 1. 

B. Behavioural Dataset 
 One of the challenges in the field of behavioural science is 
the lack of available behavioural datasets [19]. For the cholera 
outbreak of 2005 in Kumasi, Ghana, no risk perception data is 
available that shows how the people of Kumasi changed their 
health-seeking behaviour during the course of the disease 
outbreak. The only available dataset for the 2005 epidemics is 
the disease surveillance data of cholera cases reported to the 
Disease Control Unit (DCU). onto collect individual behaviour 
data, we ran a survey through a Massive Open Online Course 
(MOOC) – Geohealth in two rounds 2016 and 2017. MOOC 
participants were introduced to the cholera disease problem by 
showing them pictures of water and asking what their coping 
decision would be under different conditions (factors we 
included in the process of risk perception). This dataset was 
used in [20] to construct and train Bayesian Networks (BNs) 
that were used to steer the risk perception and coping appraisal 
behaviours of agents. In this research, we use the same dataset 
to derive the behavioural rules of household agents for their 
both risk perception and coping appraisal. 

C. Decision Trees to Derive Agents Behavioural Rules 
In machine learning, there are three types of learning: 

supervised, unsupervised and reinforcement learning. With the 
existence of data, supervised learning is implemented. 
Decision trees are one of the techniques that use data for 
training and creating predictive models. This technique is 
mapping observation in the dataset to a decision. Decision trees 
have been implemented with agent-based modelling to derive 
a certain behaviour such as in [21]. Nodes in a decision tree 
represent attributes (factors) that impact the final decision 
(leaves). The root node represents the factor that has the 
highest impact on the decision. The next connected nodes are 
those that correlated to the previous node, they have less 
impact on the decision and their impact depends on the value 
of the previous node. There is a number of methods to create 
decision trees: Chi-squared automated interaction detector 
(CHID), classification and regression trees (CART), iterative 
dichotomizer (ID3) and C4.5 (successor of ID3). For the 
purpose of this paper, we use the C4.5 decision tree algorithm. 
C4.5 has been selected to be used to derive the risk perception 
and coping appraisal rules of the agent-based model. This is 
because C4.5 has high modularity and can easily interpret data 
to rules. A rule can be easily understood and be read without 
connecting it to other rules in the tree [21], [22].  

D. Software 
The CABM is developed using NetLogo (version 5.2.0). 

NetLogo is a multiagent modelling software that is developed 

Decisions:

-D1: Use river water as it is

-D2: Walk to cleaner 

location along the river 

-D3: Boiled river water

-D4: Buy Bottled water

• Own Experience
• Neighbour Experience
• Income Level
• Educated/not

• Spatial Environment
• Social interaction
• Media
• Memory

Threat 
Appraisal

Coping 
Appraisal

Behavioural 
Intention

Protection 
Behaviour
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at the CCL and authored by Uri Wilnesky [23]. The rules of 
both risk perception and coping appraisal were derived by 
C4.5 using Weka. Weka is a Java-based machine learning 
toolkit that is developed at the University of Waikato [24]. 
Both software packages are open-source and easy to code and 
use even for non-expert programmers. 

E. Implementation Steps 
To achieve the purpose of this paper, Fig. 2 shows the 

steps of setup of this research: 

 
Fig. 2. Flow Diagram of the Setup of this Research 

The implementation of ML algorithms in CABM consists 
of four stages: preparation of MOOC data (1), using ML to 
derive the behaviour of agents (top row) and/or steering the 
agent behaviour (bottom) (2), implementing the behaviour 
rules in CABM (top row) and running the CABM (3), and 
evaluating the output of the simulations (4). To evaluate the 
difference between the two implementations of ML, we 
compare the results (5). 

IV. RESULTS AND DISCUSSION 

A. Risk Perception Decision Tree 
Using Weka, we use the MOOC dataset as input to derive 

the rules for the stages of both risk perception and coping 
appraisal. For risk perception (threat appraisal), the resulted 
decision tree is shown in Fig. 3. 

According to the dataset, media has the highest impact on 
the perception of cholera risk. Whenever media starts to 
broadcast news about cholera, people pay attention to it even 
though they may not have previous experience with cholera 
(memory). The level of visual pollution of the river water does 
not impact their risk perception when media is activated. 
Communication with neighbours also does not impact their 
risk perception. They fully depend on what the media 
broadcasts. The sequence of importance of information 
sources is as follows: Media > Memory > Visual Pollution > 
Neighbours. 

Under absence of media, people depend on other channel 
of information, represented by communication with 
neighbours. When there are infected cases in their 

neighbourhood, then, no matter whether they had a previous 
cholera experience, they perceive cholera risk.  

Although, normally, people depend on their visual 
observations and memory to make decisions of feeling at risk. 
With the rules derived from MOOC dataset, the level of 
pollution (no, low, high) or the type of memory (positive, 
negative) with cholera has less impact on the risk perception 
of participants comparing to communication with neighbours 
as can be seen in Fig. 3. The sequence of importance of 
information sources is as follows: Neighbours > Memory > 
Visual Pollution. 

Fig. 3. Decision Tree of Risk Perception (Threat Appraisal) 

 
Fig. 4. Decision Tree of Coping Appraisal 

B. Coping Appraisal Decision Tree 
Figure 4 shows the rules derived for coping appraisal. The 

own experience of the individual with cholera is the main 
attribute towards which decision is made. When individuals 
do not have a negative experience with cholera (infection in 
their household), then infections in their neighbourhood will 
impact their coping decision. The selection of a coping 
decision takes the income level and education of the 
individual into account. Educated individuals with a middle-
income level boil the water fetched from the river (D3) while 
the non-educated ones prefer to walk to a cleaner water point 
and fetch river water (D2). However, individuals with a low-

(1) MOOC Survey 
Data (2) BNs in R (3) Run CABM 

using NetLogo

(4) Output (Risk 
Perception, infected 
cases, and Coping 
Appraisal)

(5) Comparison

(1) MOOC Survey 
Data

(2) Derive Rules 
using C4.5 in 

Weka

(3) Implement the 
rules in CABM 
and run the 
model 

(4) Output (Risk 
Perception, infected 
cases, and Coping 
Appraisal)

(Abdulkareem et al, 2018)
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income level either use the river water as is (D1) if they are 
uneducated or walk to a cleaner water point and fetch the 
water (D2) if they are educated. 

Whenever individuals experience cholera and have a 
negative experience, then depending on their demographic 
attributes, they make one of the coping decisions except using 
the river water as it is (D1). If they are middle-income level 
and educated but there are no infected cases in their 
neighbourhood then boiling water (D3) is a preferable 
decision. While a negative experience of their neighbours 
(infected cases in their neighbourhood) leads to buying bottled 
water (D4). Also, uneducated-middle income level 
individuals prefer D4, even when infected cases in their 
neighbourhood exist. Finally, for individuals with a low-
income level, walking to a cleaner water point is a preferable 
decision since it does not cost money. 

C. Running CABM 
The epidemic of cholera in Kumasi, Ghana in 2005 lasted 

for 90 days. Therefore, the simulation in CABM run for 90 
days as well. Every tick in the model represents one hour in 
real life. We ran CABM 100 times using rules of risk 
perception and coping appraisal that were derived from 
MOOC data using C4.5 to get stable results. The number of 
infected cases and the number of household agents who 
perceived risk is recorded daily using their rule-based threat 
appraisal function. In addition, the number of households that 
follow a specific coping decision is recorded. In order to 
evaluate the effectiveness of implementing C4.5 to derive 
agents behaviour, we compared the outcomes of this version 
of CABM with the one in [3]. The results in [3] had been 
statistically evaluated using sensitivity analysis and normality 
test. 

Comparing the risk perception curve of the current CABM 
with the one in [3] shows that household agents behave 
smartly in the current version Fig. 5. 

 
Fig. 5. Risk Perception Curves of Household Agents in CABM 

From day one onward, household agents perceiving 
cholera risk, although no infected cases occurred yet. 

However, when the media starts to broadcast news about 
cholera after three weeks, more household agents perceive 
risk. Their number keeps increasing until the middle of the 
epidemic period where it keeps high and stable to the end of 

the simulation time. While in [3], once the number of infected 
cases decreases Fig. 6, the number of households with risk 
perception decreases as well Fig. 5. 

Comparing the number of infected cases per model Fig. 6, 
we notice that fewer cases were recorded in the current version 
of CABM. This is due to the high-risk perception of the 
households in the model. They take protective measures to 
prevent cholera infection. 

According to the coping appraisal rule of the agents Fig. 
4, household agents avoid using river water as it is (D1) and 
look for alternative water sources. These effective decisions 
explain the smaller number of infected cases in the model. In 
[3], household agents avoid buying bottled water. Their 
learning process taught them that boiling water can be safe 
and costs less than buying bottled water. Within the rule-based 
coping appraisal, household agents follow the most effective 
decision rather than learning which decision could be cheaper 
and also protective. 

Figures  7 and 8 show the decisions that had been made by 
household agents in both versions of CABM. 

Using ML to steer the coping appraisal behaviour in [3] 
helped household agents to learn during the simulation and 
improve their decision making process. They select the 
decision that fits their risk perception and their demographic 
attributes (income level and being educated/not). Buying 
bottled water (D4) is an expensive decision comparing to 
other decisions (D1 – D3). Household agents learned that 
boiling river water (D3) is cheap and effective Fig. 7. 

Fig. 6. Epidemic Curves of CABM Indicating Infected Cases per Model 
Version  

 
All MOOC participants were well – educated people that, 
most probably, come from a middle or high-income level. 
Furthermore, they were from different countries around the 
world with different cultural backgrounds. This impacts the 
decision making of how/which water they should use/drink. 
Buying bottled water (D4) reflects that they are concerned 
about protecting themselves, even if the decision costs more 
money 
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. In addition, the education level of the household agents 
helps them to also think about boiling water fetched from river 
especially after they knew from media that there is cholera 
Fig. 8. 

Fig. 7. Coping Appraisal Decisions of Household Agents in [3] 

 

 
Fig. 8. Coping Appraisal Decisions of Household Agents in Current CABM 

D. Models Performance 
Running one simulation of CABM in [3] requires 95 

minutes to be accomplished. In [3], CABM implemented BNs 
to steer risk perception and coping appraisal behaviour. BNs 
were implemented in the R statistical language. Exchanging 
data between NetLogo and R requires extra simulation. 

The current version of CABM runs the simulation only via 
NetLogo as rules of risk perception and coping appraisal were 
derived in Weka before running the simulation. CABM does 
not connect to any other software to steer the behaviour of the 
agents. Therefore, running one simulation requires 30 minutes. 
This saves one hour per simulation run. 

V. CONCLUSIONS 

The machine learning algorithm in this version of CABM 
was used to derive behaviour rules outside the ABM. The rules 
were derived from MOOC data using the C4.5 machine 
learning algorithm. The MOOC data were collected from well-
educated people from countries all around the world that 
belonged to different cultural backgrounds. Therefore, the 

rules derived from these data reflect rational behaviour. The 
MOOC participants education level, and possibly their higher 
income level, was reflected in their responses to the survey. 
They are aware of the impact cholera can have and know how 
to effectively protect themselves against cholera. By 
implementing risk perception and coping appraisal rules 
derived from this data, agents behave like the participants of 
the MOOC survey. 

In the previous version of CABM, the machine learning 
algorithm (represented by Bayesian Networks) was used to 
steer the behaviour of agents inside the ABM. In these 
versions, agents learnt gradually and simultaneously with the 
learning process of the machine learning algorithm itself. 
Therefore, they started to show rational behaviour later, and 
had a stronger preference for a cheaper yet effective coping 
strategy (boiling the water).  

There is a clear difference between deriving rules for an 
ABM via ML and using ML to steer agent-behaviour as an 
integrated part of the ABM, reflected in the differences found 
in the two models. In case that learning during the simulation 
is needed, integration of the ABM and ML is required. This 
does not mean that deriving behavioural rules from data cannot 
be a good alternative in some cases. Technically, full 
integration of ML and ABM is difficult as ABM platforms do 
often not contain ML algorithms. When the integration aims to 
create agents that show characteristics that are data-driven, 
deriving rules based on these data is a good alternative. As the 
ML algorithms are often not integrated in the ABM software, 
this approach makes it easier to experiment with different ML 
algorithms and compare their results. 

A key element in this strategy is the dataset.  We cannot 
depend on a limited group of people to derive the behaviour 
that should be used for others. A large dataset representing the 
behaviour of different types of agents over the complete time 
period is needed.  

Decision trees are good at ordering variables in a sequence 
of importance (media is more important than memory). 
However, they do not indicate numeric information that can be 
used to derive agent behaviour rules unless regression models 
of decision trees are used which gives probabilities of each 
attribute that impact the decision. 

The current implementation of the model derives rules that 
remain fixed throughout the simulation. For the future work, 
an ML algorithm is required that is able to derive rules from 
datasets but also update these rules later during the simulation. 
Also, integrating ML algorithms in ABM software can 
recover the related technical problems of connecting ABM 
software with another software that ML is implemented with. 
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