
Speed-Robust Scheduling

Franziska Eberle∗ Ruben Hoeksma† Nicole Megow∗ Lukas Nölke∗

Kevin Schewior‡ Bertrand Simon§

November 11, 2020

Abstract

The speed-robust scheduling problem is a two-stage problem where, given m machines, jobs
must be grouped into at most m bags while the processing speeds of the machines are unknown.
After the speeds are revealed, the grouped jobs must be assigned to the machines without be-
ing separated. To evaluate the performance of algorithms, we determine upper bounds on the
worst-case ratio of the algorithm’s makespan and the optimal makespan given full informa-
tion. We refer to this ratio as the robustness factor. We give an algorithm with a robustness
factor 2 − 1/m for the most general setting and improve this to 1.8 for equal-size jobs. For
the special case of infinitesimal jobs, we give an algorithm with an optimal robustness factor
equal to e/(e− 1) ≈ 1.58. The particular machine environment in which all machines have
either speed 0 or 1 was studied before by Stein and Zhong (SODA 2019). For this setting,
we provide an algorithm for scheduling infinitesimal jobs with an optimal robustness factor
of (1 +

√
2)/2 ≈ 1.207. It lays the foundation for an algorithm matching the lower bound of 4/3

for equal-size jobs.

∗University of Bremen, Department of Mathematics and Computer Science, Germany.
{feberle,nmegow,noelke}@uni-bremen.de

†University of Twente, Department of Applied Mathematics, The Netherlands. r.p.hoeksma@utwente.nl
‡Universität zu Köln, Department of Mathematics and Computer Science, Cologne, Germany.

kschewior@gmail.com
§IN2P3 Computing Center, CNRS, Villeurbanne, France. bertrand.simon@cc.in2p3.fr

ar
X

iv
:2

01
1.

05
18

1v
1

 [
cs

.D
S]

 1
0

N
ov

 2
02

0

1 Introduction

Scheduling problems with incomplete knowledge of the input data have been studied extensively.
There are different ways to model such uncertainty, the major frameworks being online optimization,
where parts of the input are revealed incrementally, stochastic optimization, where parts of the
input are modeled as random variables, and robust optimization, where uncertainty in the data is
bounded. Most scheduling research in this context assumes uncertainty about the job characteristics.
Examples include online scheduling, where the job set is a priori unknown [1, 14], mixed-criticality
scheduling, where the processing time comes from a given set [4], stochastic scheduling, where the
processing times are modeled as random variables with known distributions [13], robust scheduling,
where the unknown processing times are within a given interval [12], two/multi-stage stochastic and
robust scheduling with recourse, where the set of jobs that has to be scheduled stems from a known
super set and is revealed in stages [5, 15], and scheduling with explorable uncertainty, where the
processing time of a job can potentially be reduced by testing the job at extra cost [8].

A lot less research addresses uncertainty about the machine environment, particularly, where the
processing speeds of machines change in an unforeseeable manner. The majority of such research
focuses on the special case of scheduling with unknown non-availability periods, that is, machines
break down temporarily [2, 7] or permanently [16]. Arbitrarily changing machine speeds have been
considered for scheduling on a single machine [9].

Fluctuations in the processing speeds of machines are pervasive in real-world environments. For
example, machines can be shared computing resources in data centers, where a sudden increase of
workload may cause a general slowdown or, for some users, the machine may become unavailable
due to priority issues. As another example, machines that are production units may change their
processing speed due to aging or, unexpectedly, break down completely. In any case, (unforeseen)
changes in the processing speed may have a drastic impact on the quality of a given schedule.

In this paper, we are concerned with the question of how to design a partial schedule by com-
mitting to groups of jobs, to be scheduled on the same machine, before knowing the actual machine
speeds. This question is motivated, for example, by MapReduce computations done in large data
centers. A MapReduce function typically groups workload before knowing the actual number or
precise characteristics of the available computing resources [6].

We consider a two-stage robust scheduling problem in which we aim for a schedule of minimum
makespan on multiple machines of unknown speeds. Given a set of n jobs and m machines, we ask
for a partition of the jobs intom groups, we say bags, that have to be scheduled on the machines after
their speeds are revealed without being split up. That is, in the second stage, when the machine
speeds are known, a feasible schedule must assign all jobs in the same bag to the same machine.
The goal is to minimize the second-stage makespan.

More formally, we define the speed-robust scheduling problem as follows. We are given n jobs
with processing times pj ≥ 0, for j ∈ {1, . . . , n}, and the number of machines, m ∈ N. Machines run
in parallel but their speed is a priori unknown. In the first stage, the task is to group jobs into at
most m bags. In the second stage, the machine speeds si ≥ 0, for i ∈ {1, . . . ,m}, are revealed. The
time needed to execute job j on machine i is pj/si, if si > 0. If a machine has speed si = 0, then it
cannot process any job; we say the machine fails. Given the machine speeds, the second-stage task
is to assign bags to the machines such that the makespan Cmax is minimized, where the makespan
is the maximum sum of execution times of jobs assigned to the same machine.

Given a set of bags and machine speeds, the second-stage problem emerges as classical makespan
minimization on related parallel machines. It is well-known that this problem can be solved arbitrar-
ily close to optimality by polynomial-time approximation schemes [3, 10, 11]. As we are interested
in the information-theoretic tractability, we allow superpolynomial running times for our algorithms

1

– ignoring any computational concern – and assume that the second-stage problem is solved opti-
mally. Thus, an algorithm for speed-robust scheduling defines a job-to-bag allocation, i.e., it gives a
solution to the first-stage problem. We may use non-optimal bag-to-machine assignment to simplify
the analysis.

We evaluate the performance of algorithms by a worst-case analysis comparing the makespan of
the algorithm with the optimal makespan achievable when all machine speeds are known in advance.
We say that an algorithm is ρ-robust if, for any instance, its makespan is within a factor ρ ≥ 1 of the
optimal solution. The robustness factor of the algorithm is defined as the infimum over all such ρ.

The special case of speed-robust scheduling where all machine speeds are either 0 or 1 has been
studied previously by Stein and Zhong [16]. They introduced the problem with identical machines
and an unknown number of machines that fail (speed 0) in the second stage. They present a
simple lower bound of 4/3 on the robustness factor with equal jobs and design a general 5/3-robust
algorithm. For infinitesimal jobs, they give an improved 1.2333-robust algorithm complemented by
a lower bound for each number of machines which tends to (1 +

√
2)/2 ≈ 1.207 for large m. Stein

and Zhong also consider the objective of minimizing the maximum difference between the most
loaded and the least loaded machine, motivated by questions on fair allocation.

Our Contribution

We introduce the speed-robust scheduling problem and present robust algorithms. The algorithmic
difficulty of this problem is to construct bags in the first stage that are robust under any choice of
machine speeds in the second stage. The straight-forward approach of using any makespan-optimal
solution on m identical machines is not sufficient. Lemma 3.1 shows that such an algorithm might
have an arbitrarily large robustness factor. Using Longest Processing Time first (LPT) to create
bags does the trick and is (2 − 1

m)-robust for arbitrary job sizes (Theorem 3.3). While this was
known for speeds in {0, 1} [16], our most general result is much less obvious.

Note that LPT aims at “balancing” the bag sizes which cannot lead to a better robustness factor
than 2 − 1

m as we show in Lemma 3.2. Hence, to improve upon this factor, we need to carefully
construct bags with imbalanced bag sizes. There are two major challenges with this approach: (i)
finding the ideal imbalance in the bag sizes independent from the actual job processing times that
would be robust for all adversarial speed settings simultaneously and (ii) to adapt bag sizes to
accommodate discrete jobs.

A major contribution of this paper is an optimal solution to the first challenge by considering
infinitesimal jobs. In this case, the speed-robust scheduling problem boils down to identifying the
best bag sizes as placing the jobs into bags becomes trivial. We give, for any number of machines,
optimally imbalanced bag sizes and prove a best possible robustness factor of

ρ̄(m) =
mm

mm − (m− 1)m
≤ e

e− 1
≈ 1.58 .

For infinitesimal jobs in the particular machine environment in which all machines have either
speed 0 or 1, we obtain an algorithm with robustness factor

ρ̄01(m) = max
t≤m

2
, t∈N

1
t

m−t + m−2t
m

≤ 1 +
√

2

2
≈ 1.207 = ρ̄01 .

This improves the previous upper bound of 1.233 by Stein and Zhong [16] and matches exactly
their lower bound for each m. Furthermore, we show that the lower bound in [16] holds even for
randomized algorithms and, thus, our algorithm is optimal for both, deterministic and randomized
scheduling.

2

General speeds Speeds from {0, 1}

Lower bound Upper bound Lower bound Upper bound

Discrete jobs
ρ̄(m) 2− 1

m
4
3

5
3

(Lemma 2.2) (Theorem 3.3) [16] [16]

Equal-size jobs
ρ̄(m) 1.8 4

3

(Lemma 2.2) (Theorem 4.3) ([16], Theorem 4.6)

Infinitesimal jobs
ρ̄(m) ≤ e

e−1 ≈ 1.58 ρ̄01(m) ≤ 1+
√

2
2 ≈ 1.207

(Lemma 2.2, Theorem 2.1) ([16], Theorem 2.5)

Table 1: Summary of results on speed-robust scheduling.

The above tight results for infinitesimal jobs are crucial for our further results for discrete jobs.
Building on those ideal bag sizes, our approaches differ substantially from the methods in [16].
When all jobs have equal processing time, we obtain a 1.8-robust solution through a careful analysis
of the trade-off between using slightly imbalanced bags and a scaled version of the ideal bag sizes
computed for the infinitesimal setting (Theorem 4.3).

When machines have only speeds in {0, 1} and jobs have arbitrary equal sizes, i.e., unit size,
then we give an optimal 4

3 -robust algorithm. This is an interesting class of instances as the best
known lower bound of 4

3 for discrete jobs uses only unit-size jobs [16]. To achieve this result, we,
again, crucially exploit the ideal bag sizes computed for infinitesimal jobs by using a scaled variant
of these sizes. Some cases, depending on m and the optimal makespan on m machines, have to be
handled individually. Here, we use a direct way of constructing bags with at most four different
bag sizes, and some cases can be solved by an integer linear program. We summarize our results in
Table 1. Missing proofs can be found in the Appendix.

Inspired by traditional one-stage scheduling problems where jobs have machine-dependent execu-
tion times (unrelated machine scheduling), one might ask for such a generalization of our problem.
However, it is easy to rule out any robustness factor for such a setting: Consider four machines
and five jobs, where each job may be executed on a unique pair of machines. Any algorithm must
build at least one bag with at least two jobs. For this bag there is at most one machine to which it
can be assigned with finite makespan. If this machine fails, the algorithm cannot complete the jobs
whereas an optimal solution can split this bag on multiple machines to get a finite makespan.

2 Speed-Robust Scheduling with Infinitesimal Jobs

In this section, we assume that jobs have infinitesimal processing time. We give optimal algorithms
for speed-robust scheduling in both, the general case and for the special case with speeds in {0, 1}.

2.1 General Speeds

Theorem 2.1. There is an algorithm for speed-robust scheduling with infinitesimal jobs that is ρ̄(m)-
robust for all m ≥ 1, where

ρ̄(m) =
mm

mm − (m− 1)m
≤ e

e− 1
≈ 1.58 .

This is the best possible robustness factor that can be achieved by any algorithm.

3

To prove Theorem 2.1, we first show that, even when we restrict the adversary to a particular
set of speed configurations, no algorithm can achieve a robustness factor better than ρ̄(m). Note
that since we can scale all speeds equally by an arbitrary factor without influencing the robustness
factor, we can assume that the sum of the speeds is equal to 1. Similarly, we can assume that the
total processing time of the jobs is equal to 1, such that the optimal makespan of the adversary is
equal to 1 and the worst-case makespan of an algorithm is equal to its robustness factor.

Intuitively, the idea behind the set of m speed configurations is that the adversary can set m−1
machines to equal low speeds and one machine to a high speed. The low speeds are set such that
one particular bag size just fits on that machine when aiming for the given robustness factor. This
immediately implies that all larger bags have to be put on the fast machine together. This way,
the speed configuration can target a certain bag size. We provide specific bag sizes that achieve a
robustness of ρ̄(m) and show that for the speeds targeting these bag sizes, other bag sizes would
result in even larger robustness factors.

We define U = mm, L = mm − (m − 1)m, and tk = (m − 1)m−kmk−1 for k ∈ {1, . . . ,m}.
Intuitively, these values are chosen such that the bag sizes ti/L are optimal and ti/U corresponds
to the low speed of the i-th speed configuration. It is easy to verify that ρ̄(m) = U/L and for all k
we have ∑

i<k

ti = (m− 1)tk − U + L . (1)

In particular, this implies that
∑

i≤m ti = mtm −U +L = L and therefore that the sum of the bag
sizes is 1. Let a1 ≤ · · · ≤ am denote the bag sizes chosen by an algorithm and s1 ≤ · · · ≤ sm the
speeds chosen by the adversary.

Lemma 2.2. For any m ≥ 1, no algorithm for speed-robust scheduling with infinitesimal jobs can
have a robustness factor less than ρ̄(m).

Proof. We restrict the adversary to the following m speed configurations indexed by k ∈ {1, . . . ,m}:

Sk :=
{
s1 = tk/U, s2 = tk/U, . . . , sm−1 = tk/U, sm = 1− (m− 1)tk/U

}
.

Note that for all k ∈ {1, . . . ,m}, we have mtk ≤ U and, thus, sm ≥ sm−1.
We show that for any bag sizes a1, . . . , am, the adversary can force the algorithm to have a

makespan of at least U/L with some Sk. Since the optimal makespan is fixed to be equal to 1 by
assumption, this implies a robustness factor of at least U/L.

Let k? be the smallest index such that ak ≥ tk/L. Such an index exists because the sum of
the ti’s is equal to L (Equation (1)) and the sum of the ai’s is equal to 1. Now, consider the
speed configuration Sk? . If one of the bags ai for i ≥ k? is not scheduled on the m-th machine,
the makespan is at least ai/s1 ≥ ak?U/tk? ≥ U/L. Otherwise, all ai for i ≥ k? are scheduled on
machine m. Then, using Equation (1), the load on that machine is at least∑

i≥k?
ai = 1−

∑
i<k?

ai ≥ 1− 1

L

∑
i<k?

ti =
1

L
(L− (m− 1)tk? + U − L) =

U

L
sm .

Thus, either a machine i < m with a bag i′ ≥ k∗ or machine i = m has a load of at least si · U/L
and determines the makespan.

For given bag sizes, we call a speed configuration that maximizes the minimum makespan a
worst-case speed configuration. Before we provide the strategy that obtains a matching robustness
factor, we state a property of such best strategies for the adversary.

4

Lemma 2.3. Given bag sizes and a worst-case speed configuration, for each machine i, there ex-
ists an optimal assignment of the bags to the machines such that only machine i determines the
makespan.

Note that, by Lemma 2.3, for a worst-case speed configuration, there are many different bag-
to-machine assignments that obtain the same optimal makespan. Lemma 2.3 also implies that for
such speed configurations all speeds are non-zero.

Let Sand denote the algorithm that creates m bags of the following sizes

a1 = t1/L, a2 = t2/L, . . . , am = tm/L .

Note that this is a valid algorithm since the sum of these bag sizes is equal to 1. Moreover, these
bag sizes are exactly such that if we take the speed configurations from Lemma 2.2, placing bag j
on a slow machine in configuration j results in a makespan that is equal to ρ̄(m).

We proceed to show that Sand has a robustness factor of ρ̄(m).

Lemma 2.4. For any m ≥ 1, Sand is ρ̄(m)-robust for speed-robust scheduling with infinitely many
infinitesimal jobs.

Proof. Let a1, . . . , am be the bag sizes as prescribed by Sand and let s1, . . . , sm be a speed configu-
ration that maximizes the minimum makespan given these bag sizes. Further, consider an optimal
assignment of bags to machines and let C∗max denote its makespan. We use one particular (optimal)
assignment to obtain an upper bound on C∗max. By Lemma 2.3, there exists an optimal assignment
where only machine 1 determines the makespan, i.e., machine 1 has load C∗max · s1 and any other
machine i has load strictly less than C∗max · si. Consider such an assignment. If there are two bags
assigned to machine 1, then there is an empty machine with speed at least s1. Therefore, we can
put one of the two bags on that machine and decrease the makespan. This contradicts that C∗max

is the optimal makespan, so there is exactly one bag assigned to machine 1. Let k be the index of
the unique bag placed on machine 1, i.e., C∗max = ak/s1, and let ` be the number of machines of
speed s1.

If ak > a`, machine i ∈ {1, . . . , `} with speed s1 can be assigned bag i with a load that is strictly
less than C∗max · s1. Thus, given the current assignment, we can remove bag ak from machine 1 and
place the ` smallest bags on the ` slowest machines, one per machine, e.g., bag ai on machine i
for i ∈ {1, . . . , `}. This empties at least one machine of speed strictly larger than s1. Then, we
can place bag ak on this, now empty, machine, which yields a makespan that is strictly smaller
than C∗max. This contradicts the assumption that C∗max is the optimal makespan and, thus, ak ≤ a`,
which implies k ≤ `.

Let Pi denote the total processing time of bags that are assigned to machine i and let C be the
total remaining capacity of the assignment, that is, C :=

∑m
i=1 siC

∗
max−Pi. We construct an upper

bound on C, which allows us to bound C∗max.
Machines in the set {2, . . . , `} cannot be assigned a bag of size larger than ak since their load

would be greater than C∗max · s1, causing a makespan greater than C∗max. Therefore, we assume
without loss of generality that all bags aj < ak are assigned to a machine with speed s1. The total
remaining capacity on the first k machines is therefore equal to (k − 1)ak −

∑
i<k ai.

Consider a machine i > k. If the remaining capacity of this machine is greater than ak, then
we can decrease the makespan of the assignment by moving bag k to machine i. Therefore, the
remaining capacity on machine i is at most ak.

Combining the above and using (1), we obtain:

C ≤ (m− 1)ak −
∑
i<k

ai =
1

L

(
(m− 1)tk −

∑
i<k

ti

)
=

1

L
(U − L) .

5

The total processing time is
∑m

i=1 ai = 1, and the maximum total processing time that the machines
could process with makespan C∗max is

∑m
i=1 siC

∗
max = C∗max. Since the latter is equal to the total

processing time plus the remaining capacity, we have C∗max = 1+C ≤ U/L, which proves the lemma.

The robustness factor ρ̄(m) is not best possible for every m when we allow algorithms that make
randomized decisions and compare to an oblivious adversary. For m = 2, uniformly randomizing
between bag sizes a1 = a2 = 1/2 and a1 = 1/4, a2 = 3/4 yields a robustness factor that is slightly
better than ρ̄(2) = 4/3. Interestingly, with speeds in {0, 1} the optimal robustness factor is equal
for deterministic and randomized algorithms.

2.2 Speeds in {0, 1}

Theorem 2.5. For all m ≥ 1, there is a deterministic ρ̄01(m)-robust algorithm for speed-robust
scheduling with speeds in {0, 1} for infinitesimal jobs, where

ρ̄01(m) = max
t∈N, t≤m

2

1
t

m−t + m−2t
m

≤ 1 +
√

2

2
= ρ̄01 ≈ 1.207 .

This is the best possible robustness factor that can be achieved by any algorithm, even a randomized
algorithm against an oblivious adversary.

The deterministic version of the lower bound and some useful insights were already presented
in [16]. We recall some of these insights here, because they are used in the proof. To do so, we
introduce some necessary notation used in the remainder this paper. The number of failing machines
(i.e., machines with speed equal to 0) is referred to as t ≥ 0, and we assume w.l.o.g. that these are
machines 1, . . . , t. Furthermore, we assume for this subsection again w.l.o.g. that the total volume
of infinitesimal jobs is m, and we will define bags 1, . . . ,m with respective sizes a1 ≤ · · · ≤ am
summing to at least m (the potential excess being unused).

Lemma 2.6 (Statement (3) in [16]). For all m ≥ 1 and t ≤ m/2, there exists a makespan-
minimizing allocation of bags to machines for speed-robust scheduling with speeds in {0, 1} and
infinitely many infinitesimal jobs that assigns the smallest 2t bags to machines t+ 1, . . . , 2t.

Since Lemma 2.6 only works for t ≤ m/2, one may worry that, for larger t, there is a more
difficult structure to understand. The following insight shows that this worry is unjustified. Indeed,
if m′ < m/2 is the number of machines that do not fail, one can simply take the solution for 2m′

machines and assign the bags from any two machines to one machine. The optimal makespan is
doubled and that of the algorithm is at most doubled, so the robustness is conserved.

Lemma 2.7 (Proof of Theorem 2.2 in [16]). Let ρ > 1. For all m ≥ 1, if an algorithm is ρ-robust
for speed-robust scheduling with speeds in {0, 1} and infinitely many infinitesimal jobs for t ≤ m/2,
it is ρ-robust for t ≤ m− 1.

We will thus focus on computing bag sizes such that the makespan of a best allocation according
to Lemma 2.6 is within a ρ̄01(m) factor of the optimal makespan when t ≤ m/2. The approach
in [16] to obtain the (as we show tight) lower bound ρ̄01(m) is as follows. Given some t ≤ m/2 and
a set of bags allocated according to Lemma 2.6,

(i) the makespan on machines t + 1, . . . , 2t is at most ρ̄01(m) times the optimal
makespan m/(m− t), and

6

bags/
machines

0.5

1

1.5

2

1 t = t? m = 20

ρ̄01(20)

20ρ̄01(20)
14

0.5

1

1.5

2

0.2 0.4 β ≈ 0.586 0.8 1

ρ̄01

f̄

Figure 1: Left: The situations prior to and after folding the optimally sized bags when t? machines fail.
Right: The profile function f̄ and the equidistant “sampling” to obtain actual bag sizes.

(ii) the makespan on machines 2t + 1, . . .m is a most ρ̄01(m) because those machines only hold
a single bag after a simple “folding” strategy for assigning bags to machines, which we define
below.

In particular, since t = 0 is possible, (ii) implies that all bag sizes are at most ρ̄01(m). The fact
that the total processing volume of m has to be accommodated and maximizing over t results in
the lower bound given in Theorem 2.5.

In order to define the bag sizes leading to a matching upper bound, we further restrict our
choices when t ≤ m/2 machines fail. Of course, as we match the lower bound, the restriction is no
limitation but rather a simplification. When t ≤ m/2 machines fail, we additionally assume that the
machines t+ 1, . . . , 2t receive exactly two bags each: Assuming t ≤ m/2, the simple folding of these
bags onto machines assigns bags i ≥ t+ 1 to machine i, and bag i = 1, . . . , t (recall machine i fails)
to machine 2t− i+ 1. Hence, bags 1, . . . , t are “folded” onto machines 2t, . . . , t+ 1 (sic), visualized
in Figure 1.

For given m, let t? be an optimal adversarial choice for t in Theorem 2.5. Assuming there
are bag sizes a1, . . . , am that match the bound ρ̄01(m) through simple folding, by (i) and (ii), we
precisely know the makespan on all machines after folding when t = t?. That fixes ai + a2t+1−i =
ρ̄01(m) ·m/(m− t) for all i = 1, . . . , t and a2t+1, . . . , am = ρ̄01(m), see Figure 1. In contrast to [16],
we show that defining ai for i = 1, . . . , t to be essentially a linear function of i, and thereby fixing all
bag sizes, suffices to match ρ̄01(m). The word “essentially” can be dropped when replacing ρ̄01(m)
by ρ̄01.

A clean way of thinking about the bag sizes is through profile functions which reflect the dis-
tribution of load over bags in the limit case m → ∞. Specifically, we identify the set {1, . . . ,m}
with the interval [0, 1] and define a continuous non-decreasing profile function f̄ : [0, 1]→ R+ inte-
grating to 1. A simple way of getting back from the profile function to actual bag sizes of total size
approximately m is equidistantly “sampling” f̄ , i.e., defining ai := f̄(i−1/2

m) for all i.
Our profile function f̄ implements the above observations and ideas in the continuous setting.

Indeed, our choice

f̄(x) = min

{
1

2
+ ρ̄01 · x, ρ̄01

}
= min

{
1

2
+

(1 +
√

2) · x
2

,
1 +
√

2

2

}

7

is linear up to β = 2 −
√

2 = limm→∞ 2t?/m and then constantly ρ̄01 = limm→∞ ρ̄01(m). We give
some intuition for why this function works using the continuous counterpart of folding. When t ≤ t?
machines fail, i.e., a continuum of machines with measure x ≤ β/2, we fold the corresponding part
of f̄ onto the interval [x, 2x], yielding a rectangle of width x and height f̄(0) + f̄(2x) = 2f̄(x). We
have to prove that the height does not exceed the optimal makespan 1/(1 − x) by more than a
factor of ρ̄01. Equivalently, we maximize 2f̄(x)(1− x) (even over x ∈ R) and observe the maximum
of ρ̄01 = (1 +

√
2)/2 at x = β/2. When x ∈ (β/2, 1/2], note that by folding we still obtain a

rectangle of height 2f̄(x) (but width β − x), dominating the load on the other machines. Hence,
the makespan is at most ρ̄01/(1− x) for every x ∈ [0, 1/2].

Directly “sampling” f̄ , we obtain a weaker bound (stated below) than that in Theorem 2.5. The
proof (and the algorithm) is substantially easier than that of the main theorem: Firstly, we translate
the above continuous discussion into a discrete proof. Secondly, we exploit that f̄ is concave to show
that the total volume of the “sampled” bags is larger than m for every m ∈ N. Later, we make use
of the corresponding simpler algorithm. Let Sand01 denote the algorithm that creates m bags of
size ai := f̄(i−1/2

m), for i ∈ {1, . . . ,m}.

Theorem 2.8. Sand01 is ρ̄01-robust for speed-robust scheduling with speeds in {0, 1} and infinitely
many infinitesimal jobs for all m ≥ 1.

As the profile function disregards specific machines, obtaining bag sizes through this function
seems too crude to match ρ̄01(m) for every m. Indeed, our proof of Theorem 2.5 is based on a much
more careful choice of the bag sizes.

3 Speed-Robust Scheduling with Discrete Jobs

We focus in this part on the general case of speed-robust scheduling. By a scaling argument, we may
assume w.l.o.g. that the machine speeds satisfy

∑m
i=1 si =

∑n
j=1 pj . We first notice that obtaining

a robust algorithm is not trivial in this case, as even an algorithm which minimizes the largest bag
size cannot have a constant robustness factor.

Lemma 3.1. Algorithms for speed-robust scheduling that minimize the size of the largest bag may
not have a constant robustness factor.

Proof. Consider any integer k ≥ 1, a number of machines m = k2 + 1, k2 unit-size jobs and one job
of processing time k. The maximum bag size is equal to k, so an algorithm building k + 1 bags of
size k respects the conditions of the lemma. Consider the speed configuration where k2 machines
have speed 1 and one machine has speed k. It is possible to schedule all jobs within a makespan 1
on these machines. However, the algorithm must either place a bag on a machine of speed 1 or all
bags on the machine of speed k, hence leading to a makespan of k, and proving the result. Note
that by adding k2 unit-size jobs, we can build a similar example where the algorithm does not leave
empty bags, which is always beneficial.

Note that such algorithms are (2− 2
m)-robust with machine speeds in {0, 1}: once the numberm′

of speed-1 machines is revealed, simply combine the two smallest bags repetitively if m′ < m. The
makespan obtained is then at most twice the average load on m′ + 1 machines, so 2m′

m′+1 times the
average load on m′ machines.

One feature of the algorithm considered in Lemma 3.1 that is exploited in the lower bound is
that the bags sizes are too unbalanced. A way to prevent this behavior would be to maximize the
size of the minimum bag as well. But this criteria becomes useless if we consider the same example

8

as above with m = k2 + 2. Then, the minimum bag size is 0 as there are more machines than jobs,
and the same lower bound holds.

Hence, in order to obtain a robust algorithm in the general case, we focus on algorithms that
aim at balanced bag sizes, for which the best lower bound is described in the following lemma.
An algorithm is called balanced if, for an instance of unit-size jobs, the bag sizes created by the
algorithm differ by at most one unit. In particular, a balanced algorithm creates m bags of size k
when confronted with mk unit-size jobs and m bags. For balanced algorithms, we give a lower
bound in Lemma 3.2 and a matching upper bound in Theorem 3.3.

Lemma 3.2. No balanced algorithm for speed-robust scheduling can obtain a better robustness factor
than 2− 1

m for any m ≥ 1.

Proof. Consider any m ≥ 1, km unit-size jobs, with k = 2m−1. Assume the adversary puts m jobs
on the first machine and 2m jobs on each of the remaining machines. An algorithm that uses evenly
balanced bags buildsm bags of size k. It must either place a bag of size k on the machine of speedm
or 2k jobs on a machine of speed 2m. In any case, the robustness factor is at least 2− 1

m .

We now show that this lower bound is attained by a simple algorithm, commonly named as
Longest Processing Time First (LPT) which considers jobs in non-increasing order of processing
times and assigns each job to the bag that currently has the smallest size, i.e., the minimum allocated
processing time.

Theorem 3.3. LPT is (2− 1
m)-robust for speed-robust scheduling for all m ≥ 1.

Proof. While we may assume that the bags are allocated optimally to the machines once the speeds
are given, we use a different allocation for the analysis. This can only worsen the robustness factor.

Consider the m bags and let b denote the size of a largest bag, B, that consists of at least two
jobs. Consider all bags of size strictly larger than b, each containing only a single job, and place
them on the same machine as Opt places the corresponding jobs. We define for each machine i
with given speed si a capacity bound of (2 − 1

m) · si. Then, we consider the remaining bags in
non-increasing order of bag sizes and iteratively assign them to the – at the time of assignment –
least loaded machine with sufficient remaining capacity.

By the assumption
∑m

i=1 si =
∑n

j=1 pj and the capacity constraint (2− 1
m) · si, it is sufficient to

show that LPT can successfully place all bags.
The bags larger than b fit by definition as they contain a single job. Assume by contradiction

that there is a bag which cannot be assigned. Consider the first such bag and let T be its size.
Let k < m be the number of bags that have been assigned already. Further, denote by w the size
of a smallest bag. Since we used LPT in creating the bags, we can show that w ≥ 1

2b. To see that,
consider bag B and notice that the smallest job in it has a size at most 1

2b. When this job was
assigned to its bag, B was a bag with smallest size, and this size was at least 1

2b since we allocate
jobs in LPT-order. Hence, the size of a smallest bag is w ≥ 1

2b ≥
1
2T , where the second inequality

is true as all bags larger than b can be placed.
We use this inequality to give a lower bound on the total remaining capacity on the m machines

when the second-stage algorithm fails to place the (k + 1)-st bag. The (m− k) bags that were not
placed have a combined volume of at least V` = (m − k − 1)w + T ≥ (m − k + 1)T2 . The bags
that were placed have a combined volume of at least Vp = kT . The remaining capacity is then at

9

least C = (2− 1
m)V` + (1− 1

m)Vp, and we have

C =

(
2− 1

m

)
V` +

(
1− 1

m

)
Vp ≥

(
2− 1

m

)
(m− k + 1)

T

2
+

(
1− 1

m

)
kT

≥ (m− k + 1)T − (m− k + 1)
T

2m
+ kT − 1

m
kT ≥ mT + T − m+ k + 1

2m
T

≥ mT.

Thus, there is a machine with remaining capacity T which contradicts the assumption that the bag
of size T does not fit.

4 Speed-Robust Scheduling with Equal-Size Jobs

We consider the special case in which jobs have equal processing times. By a scaling argument, we
may assume that all jobs have unit processing time. Before focusing on a specific speed setting, we
show that in both settings we can use any algorithm for infinitesimal jobs with a proper scaling to
obtain a robustness factor which is degraded by a factor decreasing with n/m =: λ. Assume λ > 1,
as otherwise the problem is trivial. We define the algorithm SandForBricks that builds on the
optimal algorithm for infinitesimal jobs, Sand∗, which is Sand for general speeds (Section 2.1)
or Sand01 for speeds in {0, 1} (Section 2.2). Let a1, . . . , am be the bag sizes constructed by Sand∗

scaled such that a total processing volume of n can be assigned, that is,
∑m

i=1 ai = n. For unit-size
jobs, we define bag sizes as a′i = (1 + 1

λ) · ai and assign the jobs greedily to the bags.

Lemma 4.1. For n jobs with unit processing times and m machines, SandForBricks for speed-
robust scheduling is (1 + 1

λ) · ρ(m)-robust, where λ = n/m and ρ(m) is the robustness factor for
Sand∗ for m machines.

Proof. To prove the lemma, it is sufficient to show that all n unit-size jobs can be assigned to the
constructed bags of sizes a′1, . . . , a′m. Suppose there is a job j that does not fit into any bag without
exceeding the bag size. The remaining volume in the bags is at least the total capacity minus the
processing volume of all jobs except j, that is,

m∑
i=1

a′i − (n− 1) =

(
1 +

1

λ

)
· n− n+ 1 >

1

λ
· n = m.

Hence, there must exist some bag that has a remaining capacity of at least 1 and can fit job j.

4.1 General Speeds

For unit-size jobs, we show how to beat the factor 2− 1
m (Theorem 3.3) for speed-robust scheduling

with a 1.8-robust algorithm. Form = 2 andm = 3, we give algorithms with best possible robustness
factors 4

3 and 3
2 , respectively.

We argued earlier that the algorithm LPT has robustness factor 2− 1
m (Theorem 3.3), even for

unit-size jobs. However, in this case we can show, for a slightly different algorithm BuildOdd a
robustness factor increasing with the ratio between the number of jobs and the number of machines.
BuildOdd builds bags of three possible sizes: for q ∈ N such that λ = n

m ∈ [2q − 1, 2q + 1], bags
of sizes 2q − 1 and 2q + 1 are built, with possibly one additional bag of size 2q.

Lemma 4.2. For n unit-size jobs, m machines and q ∈ N with λ ∈ [2q − 1, 2q + 1], BuildOdd
is (2− 1

q+1)-robust for speed-robust scheduling.

10

Proof sketch. Using the set of bags built by BuildOdd, we can show in a manner similar to the
proof of Theorem 3.3 that the robustness factor is smaller than 2. The worst case happens for
instance when a bag of size 2q + 1 needs to be scheduled on a machine of speed q + 1.

Notice that the robustness guarantees in Lemmas 4.1 and 4.2 are functions that are decreasing
in λ and increasing in λ, respectively. By carefully choosing between BuildOdd and SandFor-
Bricks, depending on the input, we obtain an improved algorithm for unit-size jobs. For λ < 8,
we execute BuildOdd, which yields a robustness factor of at most 1.8 by Lemma 4.2, as q ≤ 4
for λ < 8. Otherwise, when λ ≥ 8, we run SandForBricks having a guarantee of 9

8 ·
e
e−1 ≈ 1.78

by Lemma 4.1.

Theorem 4.3. There is an algorithm for speed-robust scheduling with unit-size jobs that has a
robustness factor of at most 1.8 for any m ≥ 1.

We give a general lower bound on the best achievable robustness factor. Note that the lower
bound of ρ̄(m) from Lemma 2.2 remains valid in this setting and is larger than 1.5 for m ≥ 6.

Lemma 4.4. For every m ≥ 3, no algorithm for speed-robust scheduling can have a robustness
factor smaller than 1.5, even restricted to unit-size jobs.

For special cases with few machines, we give best possible algorithms which match the previously
mentioned lower bounds. We also show for m = 6 a lower bound larger than ρ̄(6) > 1.5, details
being in the appendix. Similar lower bounds have been found by computer search for many larger
values of m, for which the difference with ρ̄(m) tends towards zero when m grows.

Lemma 4.5. An optimal algorithm for speed-robust scheduling for unit-size jobs has robustness
factor 4/3 on m = 2 machines and 3/2 on m = 3 machines, and larger than ρ̄(6) > 1.5 for m = 6.

4.2 Speeds in {0, 1}

We consider speed-robust scheduling of unit-size jobs on machines of speed 0 or 1. This type of
instance is of particular interest as the currently best known lower bound for discrete jobs is 4

3 and
uses only unit-size jobs [16]. We present an algorithm with a matching upper bound.

Theorem 4.6. There exists a 4
3 -robust algorithm for speed-robust scheduling with {0, 1}-speeds and

unit-size jobs.

In the proof, we handle different cases depending on m and Optm, carefully tailored methods.
Recall that Optm is equal to the optimal makespan on m machines. We only give an overview of
the four cases and defer all details to Appendix D.

When Optm ≥ 11, then we use SandForBricks based on Sand01and obtain a robustness
factor at most 4/3 by Lemma 4.2. The proof uses a volume argument to show that jobs fit into the
scaled optimal bag sizes for infinitesimal jobs (Sand01), even after rounding bag sizes down to the
nearest integer. Here the loss in volume due to rounding is upper bounded by 1 per bag.

When Optm ∈ {9, 10}, this method is too crude. We refine it to show that for m ≥ 40 it is
still possible to properly scale bag sizes from Sand01and round them to integral sizes such that
all n unit-size jobs can be placed. We exploit in the analysis an amortized bound on the loss due
to rounding over consecutive bags.

For the case that Optm ≤ 8 and m ≥ 50 we use a more direct, constructive approach and give a
strategy that utilizes at most four different bag sizes. More precisely, if Optm ∈ {1, 2}, then packing
bags according to the optimal schedule on m machines is 4

3 -robust. If 3 ≤ Optm ≤ 8, we create

11

bags so that roughly 2
5 -th of the bags have size either

⌈
2
3Optm

⌉
or
⌈

2
3Optm

⌉
− 1, 1

5 -th of the bags
have size Optm, and 2

5 -th of the bags have size
⌊

4
3Optm

⌋
. We show that this strategy is 4

3 -robust.
The remaining cases, Optm ≤ 10 and m ≤ 50, can be verified by enumerating over all possible

instances and using an integer linear program to verify that there is a solution of bag sizes that
is 4

3 -robust.

Concluding Remarks

In this work, we have been able to establish matching lower and upper bounds for the speed-
robust scheduling problem with infinitesimal jobs and design optimal algorithms when speeds are
restricted to {0, 1} and either infinitesimal jobs or equal-size jobs. We believe that the insights from
our optimal algorithms will be useful to improve the more general upper bounds.

We have also shown that randomization does not help when the speeds belong to {0, 1} and jobs
are infinitesimal. However, the other known lower bounds do not hold in a randomized setting, so
designing better randomized algorithms remains an interesting challenge.

We conclude with an observation about adversarial strategies which might be useful for further
research. We give two somewhat orthogonal examples proving the lower bound of 4

3 for speed-robust
scheduling with unit processing time jobs and speeds from {0, 1}. In both examples, there are only
two relevant adversarial strategies: either one machine fails or none. This may seem sub-optimal,
but the lower bound of 4

3 is tight for unit-size jobs (Theorem 4.6). Further, we show in the proof of
Theorem 2.5 (Appendix B) that, for infinitesimal jobs, an adversary only requires two strategies to
force all algorithms to have a robustness factor at least ρ̄01(m), which is optimal.

Example 1 (from [16]). Consider 2m jobs and m > 2 machines. If an algorithm places 2 jobs
per bag, let one machine fail. This leads to a makespan of 4 while the optimal makespan is 3 which
gives a lower bound of 4

3 . Otherwise, one bag has at least three jobs, and, if no machine fails, the
algorithm’s makespan is 3 while the optimal makespan is 2 yielding a lower bound of 3

2 .
Example 2. Our new dual example has 3m jobs for m > 3 machines. If an algorithm places 3

jobs per bag, let one machine fail. This leads to a makespan of 6 while the optimal makespan is 4,
implying a lower bound of 3

2 . Otherwise, one bag has at least 3 jobs, and if no machine fails, the
algorithm’s makespan is 4 whereas the optimal makespan is 3, which again gives a lower bound of 4

3 .

References

[1] S. Albers and M. Hellwig. Online makespan minimization with parallel schedules. Algorithmica,
78(2):492–520, 2017.

[2] S. Albers and G. Schmidt. Scheduling with unexpected machine breakdowns. Discret. Appl.
Math., 110(2-3):85–99, 2001.

[3] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on
parallel machines. Journal of Scheduling, 1(1):55–66, 1998.

[4] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and
L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE Trans. Computers, 61(8):1140–
1152, 2012.

[5] L. Chen, N. Megow, R. Rischke, and L. Stougie. Stochastic and robust scheduling in the cloud.
In APPROX-RANDOM, volume 40 of LIPIcs, pages 175–186. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015.

12

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, Jan. 2008.

[7] F. Diedrich, K. Jansen, U. M. Schwarz, and D. Trystram. A survey on approximation algorithms
for scheduling with machine unavailability. In Algorithmics of Large and Complex Networks,
volume 5515 of Lecture Notes in Computer Science, pages 50–64. Springer, 2009.

[8] C. Dürr, T. Erlebach, N. Megow, and J. Meißner. An adversarial model for scheduling with
testing. Algorithmica, 82(12):3630–3675, 2020.

[9] L. Epstein, A. Levin, A. Marchetti-Spaccamela, N. Megow, J. Mestre, M. Skutella, and
L. Stougie. Universal sequencing on an unreliable machine. SIAM J. Comput., 41(3):565–
586, 2012.

[10] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, 1987.

[11] K. Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relaxation
with a constant number of integral variables. SIAM J. Discrete Math., 24(2):457–485, 2010.

[12] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Springer, 1997.

[13] J. Niño-Mora. Stochastic scheduling. In Encyclopedia of Optimization, pages 3818–3824.
Springer, 2009.

[14] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In Handbook of Scheduling. Chapman and
Hall/CRC, 2004.

[15] D. B. Shmoys and M. Sozio. Approximation algorithms for 2-stage stochastic scheduling prob-
lems. In IPCO, volume 4513 of Lecture Notes in Computer Science, pages 145–157. Springer,
2007.

[16] C. Stein and M. Zhong. Scheduling when you do not know the number of machines. ACM
Trans. Algorithms, 16(1):9:1–9:20, 2020.

13

Appendices

A Proofs for Section 2.1 – Infinitesimal Jobs and General Speeds

Lemma 2.3. Given bag sizes and a worst-case speed configuration, for each machine i, there ex-
ists an optimal assignment of the bags to the machines such that only machine i determines the
makespan.

Proof. Consider a given set of bag sizes and a speed configuration {s1, . . . , sm} that maximizes the
minimum makespan for those bag sizes. Let C∗max be the minimum makespan of the best assignment
of the bags given these speeds. This implies that, for any other speed configuration, there exists an
assignment which has a makespan at most C∗max.

We prove the lemma by contradiction. If there exists a machine i that does not satisfy the lemma,
we increase its speed by an additive factor of ε and we decrease the speed of all other machines
by ε/(m−1). Pick ε such that all (non-optimal) assignments that cause the load of machine i to be
strictly greater than C∗max · si still satisfy that their respective load on machine i is strictly greater
than C∗max · (si + ε). Denote the new speeds by s′i′ for 1 ≤ i′ ≤ m. Now, consider any assignment.
If the load of machine i was larger than C∗max · si, it is also larger than C∗max · s′i by construction
of s′i. Otherwise, the load of machine i is at most C∗max · si. If the load of i equals C∗max · si, there
must be another machine i′ with load at least C∗max · si′ as otherwise i satisfies the lemma. If the
load of i is less than C∗max · si, there must be such a machine since otherwise C∗max is not optimal.
Consider any assignment where at least one other machine i′ has load at least C∗max · si′ . Since
we decreased the speed of all machines except machine i, the load of machine i′ is strictly larger
than C∗max · s′i′ leading to a makespan strictly greater than C∗max. This contradicts that the speed
configuration maximizes the minimum makespan since every assignment with the new speeds has a
makespan strictly larger than C∗max.

B Proofs for Section 2.2 – Infinitesimal Jobs and Speeds in {0, 1}
We start with proving the main result of Section 2.2, the optimal algorithm for infinitesimal jobs
and speeds in {0, 1}. For better readability, we split the proof into two parts: the upper bound and
the lower bound.

Theorem 2.5. For all m ≥ 1, there is a deterministic ρ̄01(m)-robust algorithm for speed-robust
scheduling with speeds in {0, 1} for infinitesimal jobs, where

ρ̄01(m) = max
t∈N, t≤m

2

1
t

m−t + m−2t
m

≤ 1 +
√

2

2
= ρ̄01 ≈ 1.207 .

This is the best possible robustness factor that can be achieved by any algorithm, even a randomized
algorithm against an oblivious adversary.

Proof of upper bound in Theorem 2.5. We give bag sizes that guarantee a robustness factor
of ρ̄01(m) for every m. While the load distribution in the limit approaches that given by f̄ , we
do not work with f̄ explicitly anymore. We fix m ≥ 3 in the following; the other cases are trivial.
Furthermore, let again

t? ∈ arg max
t≤m

2
, t∈N

1
t

m−t + m−2t
m

.

For showing the theorem, we distinguish two cases: t? ≤ 1 and t? > 1.

14

We start with t? ≤ 1 and show that this implies m ∈ {3, 4, 5}. Firstly, note that the above
expression defining t? equals 1 for t = 0 and t = m/2 and is larger for values of t in between. As
we assumed m ≥ 3, we have that m/2 ≥ 1, and thus t? ≥ 1. Hence, for m ∈ {3, 4}, we have t? = 1.

For m ≥ 5, in order to have t? = 1, it is necessary that 1
t

m−t+
m−2t
m

is larger for t = 1 than

for t = 2. Noting that
1

t
m−t + m−2t

m

=
m2 − tm

m2 − 2tm+ 2t2

and reformulating, we obtain the necessary condition

m2 − 2m

m2 − 4m+ 8
− m2 −m
m2 − 2m+ 2

> 0 .

The left side is identical to

m(m− 2)

(m− 2)2 + 4
− m2 −m
m(m− 2) + 2

=
m2(m− 2)2 + 2m(m− 2)−m2(m− 2)2 +m(m− 2)2 − 4m2 + 4m

((m− 2)2 + 4) · (m(m− 2) + 2)

=
m(m2 − 6m+ 4)

((m− 2)2 + 4) · (m(m− 2) + 2)
.

As m ≥ 5, this term is positive if and only if m(m2−6m+4) > 0. Since the roots of this polynomial
are 0, 3−

√
5, and 3 +

√
5, the expression is strictly positive if m ≥ 6, which implies t? ≥ 2.

It remains to consider m = 5. By the above calculations we know that t? = 1. Therefore, t? ≤ 1
implies m ∈ {3, 4, 5}. For these three cases, the optimal bag sizes are as follows:

• For m = 3, the bag sizes equal {0.9, 0.9, 1.2} and ρ̄01(m) = 1.2.

• For m = 4, the bag sizes equal {0.8, 0.8, 1.2, 1.2} and ρ̄01(m) = 1.2.

• For m = 5, the bag sizes equal {25
34 ,

25
34 ,

40
34 ,

40
34 ,

40
34} and ρ̄01(m) = 40/34.

It can be easily verified that, if at mostm/2 machines fail, the obtained makespan is at most ρ̄01(m).
Consider now the case that t? ≥ 2. By the discussion above, this implies m ≥ 6. We also

claim that there exist bag sizes that achieve a robustness factor of ρ̄01(m). It turns out that, for
many different values of m, these sizes are not unique. We impose additional constraints on the
bag sizes so as to get bag sizes that are easier to analyze, giving some intuition along the way for
why the imposed restrictions do not remove all bag sizes achieving ρ̄01(m). When we are left with
a single degree of freedom, we impose lower and upper bounds on the corresponding variable so
that fulfilling these bounds implies the robustness guarantee ρ̄01(m). We then show that the largest
lower bound does not exceed the smallest upper bound, implying that there is a feasible choice for
said variable.

As observed earlier, if we want to guarantee a robustness factor of ρ̄01(m), we need to
fix a2t?+1, . . . , am = ρ̄01(m); so, this restriction does not remove any set of bag sizes that
achieves ρ̄01(m). Since the optimal factor could be achieved by a set of bag sizes that achieves
this factor with the simple folding, we also assume such bag sizes here. As before, this implies
ai + a2t?+1−i = ρ̄01(m) ·m/(m− t?) for all i = 1, . . . , t?.

Note that, when considering a bag i ≤ t for any t < m/2 and keeping track of the bag which i is
matched up with while increasing t, odd bags are always folded on top of even bags and vice versa.
That motivates considering bags in pairs and thinking of pairs that get matched up rather than
particular bags. Specifically, we choose a2i−1 = a2i for i = 1, . . . , t?.

15

To imitate the increasing linear part of f̄ , we furthermore impose a2i+1 = a2i−1+δ for some δ ≥ 0
and all i = 1, . . . , t?−1. Since f̄ has two different slopes, similar to our previous set of bag sizes, the
difference between ρ̄01(m) and the largest bag that is smaller than ρ̄01(m) may be different from δ;
we call this value δ′ := a2t?+1 − a2t? . In fact, it can be shown that δ′ 6= δ is even necessary given
our previous assumption on ai for some values of m.

Note that there is a single degree of freedom left if we want to define bags of total volume
precisely m: If we choose δ, then this fixes δ′, and vice versa. The goal is to show that the set that
we can choose δ from, so as to guarantee ρ̄01(m), is nonempty. In what follows, we derive lower and
upper bounds on δ. Fulfilling these bounds implies a robustness factor of ρ̄01(m).

To make our computations simpler, we assume that δ ≥ δ′. This yields our first lower bound L1

on δ. We express all bounds in terms of m, t?, and ρ̄01(m). To compute δ′ from these values,
observe that the total size of bags a1, . . . , a2t? is m− ρ̄01(m) · (m− 2t?) using that the total volume
is m and that bags a2t?+1, . . . , am have size ρ̄01(m). Dividing by 2t? yields the average bag size of
bags a1, . . . , a2t? , denoted by

ā =
m− ρ̄01(m) · (m− 2t?)

2t?
.

From ā it takes (t?− 1)/2 steps to get to a2t? . Arguing in terms of volume, which allows arguing in
terms of half steps, we get: If δ′ ≤ δ, we have ρ̄01(m) = a2t?+δ′ ≤ ā+δ(t?−1)/2+δ = ā+δ(t?+1)/2.
This is equivalent to

δ ≥ 2

t? + 1
· (ρ̄01(m)− ā) =

2

t? + 1
·
(
ρ̄01(m)− m− ρ̄01(m) · (m− 2t?)

2t?

)
=

m(ρ̄01(m)− 1)

t?(t? + 1)
=: L1 . (2)

Now, we give two bounds on δ that ensure that the bag sizes are feasible in that ai ∈ [0, ρ̄01(m)]
for all i. Using that a2t? = ā + (t? − 1)/2 · δ and imposing that a2t? ≤ ρ̄01(m), i.e., that δ′ =
a2t?+1 − a2t? ≥ 0, yields ρ̄01(m) ≥ ā+ (t? − 1)δ/2. Hence,

δ ≤ 2

t? − 1
· (ρ̄01(m)− ā) =

2

t? − 1
·
(
ρ̄01(m)− m− ρ̄01(m) · (m− 2t?)

2t?

)
=

m(ρ̄01(m)− 1)

t?(t? − 1)
=: U1 . (3)

We also need a1 ≥ 0, which we impose by letting the sum of the increments not exceed ρ̄01(m).
This yields an upper bound on δ of

U2 :=
ρ̄01(m)

t? − 1
. (4)

For the upper and lower bounds ensuring the robustness, recall that ai+a2t?+1−i = ρ̄01(m)· m
m−t?

for all i = 1, . . . , t?. That is, the robustness ratio is attained exactly when t = t?. This implies
that the ratio of the increase in the algorithm’s cost and the increase the optimum’s cost when the
number t of failing machines is increased from t? to, say, t? + k, should be at most ρ̄01(m). To
compute the change in the algorithm’s cost, note that, using (2), any bag size ai can be bounded
from above by a1 + bi/2c · δ. That implies that the algorithm’s cost increases by at most kδ. On
the other hand the optimum’s cost changes from m

m−t? to m
m−t?−k . So the aforementioned ratio is

k · δ
m

m−t?−k −
m

m−t?
=
δ · (m− t?)(m− t? − k)

m
,

16

yielding an upper bound on δ of

Uk3 :=
m · ρ̄01(m)

(m− t?)(m− t? − k)
.

This upper bound is minimized for k = 1, so we only need to remember U3 := U1
3 . Similarly, we

consider the case when t is decreased from t? to t? − k. Then the algorithm’s cost decreases by
precisely kδ and that of the optimum by m

m−t? −
m

m−t?+k . Imposing that the ratio of these quantities
is at least ρ̄01(m) yields

δ ≥ m · ρ̄01(m)

(m− t?)(m− t? + k)
=: Lk2 .

Again, this bound is maximized for k = 1, so we only need to remember L2 := L1
2.

With these lower and upper bounds on δ, we can complete the proof. It boils down to showing
that the interval [max{L1, L2},min{U1, U2, U3}] is nonempty because then we can choose δ from that
interval and thereby define bag sizes with a robustness of ρ̄01. To achieve this, we first rewrite ρ̄01(m)
as

ρ̄01(m) =
1

t?

m−t? + m−2t?

m

=
m(m− t?)

m2 − 2mt? + 2(t?)2
. (5)

We use (5) to expand the lower and upper bounds as follows:

L1 =
m(ρ̄01(m)− 1)

t?(t? + 1)
=
m2(m− t?)−m(m2 − 2mt? + 2(t?)2)

t?(t? + 1)(m2 − 2mt? + 2(t?)2)
=

=
m3 −m2t? −m3 + 2m2t? − 2m(t?)2

t?(t? + 1)(m2 − 2mt? + 2(t?)2)
=

m2 − 2mt?

(t? + 1)(m2 − 2mt? + 2(t?)2)

=
m(m− 2t?)

(t? + 1)(m2 − 2mt? + 2(t?)2)

L2 =
mρ̄01(m)

(m− t?)(m− t? + 1)
=

m2(m− t?)
(m− t?)(m− t? + 1)(m2 − 2mt? + 2(t?)2)

=
m2

(m− t? + 1)(m2 − 2mt? + 2(t?)2)
,

as well as

U1 =
m(ρ̄01(m)− 1)

t?(t? − 1)
=
m2(m− t?)−m(m2 − 2mt? + 2(t?)2)

t?(t? − 1)(m2 − 2mt? + 2(t?)2)

=
m3 −m2t? −m3 + 2m2t? − 2m(t?)2

t?(t? − 1)(m2 − 2mt? + 2(t?)2)
=

m2 − 2mt?

(t? − 1)(m2 − 2mt? + 2(t?)2)

=
m(m− 2t?)

(t? − 1)(m2 − 2mt? + 2(t?)2)
,

U2 =
ρ̄01(m)

t? − 1
=

m(m− t?)
(t? − 1)(m2 − 2mt? + 2(t?)2)

,

U3 =
mρ̄01(m)

(m− t?)(m− t? − 1)
=

m2(m− t?)
(m− t?)(m− t? − 1)(m2 − 2mt? + 2(t?)2)

=
m2

(m− t? − 1)(m2 − 2mt? + 2(t?)2)
.

First notice that U1 and U2 differ only by mt? in the numerator, so U1 is not greater than U2 and
therefore we can ignore U2. Moreover, when comparing L2 with U3 and L1 with U1, we observe that

17

the numerators do not differ while the denominators are smaller in the upper bounds. Therefore, it
is immediate that L2 ≤ U3 and L1 ≤ U1.

For the remaining two comparisons, L2 ≤ U1 and L1 ≤ U3, we use that t = t? maximizes the
expression

m(m− t)
m2 − 2mt+ 2(t)2

.

Hence, this expression is for t = t? at least as large as it is for t ∈ {t? − 1, t? + 1}. Therefore we
have

m(m− t?)
m2 − 2mt? + 2(t?)2

≥ m(m− (t? − 1))

m2 − 2m(t? − 1) + 2(t? − 1)2

(m− t?)(m2 − 2m(t? − 1) + 2(t? − 1)2) ≥ (m− t? + 1)(m2 − 2mt? + 2(t?)2)

(m− t?)(m2 − 2mt? + 2(t?)2 + 2m− 4t? + 2) ≥ (m− t? + 1)(m2 − 2mt? + 2(t?)2)

(m− t?)(2m− 4t? + 2) ≥ m2 − 2mt? + 2(t?)2

2m2 − 4mt? + 2m− 2mt? + 4(t?)2 − 2t? ≥ m2 − 2mt? + 2(t?)2

m2 − 4mt? + 2m+ 2(t?)2 − 2t? ≥ 0. (6)

and

m(m− t?)
m2 − 2mt? + 2(t?)2

≥ m(m− (t? + 1))

m2 − 2m(t? + 1) + 2(t? + 1)2

(m− t?)(m2 − 2m(t? + 1) + 2(t? + 1)2) ≥ (m− t? − 1)(m2 − 2mt? + 2(t?)2)

(m− t?)(m2 − 2mt? + 2(t?)2 − 2m+ 4t? + 2) ≥ (m− t? − 1)(m2 − 2mt? + 2(t?)2)

(m− t?)(−2m+ 4t? + 2) ≥ −m2 + 2mt? − 2(t?)2

−2m2 + 4mt? + 2m+ 2mt? − 4(t?)2 − 2t? ≥ −m2 + 2mt? − 2(t?)2

−m2 + 4mt? + 2m− 2(t?)2 − 2t? ≥ 0 (7)

Now, we show that L2 ≤ U1. This is equivalent to showing that

m

m− t? + 1
≤ m− 2t?

t? − 1
⇔ m(t? − 1) ≤ (m− 2t?)(m− t? + 1)

⇔ mt? −m ≤ m2 − 3mt? + 2(t?)2 +m− 2t?

⇔ 0 ≤ m2 − 4mt? + 2m+ 2(t?)2 − 2t? ,

which is true by (6). Finally, we show that L1 ≤ U3. This is equivalent to showing that

m− 2t?

t? + 1
≤ m

m− t? − 1
⇔ (m− 2t?)(m− t? − 1) ≤ m(t? + 1)

⇔ m2 − 3mt? + 2(t?)2 −m+ 2t? ≤ mt? +m

⇔ m2 − 4mt? − 2m+ 2(t?)2 + 2t? ≤ 0 ,

which is true by (7). That completes the proof of the fact that [max{L1, L2},min{U1, U2, U3}] 6= ∅
and therefore the proof of our upper bound.

Proof of randomized lower bound in Theorem 2.5. The outline of this proof is based on the same
result from [16] for deterministic algorithms. Consider any randomized algorithm, the size of each
bag follows some probability distribution which can be correlated. The problem can be described

18

as follows: the adversary first selects the number t of machine failures, knowing the distribution
of the bag sizes; then, the actual bag sizes are revealed; finally, the algorithm schedules these bags
on m− t machines. We assume by contradiction that, for every t, the expectation of the resulting
makespan is smaller than ρ̄01(m)/(1− t

m).
We consider an adversary with two possible strategies: make zero machines fail, or make t ≤ m/2

machines fail, the value of t being fixed later. For large m, t will be equal to 1−
√

2/2 and ρ̄01(m)
equal to ρ̄01.

The expected size of each bag must be smaller than ρ̄01(m), otherwise the expected makespan
on m machines would be too large. For every realization of bag sizes, there exists an optimal bag-
to-machine allocation on m − t machines that uses all machines, so has at least m − 2t machines
containing a single bag. Reorder the machines so that machines t+1 to m−t have a single bag. The
expected load of each of the first t machines is smaller than ρ̄01(m)/(1− t

m) as the optimal makespan
on m − t machines is 1/(1 − t

m). The expected load of each of the other machines is smaller than
ρ̄01(m) as they contain a single bag. By linearity of expectation, and due to the expected total load
being equal to m, we obtain the following contradiction:

m < min
t≤m

2
, t∈N

t · ρ̄01(m)

1− t
m

+ (m− 2t)ρ̄01(m)

ρ̄01(m) > max
t≤m

2
, t∈N

1
t

m−t + m−2t
m

= ρ̄01(m) .

Theorem 2.8. Sand01 is ρ̄01-robust for speed-robust scheduling with speeds in {0, 1} and infinitely
many infinitesimal jobs for all m ≥ 1.

Proof. Our proof naturally splits into two parts. In the first part, we show that the bags sizes are
feasible, i.e., their total size it at least m. In the second part, we show that the bag sizes achieve
the claimed robustness factor.

To show that the bag sizes are feasible, we will show that

ai ≥ m ·
∫ i

m

i−1
m

f̄(x) dx (8)

for all i ∈ {1, . . . ,m}. Then the first part follows by summing over (8) for all i and indeed, as
required for a profile function, f̄ integrates to 1:∫ 1

0
f̄(x) dx =

∫ β

0

(
1

2
+ ρ̄01x

)
dx+

∫ 1

β
ρ̄01 dx

=
β

2
+
ρ̄01β

2

2
+ (1− β) · ρ̄01

=

√
2

2 + 2
√

2
+

1

2
· 1

1 +
√

2
+

1 +
√

2

2
−
√

2

2

= 1 .

For i with β /∈ (i−1
m , im), we have that f̄ is linear on [i−1

m , im] and therefore∫ i
m

i−1
m

f̄(x) dx =

(
i

m
− i− 1

m

)
· f̄
(
i− 1

2

)
=
f(i− 1/2)

m
=
ai
m
.

19

For the single i with β ∈ (i−1
m , im) — and there is at least one such i because β is irrational — we

even get a stronger bound due to the fact that f̄ is strictly concave on that interval. Formally, we
distinguish two cases, in which we use either of the two linear functions from the definition of f̄ as
upper bound on f̄ . If i−1/2

m ≤ β, it follows that∫ i
m

i−1
m

f̄(x) dx ≤
∫ i

m

i−1
m

(
1

2
+ ρ̄01x

)
dx =

(
i

m
− i− 1

m

)
· f̄
(
i− 1

2

)
=
f(i− 1/2)

m
=
ai
m
.

For i−1/2
m > β, we have that∫ i

m

i−1
m

f̄(x) dx ≤
∫ i

m

i−1
m

ρ̄01 dx =

(
i

m
− i− 1

m

)
· f̄
(
i− 1

2

)
=
f(i− 1/2)

m
=
ai
m
.

That finishes the proof of (8) for all i and thus verifies that our bag sizes are feasible.
It remains to show that our bag sizes achieve the claimed robustness factor of ρ̄01 ≈ 1.207.

Essentially, the argument is a formal version of the intuitive argument we gave in the continuous
setting, restricted to x (the measure of the continuum of failing machines) being i−1/2

m for some
i ∈ {1, . . . ,m}. By Lemma 2.7, it suffices to consider the case that t ≤ m/2 machines fail. By
our self-imposed restriction, we only consider bag-to-machine assignments obtained through simple
folding. Note that we only need to bound the load on machines that have two bags assigned to
them after folding. Recall that these machines are machines t+ 1, . . . , 2t; for all i ∈ {1, . . . , t}, bags
i and 2t+ 1− i are assigned to machine 2t+ 1− i. Also recall that

ai ≤
1

2
+ ρ̄01 ·

i− 1
2

m

for all i ∈ {1, . . . ,m}. Hence, the load created by bags i ∈ {1, . . . , t} and 2t+1−i on machine 2t+1−i.
is

ai + a2t+1−i ≤
1

2
+ ρ̄01 ·

i− 1
2

m
+

1

2
+ ρ̄01 ·

2t+ 1− i− 1
2

m
= 1 + 2ρ̄01 ·

t

m
.

We would like to show that this load is at most a ρ̄01 factor away from the load of the optimum,
that is,

1 + 2ρ̄01 ·
t

m
≤ ρ̄01 ·

m

m− t
.

Letting x := t/m yields the inequality

(1 + 2ρ̄01x)(1− x) ≤ ρ̄01 ,

which is easily shown to be true even for any x ∈ R by maximizing the left-hand side.

C Proofs for Section 4.1 – Equal-Size Jobs and General Speeds

Lemma 4.2. For n unit-size jobs, m machines and q ∈ N with λ ∈ [2q − 1, 2q + 1], BuildOdd
is (2− 1

q+1)-robust for speed-robust scheduling.

Proof. The proof is along the lines of the proof of Theorem 3.3. Recall that BuildOdd builds m
bags of sizes belonging to {2q − 1, 2q, 2q + 1}, with at most one bag of size 2q. This is possible
by building first m bags of size 2q − 1 then putting 2 additional jobs per bag until zero or one
job remains. Let ms be the number of small bags (size 2q − 1), mm be the number of medium

20

bags (size 2q) and mb be the number of big bags (size 2q + 1). We have ms + mm + mb = m
and n = (2q + 1)mb + 2qmm + (2q − 1)ms.

We assume q ≥ 1 since, if q = 0, only bags of size 1 are built and the problem is trivial.
Note that a small bag can be executed at speed q and a large or medium bag can be executed

at speed q + 1 while respecting the prescribed makespan of 2 − 1
q+1 = 2q+1

q+1 . We define the weight
of a small bag as q and the weight of a large or medium bag as q + 1.

In the second stage, when the speed si ∈ N is given for each machine i, associate a capacity si
with each machine. Assign the bags in LPT order to the machines, each bag to the least loaded
machine such that the total weight of bags assigned to a machine does not exceed the capacity. The
total capacity of all bins is equal to n. If all bags can be assigned to the machines, then the total
size of the bags assigned to a machine of speed si is at most (2− 1

q+1)si, which gives the result.
Assume by contradiction that there is a bag that cannot be assigned to a machine. Let T be

the weight of this bag. It suffices to show that the total remaining capacity on all machines is at
least m(T −1) + 1. Indeed, weights and capacities are integers, so if the average remaining capacity
per machine is strictly larger than T − 1, one machine has a remaining capacity at least T and the
bag fits.

Assume first the bag is small, i.e, T = q. The total weight placed so far is at most (q+ 1)(mb +
mm) + q(ms − 1), so the remaining capacity is at least:

C ≥ n− (q + 1)mb − (q + 1)mm − qms + q

= (2q + 1)mb + 2qmm + (2q − 1)ms − (q + 1)mb − (q + 1)mm − qms + q

= qmb + (q − 1)mm + (q − 1)ms + q

≥ m(T − 1) + q .

Assume now the bag is big or medium, so T = q + 1. The total weight placed so far is at
most (q + 1)mb and, thus, the remaining capacity is at least:

C ≥ n− (q + 1)mb + q

= (2q + 1)mb + 2qmm + (2q − 1)ms − (q + 1)mb + q

= qmb + qmm + qms + (q − 1)ms + qmm + q

≥ m(T − 1) + q .

Hence, all bags can be assigned to the machines without exceeding the capacity. Hence, this
algorithm is (2− 1

q+1)-robust.

Lemma 4.4. For every m ≥ 3, no algorithm for speed-robust scheduling can have a robustness
factor smaller than 1.5, even restricted to unit-size jobs.

Proof. Consider an instance with 2m unit-size jobs. If an algorithm places 3 jobs in a bag, the
adversary selects identical speeds which leads to a makespan 3/2 times larger than the optimal.
Otherwise, the adversary chooses a speed 1 for m−1 machines and a speed m+ 1 for the remaining
machine, thus being able to complete the instance within a makespan 1. The algorithm then has to
put all the bags on the fastest machine to obtain a robustness factor smaller than 2. The factor is
equal to 2m/(m+ 1) which is at least 1.5 for m ≥ 3.

In the following we show the results of Lemma 4.5 for few machines.

Lemma C.1. The optimal algorithm for speed-robust scheduling for unit-size jobs has robustness
factor 4/3 on m = 2 machines.

21

Proof. The lower bound is implied by Lemma 2.2. Let n be the number of jobs of the instance.
Consider an algorithm that builds two bags containing at most a1 and a2 jobs as follows:

a1 :=

⌊
4

3
· bn/4 + 1c

⌋
and a2 :=

⌊
4

3
dn/2e

⌋
≥
⌊

2

3
n

⌋
.

We now show that (i) for every adversary, the algorithm can schedule these bags within a
makespan of 4/3 and (ii) that a1 + a2 ≥ n, so the bags contain all jobs.

The adversary places at leastM2 := dn/2e jobs on one machine, say machine 2. So the algorithm
is always able to place at least a2 jobs on machine 2. If the adversary places at least d3n/4e jobs
on machine 2, then the algorithm can place both bags on this machine. Otherwise, the adversary
can place at most d3n/4e − 1 jobs on machine 2. This implies that there are at least M1 :=
n− d3n/4e+ 1 = bn/4c+ 1 jobs placed on machine 1. This means that the algorithm can place at
least

⌊
4
3M1

⌋
jobs on machine 1; this is exactly a1. So the makespan achieved by the algorithm is at

most 4/3 · C∗max, where C∗max is the optimal makespan.
Hence, the algorithm is 4/3-robust if a1 + a2 ≥ n. Consider the four natural integers s < 4, t <

3, k and q such that n = 4k + s = 3q + t. Note that

a1 =

⌊
4

3
· (k + 1)

⌋
=

⌊
4k + 4

3

⌋
=

⌊
3q + t+ (4− s)

3

⌋
= q +

⌊
4 + t− s

3

⌋
.

We consider several cases which together complete the proof:

• 4 + t− s ≥ 3, i.e., t ≥ s− 1: we have a1 ≥ q + 1 ≥ dn/3e so a1 + a2 ≥ n.

• t = 0: we have a1 ≥ q = dn/3e so a1 + a2 ≥ n.

• 0 < t < s − 1 ≤ 2, which means t = 1 and s = 3: we have a1 = q and n = 4k + 3 is odd,
so M2 = 1

2(n+ 1) = 1
2(3q + 2) and

a2 =

⌊
4

3
M2

⌋
=

⌊
2q +

4

3

⌋
= 2q + 1 = n− a1 .

Lemma C.2. The optimal algorithm for speed-robust scheduling for unit-size jobs has robustness
factor 3/2 on m = 3 machines.

Proof. The lower bound is implied by Lemma 4.4. Let n > 3 be the number of jobs. Consider an
algorithm that builds three bags as follows:

a1 :=

⌊
3

2
· 1

2

⌊n
3

+ 1
⌋⌋

a3 :=

⌊
3

2

⌈n
3

⌉⌋
≥ bn/2c ≥ n− 1

2

a2 := n− a1 − a3.

Order the machines by lowest adversary load first. The adversary places at least
⌈
n
3

⌉
jobs on

the most loaded machine, machine 3, so the algorithm can always put at least a3 jobs, i.e., the third
bag on machine 3.

If the adversary places at least
⌈

2
3n
⌉
jobs on machine 3, then the algorithm can put all bags

on it and the claim holds. Assume now the adversary places at most
⌈

2
3n
⌉
− 1 jobs on machine

3, so machines 1 and 2 receive at least
⌊
n
3 + 1

⌋
jobs combined. This means in particular that the

22

algorithm can always put bag a1 on machine 2. We now consider several cases that could prevent the
algorithm from reaching a robustness factor of 3/2. They all implicitly assume that the algorithm
cannot simultaneously put the bags a1 and a2 on machines 1 and 2 and cannot put the bags a2

and a3 jobs on machine 3, as the contrary allows to fit all bags. We therefore show a contradiction
in each case.

• The algorithm cannot put a2 on machine 2. This means than M2 <
2
3a2 so:

M1 ≤M2 ≤
2

3
a2 −

1

3

M3 ≤
2

3
(a2 + a3)− 1

3
.

This implies

n = M1 +M2 +M3 ≤ 2a2 +
2

3
a3 − 1.

Using that a2 = n− a1 − a3 and rearranging yields

n ≤ 2n− 2a1 − 2a3 +
2

3
a3 − 1

2a1 +
4

3
a3 − n+ 1 ≤ 0 .

However, letting n = 3k + t with t ∈ {0, 1, 2} and k > 0, we have

a1 =

⌊
3k + 3

4

⌋
≥ 3k

4
; a3 ≥

n− 1

2
.

This leads to the following contradiction:

2a1 +
4

3
a3 − n+ 1 ≥ 3k

2
+

2

3
n− 2

3
− n+ 1

≥ 3k

2
− n

3
+

1

3

≥ k +
k

2
− k − 1

3
> 0 .

• The algorithm cannot put a3 on machine 2, a2 can be put there. Consequently, the algorithm
cannot put a1 on machine 1 as this allows to place simultaneously a1 and a2 on machines
1 and 2. So M1 <

2
3a1, which means M1 ≤ 2

3a1 − 1
3 . Similarly, the algorithm cannot put

simultaneously a1 and a2 on machine 2 nor a2 and a3 on machine 3. Therefore, we have

M1 ≤
2

3
a1 −

1

3

M2 ≤
2

3
min(a1 + a2, a3)− 1

3

M3 ≤
2

3
(a2 + a3)− 1

3
.

23

Noting that min(a1 + a2, a3) ≤ n/2 as a1 + a2 + a3 = n, we get the following contradiction

n = M1 +M2 +M3 ≤
2

3
(a1 + a2 + a3 + min(a1 + a2, a3))− 1

≤ 2

3
(n+

1

2
n)− 1

≤ n− 1 .

• The algorithm cannot put a1 +a2 on machine 3. By definition, we have a3 ≥ n−1
2 , so a1 +a2 ≤

n+1
2 and M3 <

2
3(a1 + a2) = n+1

3 . Therefore, all machine loads equal n/3 so one bag per
machine fits, which is a contradiction.

Lemma C.3. For m = 6, the optimal algorithm for speed-robust scheduling for unit-size jobs has a
robustness factor larger than ρ̄(m).

Proof. Consider n = 756 unit-size jobs and m = 6 machines. Consider any algorithm building 6
bags of sizes a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 out of these jobs. Consider an adversary setting where
five machines are set to a speed s1 ∈ N and one machine to a speed s6 ∈ N with 5s1 + s6 ≥ n such
that an optimal schedule of n jobs on these machines has a makespan at most 1. For the algorithm
and for each i, either a bag of size at least ai is scheduled on a machine of speed s1 or all bags
of size at least ai are scheduled on the machine of speed s6. Hence, for each i ∈ {1, . . . , 6}, the
number φi := min(ai/s1,

∑6
j=i aj/s6) is a lower bound on the algorithm’s makespan, in other words,

on its robustness factor.
Consider Table 2. Observe that the Conditions (2) and (3) are equivalent as n, the number of

jobs, is fixed. If none of the Conditions (1) are satisfied, then the total size of the bags is at most
76 + 91 + 109 + 132 + 158 + 189 = 755 < n, which is a contradiction. Hence, let i be the first
row such that Condition (1) is satisfied. The fact that Condition (1) is not satisfied for i′ < i then
implies that Condition (3) is met by definition. Hence, the bag sizes of the algorithm satisfy the
conditions of at least one row. Observe that this implies that for this particular i, φi is then a lower
bound on the makespan of the algorithms assignment. Overall, φ = mini φi is then a lower bound
on the robustness factor of the algorithm.

We have that φ = 589
391 ≈ 1.506 > ρ̄(6) ≈ 1.503. Hence, the robustness factor of any algorithm for

unit-size jobs and m machines is indeed strictly larger than the robustness factor for infinitesimal
jobs on the same number of machines; see Lemma 2.4.

Conditions on bag sizes
s1 s6 φ

(1) (2) (3)

a1 ≥ 77 51 501 min(77
51 ,

756
501)

a2 ≥ 92
∑

j≥2 aj ≥ 680 a1 ≤ 76 61 451 min(92
61 ,

680
451)

a3 ≥ 110
∑

j≥3 aj ≥ 589 a1 + a2 ≤ 167 73 391 min(110
73 ,

589
391)

a4 ≥ 133
∑

j≥4 aj ≥ 480
∑

j<4 aj ≤ 276 88 318 min(133
88 ,

480
318)

a5 ≥ 159 a5 + a6 ≥ 348
∑

j<5 aj ≤ 408 105 231 min(159
105 ,

348
231)

a6 ≥ 190 126 226 190
126

Table 2: Speed instance in function of the bag sizes in Lemma C.3.

24

D Proofs for Section 4.2 – Equal-Size Jobs and Speeds in {0, 1}
In this section, we give the proofs for Section 4.2. In Corollary D.2 and in Lemma D.3, we show
that if Optm ≥ 11 or if Optm ∈ {9, 10} and m ≥ 50, respectively, then there exists a 4

3 -robust
algorithm based on Sand01. For Optm ∈ {1, 2}, we show in Lemma D.5 that packing the bags
according to the optimal schedule on m machines, is 4

3 -robust. If 3 ≤ Optm ≤ 8 and m ≥ 50, we
prove in Lemma D.6 that there is 4

3 -robust packing using at most four different bag sizes. Finally in
Lemma D.9, the remaining cases consist of Optm ≤ 10 and m ≤ 50 which can be enumerated and
solved with an integer linear program (ILP). For the remainder of this section we use λ̄ := Optm
to denote the optimal makespan on m machines. Additionally, inductively applying the following
lemma allows us to restrict ourselves to instances where Optm < Optm−1.

Lemma D.1. Fix a job set I and some ρ′. If Optm = Optm−1, then any solution for I that
is ρ′-robust for m− 1 bags on m− 1 machines is ρ′-robust in the instance on m machines as well.

Proof. Let I be the set of jobs. Compute a solution on m− 1 bags that is ρ′-robust for the instance
with jobs I and m−1 bags. If m′ < m machines actually work, return the packing computed by the
ρ′-robust algorithm for m′ machines. If m machines work, return the m− 1 bags. By assumption,
the load of the largest bag is at most ρ′Optm−1 = ρ′Optm which gives the result.

From now on, we assume without loss of generality that Optm ≤ Optm−1 − 1. This allows us
to express n = mλ̄− `, where 0 ≤ ` < min{m, λ̄}.

Corollary D.2. For λ̄ ≥ 11, the algorithm SandForBricks based on Sand01 is 4
3 -robust.

Proof. This follows directly from Lemma 4.1 and the fact that, for λ̄ ≥ 11, we have λ = n
m ≥ 10.

The robustness of SandForBricks is (1 + 1
λ)ρ̄01 ≤ 1.1 · ρ̄01 < 1.33 which is less than 4/3.

For λ̄ ∈ {9, 10}, we can use a similar approach but have to be a bit more careful in the scaling
and rounding of the bag sizes constructed by Sand01 and perform a more fine-grained analysis.

Lemma D.3. For λ̄ ∈ {9, 10} and m ≥ 50, there is a 4
3 -robust algorithm.

Proof. Consider bag sizes created by Sand01 and scale them by a factor of 4
3ρ̄01

. We obtain,
for i ∈ {1, . . . ,m}:

a′i =
n

m
·min

{
4

3
,

2

3ρ̄01
+

4

3
·
i− 1

2

m

}
.

Now, we round down each bag size a′i to the nearest integer and denote the rounded bag size by ai.
The total volume of bags before rounding is

∑m
i=1 a

′
i = 4

3ρ̄01
n > n and is, thus, larger than

the total processing volume of all jobs. We will show that after rounding, the remaining volume is
still at least n. In that case, we can guarantee that all unit-size jobs can be assigned to the bags,
so the robustness factor is not larger than the robustness factor ρ̄01 of Sand01 times the scaling
factor 4/(3ρ̄01), which proves the lemma.

Consider now the remaining volume after rounding. To argue that it is at least n, we show
that the loss due to rounding is bounded by

(
4

3ρ̄01
− 1
)
n. To that end, we carefully analyze the loss

incurred on three different portions of bags, depending on the profile function. Denote by ω the order
of 4n in the additive group Z3m2 , that is, ω = min{i ∈ N \ {0} | i · 4n ≡ 0 mod 3m2}. We claim:

(i) On the plateau, i.e., where a′i ≡ 4
3 , we loose a volume of at most Lmax := 1− 1

3m per bag.

(ii) On the slope, for ω consecutive bags, we loose an average volume at most 1
2 + 4n−1

3m2 per bag.

25

(iii) On leftover bags of the slope, i.e., bags that remain after partitioning bags on the slope into ω-
sized groups, we loose a total volume of 3m2

32n + n
6m2 + 1

4 additional to the average loss of 1
2 + 4n−1

3m2

per bag from (ii).

See Figure 2 for an illustration of the different parts.
The first case, Claim (i), follows directly from the fact that bag sizes are 4n

3m .
For Claim (ii), note that since the slope of the profile function equals ∆ := 4n

3m2 , the loss due to
rounding is periodic. Specifically, it has a period of ω. For ω consecutive bags, and starting with a
worst-case loss of Lmax for the first bag, the average loss due to rounding equals

1

ω

ω−1∑
i=0

(
Lmax −

i

ω

)
= 1− 1

3m2
− 1

2

ω − 1

ω
= 1− 1

2
− 1

3m2
+

1

2ω
.

Denote this term by Lω. Since ω ≥ 3m2

4n , the average loss is at most 1
2 + 4n−1

3m2 , as desired.
Finally, for Claim (iii), we construct adversarial leftover bags that maximize the loss due to

rounding. The first bag has a loss of Lmax, the second a loss of Lmax − ∆, and so on until the
last one has a loss which is just above Lω. Adding further leftover bags would lead to averaging
as in Claim (ii) and ultimately a smaller rounding loss. For such adversarial leftover bags, we
define n` := Lmax−Lω

∆ , so bn`c is the number of leftover bags. Then, the overall additional loss, when
compared to Lω, is given by

bn`c−1∑
i=0

((Lmax − Lω)− i ·∆) = bn`c (Lmax − Lω)− bn`c (bn`c − 1)

2
·∆

≤ bn`c (Lmax − Lω)− bn`c (n` − 2)

2
·∆

= bn`c (Lmax − Lω)− bn`c (Lmax − Lω)

2
+ bn`c ·∆

≤ n` (Lmax − Lω)

2
+ n` ·∆

=
(Lmax − Lω)2

2∆
+ (Lmax − Lω)

≤
(1

2 −
1

2ω)2

2∆
+

1

2
.

Again, we use ω ≥ 3m2

4n to obtain an upper bound for the last term. Then

bn`c−1∑
i=0

((Lmax − Lω)− i ·∆) ≤
(1

2 −
2n

3m2)2

8n
3m2

+
1

2
=

3m2

32n
− 1

4
+

n

6m2
+

1

2
=

3m2

32n
+

n

6m2
+

1

4
,

which concludes the proof of Claim (iii).
Let [x] denote the value of x rounded to the closest integer. We can now bound the overall loss

due to rounding by

[(1− β)m] · Lmax + [βm] · Lω +

(
3m2

32n
+

n

6m2
+

1

4

)
.

This term is less or equal to
(

4
3ρ̄01
− 1
)
n, if(

4

3ρ̄01
− 1

)
n− (1− β)m− 1

2
− βm ·

(
1

2
+

4n− 1

3m2

)
− 3m2

32n
− n

6m2
− 1

4
≥ 0.

26

Using λ̄m− λ̄ ≤ n ≤ λ̄m, this inequality is implied if the following inequality holds:(
4

3ρ̄01
− 1

)
(λ̄m− λ̄)− (1− β)m− 3

4
− βm

2
− 4βλ̄

3
− 3(m+ 1) + 3

32λ̄
− λ̄

6m
. ≥ 0

Algebraic computations show that for λ̄ = 9 and λ̄ = 10 this is the case when m ≥ 40 and m ≥ 30,
respectively (see the Mathematica sheet available at www.cslog.uni-bremen.de/bsimon/files/
SuppMaterialSRS.zip).

1 2 m

4
3
n
m

2
3ρ̄01

n
m

ω = 5

Figure 2: Bags a′i obtained from Sand01by scaling (in red) and bags ai rounded down to the nearest integer
for m = 30 and n = 270. The plateau is indicated in yellow, the sloped part in green and the leftover
bags in blue. The continuous sloped line indicates the function f̄ with the appropriate scaling. Note that,
here, ω = 5, and the volume of the bags ai is 288 ≥ n.

For the case that λ̄ = Optm ≤ 8 and m ≥ 37, we use a more direct, constructive approach and
give a simple strategy that utilizes at most four different bag sizes.

We also use the following result on bags assigned to machines according to LPT-order. For a
given set of bags, we denote by LPTm′ the makespan attained by assigning the bags in LPT order
to the currently least loaded machine when there are m′ machines with speed si = 1.

Lemma D.4. Let a be the size of a bag determining the makespan of LPT on m′ machines.
If a ≤ Optm′

3 , then LPTm′ ≤ 4
3Optm′.

Proof. Let b be a bag determining the makespan of size a. As LPT assigns the bags in decreasing
size to the currently least loaded machine, observe that the load on machine i right before assigning b
was at most Optm′ . Hence, LPTm′ ≤ Optm′ + a ≤ 4

3Optm′ .

We start by considering the cases where λ̄ ≤ 2. In both cases, we pack the jobs assigned to
machine i by Optm into bag i. Given m′, we use LPT on the bags to determine the final schedule.

Lemma D.5. If λ̄ ≤ 2 and m ≥ 37, there exists a 4
3 -robust algorithm.

Proof. If λ̄ = 1, each jobs is packed into its own bag. Hence, LPTm′ = Optm′ .
For λ̄ = 2, if no machine fails, the packing achieves a makespan of λ̄. By Lemma D.1, we may

assume that n ∈ {2m, 2m−1}. Therefore, if m2 ≤ m
′ ≤ m−1, we have Optm′ ≥ 3 while LPTm′ ≤ 4

27

www.cslog.uni-bremen.de/bsimon/files/SuppMaterialSRS.zip
www.cslog.uni-bremen.de/bsimon/files/SuppMaterialSRS.zip

as at most 2 bags are assigned to the same machine. For the remaining cases, with m′ ≤ m
2 − 1, we

have Optm′ ≥ 5. When Optm′ = 5, LPT assigns at most 3 bags to each machine which guarantees
that LPTm′ ≤ 6 ≤ 4

3Optm′ . If Optm′ ≥ 6, Lemma D.4 implies that LPTm′ ≤ 4
3Optm′ .

For the remaining cases, i.e., 3 ≤ λ̄ ≤ 8, we pack four different types of bags depending on λ̄.
After observing m′, we then use LPT to assign these bags to the remaining machines. For l ∈
{0, 1, 2, 3}, we denote by al the size of the l-th bag type and by xl its multiplicity. The idea is to
have x0 + x1 = x3 ≈ 2

5m while x2 ≈ 1
5m.

More precisely, let a1 =
⌈

2
3 λ̄
⌉
, a2 = λ̄, and a3 =

⌊
4
3 λ̄
⌋
be the three standard bag sizes. Since a1 +

a3 = 2a2, packing as many smallest as largest bags, i.e., x1 = x3, ensures that
∑3

l=1 alxl = mλ̄.
Recall that n = mλ̄− ` with 0 ≤ ` < λ̄. Hence, we decrease x1 by ` and pack x0 = ` many bags of
size a0 = a1 − 1 =

⌈
2
3 λ̄
⌉
− 1 in order to pack exactly n jobs in our m bags. As we aim for a tight

robustness guarantee, we have to be careful about the exact number of bags in this section. The
following table defines x0 + x1, x2, and x3 depending on m (mod 5).

m (mod 5) 0 1 2 3 4 al

x0 + x1
2m
5 2

⌊
m
5

⌋
2
⌊
m
5

⌋
+ 1 2

⌊
m
5

⌋
+ 1 2

⌊
m
5

⌋
+ 1

⌈
2
3 λ̄
⌉

x2
m
5

⌊
m
5

⌋
+ 1

⌊
m
5

⌋ ⌊
m
5

⌋
+ 1

⌊
m
5

⌋
+ 2 λ̄

x3
2m
5 2

⌊
m
5

⌋
2
⌊
m
5

⌋
+ 1 2

⌊
m
5

⌋
+ 1 2

⌊
m
5

⌋
+ 1

⌊
4
3 λ̄
⌋

(B)

The exact bag sizes are given by the next table.

Optm = λ̄ 3 4 5 6 7 8

a0 1 2 3 3 4 5
a1 2 3 4 4 5 6
a2 3 4 5 6 7 8
a3 4 5 6 8 9 10

Lemma D.6. If 3 ≤ λ̄ ≤ 8 and m ≥ 50, there exists a 4
3 -robust algorithm.

The proof of the main result consists of two major cases depending on the number of bags LPT
assigns to the same machine. The first part of the proof is to consider m′ such that LPT assigns
at most 2 bags to any machine and the second part consists of m′ such that there is at least one
machine to which LPT assigns at least 3 bags.

Lemma D.7. Pack the unit-size jobs as described above. If m′ ≥ m
2 , then LPTm′ ≤ 4

3Optm′ .

Proof. To prove this lemma, we consider all cases of how LPT assigns two bags to the same machine.
Let LPTm′ denote the resulting makespan. We start by bounding the number of failing machines t
depending on the value of LPTm′ . If LPTm′ = al′ + al with l′ ≤ l, then

t ≥
l′−1∑
l′′=0

xl′′ +

⌊
l−1∑
l′′=l′

xl′′/2

⌋
+ 1 . (9)

LPTm′ ∈ {2a0, a0 + a1,2a1} As λ̄ < Optm−1 by our assumption based on Lemma D.1, we
have that 2a1 ≤ 4

3Optm′ if m′ < m. Hence, if LPTm′ ∈ {2a0, a0 +a1, 2a1}, then LPTm′ ≤ 4
3Optm′ .

28

LPTm′ = a0 + a2 Observe that b(x0 + x1)/2c ≥
⌊
m
5

⌋
by definition. Hence, m′ = m − t ≤

m− (bm/5c+ 1) ≤ 4
5m by Equation (9). This implies that

Optm′ ≥
n

m′
≥ mλ̄− `

4/5m
=

5

4

(
λ̄− `

m

)
.

As ` < λ̄ ≤ 8 and m ≥ 37 by assumption, we have that 5
4
`
m ≤

1
4 . Hence,

4

3
Optm′ ≥

4

3

(
5

4
λ̄− 1

4

)
≥ 5

3
λ̄− 1

3
.

Using that a0 + a2 =
(⌊

2/3λ̄
⌋
− 1
)

+ λ̄ ≤ 5
3 λ̄− 1, concludes that LPTm′ ≤ 4

3Optm′ .

For the remaining cases, let l and l′ be the indices of the bag types that are assigned to the same
machine and let yll′ :=

∑l′−1
l′′=0 xl′′ +

⌊∑l−1
l′′=l′ xl′′/2

⌋
. Then, t ≥ yll′ + 1 by Equation (9). Showing

that LPTm′ ≤ 4
3Optm′ is equivalent to showing that

al′ + al ≤
4

3

⌈
n

m− (yll′ + 1)

⌉
for all possible combinations of al′ and al. With all′ :=

⌈
3
4(al′ + al)

⌉
, this inequality holds if

yll′ ≥
⌊

(all′ − 1)m− n
all′ − 1

⌋
= m−

⌈
n

all′ − 1

⌉
=

⌊
m− λ̄m

all′ − 1
+

`

all′ − 1

⌋
, (10)

where we used the fact that yll′ ∈ Z.

LPTm′ = a1 + a2 By Equation (10), it suffices to verify x0 +
⌊
x1
2

⌋
≥ m −

⌈
n

d3/4(a1+a2)e−1

⌉
.

If λ̄ = 3, then the right hand side becomes m −
⌈

3m−`
3

⌉
= 0. Hence, the inequality is satisfied.

For λ̄ ≥ 4, the right hand side is at most
⌊
m
5 + `

5

⌋
≤
⌊
m
5

⌋
+
⌊

4
5 + `

a−1

⌋
with 0 ≤ ` < λ̄. Observe

that
⌊
x1
2

⌋
+ x0 ≥

⌊
m
5

⌋
+
⌊
x0
2

⌋
. Using the definition of x0 + x1 and x0 = `, this yields

⌊m
5

⌋
+

⌊
4

5
+

`

a− 1

⌋
≤

⌊
m
5

⌋
+ 0 ≤

⌊
x1
2

⌋
+ x0 if x0 = 0⌊

m
5

⌋
+ 0 ≤

⌊
x1
2

⌋
+ x0 if x0 = 1 and λ̄ ≥ 5⌊

m
5

⌋
+ 1 ≤

⌊
x1
2

⌋
+ x0 if x0 ≥ 2 ,

which shows the validity of Inequality (10). in all cases except the combination of ` = x0 = 1
and λ̄ = 4. For this particular case, a careful case distinction based on m (mod 5) shows that
Inequality (10). still holds.

LPTm′ = a2+a2 By Equation (10), it suffices to verify x0+x1 ≥ m−
⌈

n
d3a2/2e−1

⌉
. The right hand

side can be transformed into
⌊
m
3 + 2

3
`
m

⌋
≤ m

3 + 2
3 = 5

15m+ 10
15 . We have x0 +x1 ≥ 2

⌊
m
5

⌋
≥ 6

15m−
24
15 .

Using that m ≥ 50, we obtain x0 + x1 ≥ 5
15m+ 21

15 , which concludes the proof of Inequality (10).

29

LPTm′ = a0 + a3 We need to verify

x0 + x1 + x2

2
≥

⌊
m− λ̄⌈

3(2λ̄− 1)/4
⌉
− 1

m+
`⌈

3(2λ̄− 1)/4
⌉
− 1

⌋

=

⌊
m− λ̄⌊

3λ̄/2
⌋
− 1

m+
`⌊

3λ̄/2
⌋
− 1

⌋
.

Based on m (mod 7), the last term can be bounded from above by⌊
m− λ̄⌊

3λ̄/2
⌋
− 1

m+
`⌊

3λ̄/2
⌋
− 1

⌋
≤
⌊

2

7
m+

2

3

⌋
=

2

7
m− 2

m (mod 7)

7
+

⌊
2
m (mod 7)

7
+

2

3

⌋

=
2

7
m+

0

−2
7
3
7
1
7

−1
7
4
7
2
7

≤ 2

7
m+

40

70
.

Consider x0+x1+x2
2 , the left hand side of the inequality. We can express this by

x0 + x1 + x2

2
=

3

10
m+

0
2
10

− 1
10
1
10
3
10

=
2

7
m+

m

70
+

0
14
70

− 7
70
7
70
21
70

≥ 2

7
m+

43

70
,

where we used m ≥ 50. This proves the validity of Inequality (10).

LPTm′ = a1 + a3 In this case, we need to verify

x0 +
x1 + x2

2
≥

⌊
m− λ̄⌈

3λ̄/2
⌉
− 1

+
`⌈

3λ̄/2
⌉
− 1

⌋
,

where we used that a1 + a3 = 2λ̄. Using that λ̄ ≤ 8 and that the second term on the right hand
side is increasing in λ̄ and depends on the parity of λ̄, we can upper bound the right hand side
by
⌊

3
10m+ 2

3
`

λ̄−1

⌋
. Note that the left hand side is slightly larger than 3

10m but not sufficiently large

30

for a crude upper bound. Hence, we rewrite the left hand side by

x0 +
x1 + x2

2
=

3

10
m+

x0

2
+

0
2
10

− 1
10
1
10
3
10

depending on m (mod 5).
If x0 = ` = 0, then the right hand side of the inequality is

⌊
3
10m

⌋
. Except for the

case m (mod 5) = 2, the term x1+x2
2 clearly satisfies the inequality. If m (mod 5) = 2, we

have m (mod 10) ∈ {2, 7}, which implies that
⌊

3
10m

⌋
≤ 3

10m −
6
10 ≤

x1+x2
2 by the case distinction

above.
If x0 = ` > 0, then x0

2 ≥
1
2 and, thus, the case distinction yields

x0 +
x1 + x2

2
≥ 3

10
m+

4

10
.

Using that the right hand side is upper bounded by
⌊

3
10m+ 2

3

⌋
, we use a similar case distinction

based on m (mod 10) to derive

⌊
3

10
m+

2

3

⌋
=

3

10
m− 3

10
(m (mod 10)) +

⌊
3

10
(m (mod 10)) +

2

3

⌋
=

3

10
m+

3
10

− 4
10

− 1
10
2
10

− 5
10

− 2
10
1
10

− 6
10

− 3
10

≤ 3

10
m+

3

10
,

which concludes the proof of Inequality (10).

By our choice of x0, . . . , x3, the occurrence of LPTm′ ∈ {a2 + a3, a3 + a3} implies that m′ < m
2

which is not considered in this lemma.

Lemma D.8. Pack the unit-size jobs as described above. If m′ < m
2 , then LPTm′ ≤ 4

3Optm′ .

Proof. Assuming for the sake of contradiction that LPT fails to place all bags onto the machines
such that LPTm′ ≤ 4

3Optm′ , we consider the first bag b ∈ [m] whose assignment to the currently
least loaded machine causes the failure, i.e., the completion time of this machine exceeds 4

3Optm′ .
For simplicity, let this be machine i and let Ci be the completion time of i before adding bag b.
Let a be the size of bag b.

As m′ < m
2 , m ≥ 37, and λ̄ < Optm−1, we have that Optm′ ≥ 2λ̄ + 1. Hence, if bag b is the

first or second bag on machine i, then Ci + a ≤ 2
⌊

4
3 λ̄
⌋
≤ 4

3Optm′ ; a contradiction.
Consider the case where bag b is the fourth bag (or larger) on machine i and restrict to the

instance consisting only of the jobs assigned by LPT so far plus the jobs in bag b. Let Opt′m′ be
the optimum of this restricted instance on m′ machines. As LPT has not assigned all bags yet, i.e.,

31

there is still unscheduled volume, we have that Opt′m′ ≥ Ci + 1. Since there are already at least
three bags of size at least a on machine i, we have Opt′m′ ≥ Ci ≥ 3a. Moreover, as b is the first bag
to violate Ci + a ≤ 4

3Optm′ , bag b determines the makespan of LPT on the restricted instance; a
contradiction by Lemma D.4.

Hence, bag b is the third bag on machine i. Based on the size of bag b, we distinguish four cases.

a = a0 If a bag of size a0 is the first bag whose completion time violates 4
3Optm′ , then a bag

of size a0 determines LPTm′ . Note that 3a0 = 3(
⌈

2
3 λ̄
⌉
− 1) ≤ 32

3 λ̄ = 2λ̄ ≤ Optm′ . Hence, by
Lemma D.4, we have LPTm′ ≤ 4

3Optm′ ; a contradiction.

a = a1 If Ci = 2a3, then 4
3Optm′ ≥ 10

3 λ̄ while Ci + a1 ≤ 10
3 λ̄; a contradiction. If Ci =

a2 + a3, then 4
3Optm′ ≥ 28

9 λ̄, while Ci + a1 = 3λ̄; a contradiction. If Ci = 2λ̄ = 2a2 = a1 + a3,
then 4

3Optm′ ≥ 8
3 λ̄+ 4

3 while Ci+a1 ≤ 8
3 λ̄+ 2

3 ; a contradiction. If Ci = a1+a2, then 4
3Optm′ ≥ a2+

a1 +(a2 +a1)/3+ 4
3 while Ci+a1 = a2 +2a1. For 3 ≤ λ̄ ≤ 8, one can check that (a2 +a1)/3+ 4

3 ≥ a1;
a contradiction. As m′ < m

2 , we have covered all possibilities for Ci. Hence, a bag of size a1 cannot
cause LPT to fail.

a = a2 Let x be the number of bags of size a2 that were successfully assigned by LPT before
bag b. Denote by V a volume of m′ · 4

3Optm′ minus the volume of already assigned bags which
are x3 bags of size a3 and x bags of size a2. We have

V ≥ 4

3
(a0x0 + a1x1 + (x2 − x)a2) +

1

3
(xa2 + a3x3) .

Using x0 + x1 = x3, this implies

V = a1x3 −
4

3
x0 +

1

3
x3 (a1 + a3) +

1

3
x2a2 + (x2 − x)a2 .

With 4
3x0 <

4
3 λ̄ ≤

1
3x2λ̄+ (x2 − x)λ̄, this becomes

V ≥ 4

3
a2x3 .

As b is the third bag on machine i by the above discussion, we have m′ < x3+x2
2 ≤ x3. Thus, we

conclude with

V ≥ 4

3
a2m

′ .

Hence, the total volume left on the m′ machines is at least m′a2. Hence, there has to be one
machine i′ where b still fits, i.e., Ci′ + a2 ≤ 4

3Optm′ . As i is the least loaded machine when LPT
assigns bag b and b violates 4

3Optm′ , we obtain a contradiction.

a = a3 Let x be again the number of bags of size a3 successfully assigned to machines by LPT
before bag b. If a3 is the size of a third bag on machine i, then m′ < x3

2 . By definition of x2, this
additionally implies that m′ ≤ x2. Let V be the remaining volume after having assigned x bags of
size a3. Then,

V =
4

3
(a0x0 + a1x1 + a2x2 + a3(x3 − x)) +

1

3
a3x

=
4

3
a1x3 −

4

3
x0 +

4

3
a2x2 +

1

3
a3x3 + (x3 − x)a3

≥ 8

3
a1m

′ +
4

3
a2m

′ +
2

3
a3m

′ ,

32

where we used 4
3x0 ≤ a3 ≤ (x3 − x)a3 and m′ < x3

2 as well as m′ ≤ x2. Thus, the remaining
volume satisfies V ≥ a3m

′. Hence, there is at least one machine with remaining volume at least a3

contradicting LPT’s choice of machine i.

As all possible cases for the size of the first bag that causes LPT to fail lead to a contradiction,
this proves the statement.

Proof of Lemma D.6. Combining the results of Lemmas D.7 and D.8 shows that packing the bags
according to (B) is 4

3 -robust.

Finally, the remaining cases are verified by enumerating over all possible instances and finding
a feasible strategy for each using an integer linear program.

Lemma D.9. For λ̄ ≤ 10 and m ≤ 50, there exists a 4
3 -robust algorithm.

Proof. To show this lemma, we enumerate all instances for which the properties of the statement
hold and for which λ̄ 6= Optm−1. Those instances consist of n = km− h unit-size jobs, where k ∈
{1, 2, . . . , 10} and h ∈ {0, 1, . . . ,min(k − 1,m − 1)}. We solve each such instance by computing a
feasible solution for an integer linear program (ILP) which we now describe. Denote by pmax the
largest possible size of a bag. To be able to achieve a robustness of 4

3 , we must have pmax =
⌊

4
3 λ̄
⌋
.

The decision variables used are yp and xp,i,m′ to indicate how many bags of size p are created and
how many of these bags of size p are assigned to machine i when m′ machines are left, respectively.
The ILP is as follows.∑pmax

p=1 yp = m∑pmax
p=1 p · yp = n∑m′

i=1 xp,i,m′ = yp for all m′ ∈ [m], p ∈ [pmax]∑pmax
p=1 p · xp,i,m′ ≤ 4

3 ·Optm′ for all m′ ∈ [m], i ∈ [m′]

xp,i,m′ ∈ Z≥0 for all p ∈ [pmax],m′ ∈ [m], i ∈ [m′]

yp ∈ Z≥0 for all p ∈ [pmax]

The first equation ensure that exactly m bags are created, and the second that, in total, they consist
of exactly n jobs. The third equation enforces that, for every value of m′, all bags are assigned to
a machine. Finally, the fourth equation checks that, for every value of m′ and for every remaining
machine, the makespan of the optimal solution is not exceeded by more than a factor of 4

3 , yielding
the robustness guarantee. The last two constraints dictate integrality and non-negativity of the
decision variables.

A file containing the solutions produced by this ILP and a simple program verifying them are
available at www.cslog.uni-bremen.de/bsimon/files/SuppMaterialSRS.zip.

33

www.cslog.uni-bremen.de/bsimon/files/SuppMaterialSRS.zip

	1 Introduction
	2 Speed-Robust Scheduling with Infinitesimal Jobs
	2.1 General Speeds
	2.2 Speeds in 0,1

	3 Speed-Robust Scheduling with Discrete Jobs
	4 Speed-Robust Scheduling with Equal-Size Jobs
	4.1 General Speeds
	4.2 Speeds in 0,1

	A Proofs for Section 2.1 – Infinitesimal Jobs and General Speeds
	B Proofs for Section 2.2 – Infinitesimal Jobs and Speeds in 0,1
	C Proofs for – Equal-Size Jobs and General Speeds
	D Proofs for – Equal-Size Jobs and Speeds in 0,1

