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Tailoring and probing the quantum states of matter of 2D Dirac materials 
with a buckled honeycomb structure 
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A B S T R A C T   

The quantum state of matter of a two-dimensional Dirac material with a buckled honeycomb structure can be tuned by an electric field. In the absence of an external 
electric field the material is a topological insulator owing to the spin-orbit coupling, which opens a band gap at the K and K’ points of the Brillouin zone. The size of 
this band gap decreases with increasing electric field until eventually the band gap completely closes at a critical electric field Ec and the material becomes a semi- 
metal. For electric fields exceeding Ec the band gaps reopens again and the material undergoes a topological phase transition from a semi-metal to a normal band 
insulator. 

The electric field in a tunnel junction depends on the applied voltage bias across the junction as well as the difference in work function of the two electrodes. Here 
we show how scanning tunneling microscopy can be employed to simultaneously apply an electric field and study the electronic structure of a two-dimensional Dirac 
material with a buckled honeycomb structure. The electric field applied by the scanning tunneling microscope offers the possibility to locally alter the quantum state 
of matter of two-dimensional topological insulator to a semi-metal or normal band insulator. This results in the development of topologically protected spin polarized 
edge states within the material. We present a spectroscopic method to probe these topologically protected edge states.   

1. Introduction 

The successful isolation of graphene [1,2], i.e. a single layer of sp2 

hybridized carbon atoms arranged in a honeycomb structure, has 
resulted into the opening of a new research field. Graphene exhibits 
many interesting and unique properties. Most of these properties are 
intimately related to the linear dispersion relation of the electrons in the 
vicinity of the Fermi level [3–6]. Near the K and K’ points of the Brillouin 
zone the linearly dispersing energy bands lead to Dirac cones. If 
spin-orbit coupling is not taken into account, graphene has no band gap 
and a vanishing density of states at the Fermi level. If, however, 
spin-orbit coupling is taken into account a band gap at the K and K’ 

points of the Brillouin zone is present. The spin-orbit gap in graphene is 
only about 20 μeV and therefore it will not be detectable at any exper
imentally accessible temperature [7,8]. 

Silicon, germanium and tin atoms have a similar electronic config
uration as carbon atoms and therefore these atoms might also form a 
two-dimensional honeycomb lattice [9–16]. Theoretical studies have 
revealed that the graphene-like allotropes of silicon, germanium and tin 
referred to as silicene, germanene and stanene respectively, can indeed 
exist. These two-dimensional materials share many properties with their 
carbon counterpart [17–21]. For instance, the energy bands near the K 
and K’ points of the Brillouin zone are linear and the charge carrier 

mobilities and Fermi velocities are very comparable to graphene. Un
fortunately, silicene, germanene and stanene do not occur in nature and 
therefore these materials have to be synthesized. Silicene has been 
successfully synthesized in 2012, followed by germanene in 2014 [9–15] 
and stanene, sometimes also referred to as tinene in 2015 [22]. 

Silicene, germanene and stanene also exhibit some properties that 
are different from graphene. The most eye-catching difference with 
graphene is the corrugation: the honeycomb lattices of silicene, ger
manene and stanene are buckled [17], i.e. the two triangular sub-lattices 
of the honeycomb lattice are displaced with respect to each other in a 
direction normal to the two-dimensional layer. This buckling is caused 
by the relatively large, at least as compared to carbon, ionic radii of 
silicon, germanium and tin, which prohibits the formation of a perfectly 
planar honeycomb lattice. The buckling breaks the symmetry of the 
honeycomb lattice and offers the appealing possibility to transfer charge 
from one triangular sub-lattice to the other sub-lattice, for instance, the 
application of an external electric field [23,24]. This charge transfer 
results into the opening of a band gap, which paves the way to the 
tailoring of the quantum state of matter of these two-dimensional ma
terial as well as field-effect based device applications. Like graphene, 
silicene, germanene and stanene belong to the class of Z2 topological 
insulators [25,26]. The spin-orbit coupling in silicene (3.9 meV), ger
manene (43 meV) and stanene (100 meV) results in the opening of a 

* Corresponding author. 
E-mail address: h.j.w.zandvliet@utwente.nl (H.J.W. Zandvliet).  

Contents lists available at ScienceDirect 

Physica E: Low-dimensional Systems and Nanostructures 

journal homepage: http://www.elsevier.com/locate/physe 

https://doi.org/10.1016/j.physe.2020.114113 
Received 22 August 2019; Received in revised form 18 September 2019; Accepted 22 March 2020   

mailto:h.j.w.zandvliet@utwente.nl
www.sciencedirect.com/science/journal/13869477
https://http://www.elsevier.com/locate/physe
https://doi.org/10.1016/j.physe.2020.114113
https://doi.org/10.1016/j.physe.2020.114113
https://doi.org/10.1016/j.physe.2020.114113
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2020.114113&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physica E: Low-dimensional Systems and Nanostructures 121 (2020) 114113

2

spin-orbit band gap at the K and K0 points of the Brillouin zone [27–29]. 
As shown by Drummond, Z’olyomi and Fal’ko [23] as well as Ezawa 
[24] the application of a transverse electric field first closes and then 
reopens the band gap. With increasing electric field silicene, germanene 
and stanene undergo a topological phase transition from a topological 
insulator to a semi-metal and subsequently to a normal band insulator 
[23,24,30,31]. It has been pointed out by Ezawa {24] that the applica
tion of an inhomogeneous electric field, for instance by using a scanning 
tunneling microscope, can result in the development of topologically 
protected and spin polarized edge states anywhere within the 
two-dimensional material [24]. 

Inspired by Ezawa’s work we are dedicated to search for an experi
mental method to prove the existence of these topologically protected 
edge states within a material. The requirement of a high spatial reso
lution puts severe constraints and basically limits our search to scanning 
probe microscope-based techniques. Scanning tunneling microscopy 
and spectroscopy are often employed to study the structural and elec
tronic properties of two-dimensional materials. There is, however, also a 
point of concern when using scanning tunneling microscopy. The 
voltage drop across the tunnel junction, which can be as a few Volts per 
nm can affect the electronic structure of the material under scrutiny. 
Here, however, this electric field is advantageous since it allows us to 
modify the electronic band structure of the buckled two-dimensional 
materials. 

In this work we will not only study the effect of an electric field on 
the density of states of a buckled two-dimensional material with a 
honeycomb lattice, but we also put forward a method that allows to 
study the formation of topologically protected edge states within the 
material. Our method relies on the presence of topologically protected 
edge states at the boundary between a the two-dimensional topological 
insulator and a semi-metal or normal band insulator [24]. The topo
logically protected edge states act as barriers for incoming electron 
waves resulting in standing wave patterns, which will show up as peaks 
in the scanning tunneling spectroscopy spectra. 

1.1. Quantum states of matter of buckled 2D Dirac materials 

Elemental two-dimensional elemental materials such as silicene and 
germanene exhibit a buckled honeycomb lattice, which is composed of 
two triangular sub-lattices. These two triangular sub-lattices are slightly 
displaced with respect to each other in a direction normal to the two- 
dimensional sheet. The displacement or buckling is denoted by Δ. The 
buckling of free-standing silicene and germanene is 0.44 Å and 0.66 Å, 
respectively. For the sake of simplicity we consider here a perfect, i.e. 
defect free and impurity free, single sheet of a buckled two-dimensional 
elemental material. As shown in Refs. [24] the energy dispersion in the 
vicinity of the K and K’ points of the Brillouin zone is given by, 

E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ2v2
Fk2 þ

�Δ
2

eEz � ζsλSO

�2
r

(1)  

where ζ ¼ �1 refers to the K (K’) point, s ¼ �1 to the spin, Ez to the 
electric field, e to the unit of elementary charge, λSO to the spin-orbit gap, 
vF to the Fermi velocity, k to the momentum and ℏ to the reduced 
Planck’s constant. For a vanishing spin-orbit coupling and electric field 
the well-known Dirac cones are recovered, i.e. E� ¼ � ℏvFk. We would 
like to emphasize here that this method is not applicable to graphene 
owing to its planar structure, which prohibits the transfer of charge from 
one sub-lattice to the other sub-lattice. 

The electric field Ez can have different contributions. For instance, in 
a scanning tunneling microscope junction the electric field has in gen
eral two components. The first component is caused by the applied 
sample bias, V, resulting in an electric field Vd, where d is the tip-sample 
distance. The second component is due to a difference in work function 
between tip and substrate. This difference in work function, δW ¼ Wt- 
Ws, results in an electric field (δW/e)/(d). The total electric field, Ez, in 

the tunnel junction is then given by ðV þ δW =eÞ=d. 
For completeness we also include a Rashba coupling, λR, but as we 

will see later the Rashba coupling has no effect on the actual size of the 
band gap at the Dirac points [24,30]. The full expression of the disper
sion relations in the vicinity of the K point that includes a spin-orbit 
coupling, an electric field and a Rashba coupling is given by, 

E� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Rk2
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s

(2)  

where α is a constant. Please note that Eq. (2) reduces to Eq. (1) at the 
Dirac points, i.e. at k ¼ 0. In Fig. 1 we show an overview of the different 
topological quantum states of matter of a two-dimensional Dirac mate
rial with a buckled honeycomb lattice. For a vanishing electric field the 
material is a two-dimensional topological insulator (left panel). In the 
middle panel the applied electric field is just large enough to close the 
spin-orbit gap for the spin up and spin down bands at the K and K’ points, 
respectively. At this condition the material behaves as a perfect semi- 
metal. For electric fields that exceeds the spin-orbit gap, the band gap 
reopens again and the material becomes a normal band insulator. 

At k ¼ 0 we find in principle two branches with a band gap, 

Egap ¼ 2
�
�
�
Δ
2

eEz � ζsλSO

�
�
� (3)  

where ζs ¼ �1. The band gap closes at the critical electric field Ec �
2
ΔeλSO: The critical fields for silicene and germanene are �0.18 V/nm and 
�1.3 V/nm, respectively. In Fig. 2 a schematic figure of the energy bands 
at the K point versus the electric field is depicted. 

An ideal technique to explore the effect of an electric field on the 
quantum state of matter is scanning tunneling microscopy. The density 
of states can be obtained by recording a current (I)- voltage (V) trace at 
constant tip-sample distance. The differential conductivity (dI/dV) is 
proportional to the density of states. Since the electric field in the 
tunneling junction also depends on the tip-sample bias we have to 
disentangle this effect from the measured density of states. For the sake 
of simplicity we consider here the case that the work function difference 
between tip and substrate, which results in an offset of the electric field, 
is zero. In the absence of an electric field, i.e. Ez ¼ 0, the density of 
states, D(E), of both spin branches at the K point are given by, 

DðEÞ¼
DðkÞ2πkdk
�

dE
dk

� ¼
jE � λSOj

2πℏ2v2
F

(4a) 

The total density of states at energy E is then (K and K’ points and two 
spin bands), 

DðEÞ¼
2jE � λSOj

πℏ2v2
F

(4b) 

For an applied electric field, Ez, the spin up and spin down gaps at the 
K point are given by, 

Eg;s¼þ1¼ 2
�
�
�
Δ
2

eEz � λSO

�
�
� (5a)  

and 

Eg;s¼� 1¼ 2
�
�
�
Δ
2

eEzþ λSO

�
�
�; (5b) 

Similar expressions can be derived for the K’ point. The only dif
ference is the sign in front of the λSO term. Here we restrict ourselves to 
(1) the Eþ branch at the K point and (2) positive electric fields, i.e. Ez>0. 
The application of a voltage, V, across the scanning tunneling micro
scopy junction results in an electric field V

d, which will lead to charge 
transfer from one triangular sub-lattice to the other triangular sub- 
lattice. This charge transfer will lead to an increase (decrease) of the 
band gap of the spin up (down) band. From a scanning tunneling 
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spectroscopy measurement one can extract the exact location of these 
two band gaps. The first gap is found that a threshold voltage V1, 

eV1¼ λSO �
eΔ
2d

V1 (6a) 

In the density of states a kink will be found when the second spin 
band comes into play. The second gap has a threshold voltage V2, 

eV2¼ λSO þ
eΔ
2d

V2 (6b) 

The density of states can be found by simply adding up the two spin 
bands and multiply with a factor of two due to the two different K points. 
The total density of states is then given by, 

DðEÞ¼ 0 for 0 � eV � ​
λSO

�
1þ Δ

2d

� (7a)  

DðEÞ¼
eV
�

1þ Δ
2d

�
� λSO

πℏ2v2
F
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λSO�
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1 � Δ

2d

� (7b)  
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F

for
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Δ
(7c)  

DðEÞ¼
2eV

�
1 � Δ

2d

�

πℏ2v2
F

for eV � ​ 2dλSO

Δ
(7d) 

Similar expressions can be found for negative sample biases. Usually 
the tunneling current is dominated by electronic states at the Γ point of 
the surface Brillouin zone, since this results in the smallest inverse decay 
length [32]. However, if there are no states available at the Γ point 
tunneling will occur to, or from, electronic states with a non-zero par
allel momentum [32]. In the vicinity of the Fermi level of 
two-dimensional elemental materials, such as graphene, silicene and 
germanene, there are only electronic states at the K and K’ points of the 
Brillouin zone and therefore the density of states only comes from these 
k-points. 

We now return to equations (7a)-(d) to discuss the impact of the 
electric field of the scanning tunneling microscopy junction on the 
density of states. The slope of the density of states changes with 

increasing energy from 0 to 
�

1þ Δ
2d

�
to 2 and finally to 2

�
1 � Δ

2d

�
. Since 

d≫Δ ( Δ
2d is about 0.022 for silicene and 0.033 for germanene) the most 

pronounced change in the density of states occurs at eV � λSO. 
Let’s assume that we set the electric field to a value larger than its 

critical value, i.e. Ec ¼
2λSO
eΔ , which implies that the circular region un

derneath the tip has become a normal band insulator (see Fig. 3). For the 
sake of simplicity we consider the STM tip as a simple rod with radius R. 
The interface between the small circular shaped band insulator with 
radius R and the surrounding topological insulator host will act as a 
barrier for incoming electron waves leading to an electron interference 
pattern. For simplicity we reduce this problem to that of a quantum 
mechanical particle trapped in an infinitely deep circular well with a 
radius R. A few remarks are in place here: (1) in reality the transition 
from a normal band insulator to a the two-dimensional topological 
insulator leads a barrier of finite height, where the incoming electrons 
are scattered and (2) we assume that the electrons at the bottom of 
conduction have a parabolic dispersion relation with an effective mass 
meff. The eigenfunctions and energy eigenvalues are given by, 

ψðr; θÞ ¼CJm

�zm;n

R
r
�

eima (8a)  

and 

Fig. 1. Schematic cartoon of the electronic band structure of a two-dimensional Dirac material with a buckled honeycomb lattice. Left panel: electric field smaller 
than spin-orbit gap. The material is a topological insulator. Middle panel: electric field is equal to spin-orbit gap. The material is a semi-metal. Right panel: electric 
field is larger than spin-orbit gap. The material is a normal band insulator. Blue: spin down bands. Orange: spin up bands. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. The energy bands at the K point of the Brillouin zone versus electric 
field. Blue: spin down bands. Orange: spin up bands. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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Em;n ¼
ℏ2

2meff

�zm;n

R

�2
(8b)  

where r and θ are the polar coordinates, C a constant, Jm the Bessel 
function of the first kind and order m, m2ℤ, n2ℕ and zm;n the nth zero of 
the Bessel function of the first kind and order m. For instance for m ¼
0 the first 4 zeros are given by 2.4048, 5.5207, 8.6537 and 11.7915 
respectively [33]. For m ¼ 0 these electron standing waves patterns will 
exhibit a strong maximum in the middle of the circle, i.e. precisely at the 
location of the scanning tunneling microscope tip, see Fig. 3. If we re
cord the z-piezo displacement versus sample bias, i.e. z(V), at constant 
tunnel current we will find a resonance in the z(V) signal if a standing 
wave pattern occurs. The z(V) signal provides direct information on the 
position of the energy eigenvalues of this system [34–36]. However, 
more important is the fact that the presence of these electron standing 
waves implies that we must have formed topologically protected edges 
state within the material. 

For electric fields exceeding the critical field the region just under
neath the scanning tunneling microscope tip will become a normal band 
insulator. Since the energy of tunneling electrons is higher (lower) than 
the minimum (maximum) of the conduction (valence band) and there
fore we expect also in this case the development of electron standing 
waves patterns. In order to avoid field emission resonances, which can 
occur at voltages exceeding the work function of the substrate, it is 
advisable to keep the maximum voltage in the z(V) measurement below 
the work function of the substrate. 

2. Conclusions 

The quantum state of matter of a two-dimensional Dirac material 
with a buckled honeycomb lattice can be tuned from a topological 
insulator to a semimetal or a normal band insulator by applying an 
external electric field. The application of a spatially inhomogeneous 
electric field, by for instance an STM, allows to locally change the 

quantum state of matter. The STM can simultaneously be used to probe 
the changes in electronic structure upon the application of an electric 
field. Here we show how the electric field of the scanning tunneling 
microscope affects the electronic structure of a buckled two-dimensional 
Dirac material. In addition, we have proposed a method, that relies on z 
(V) spectroscopy, to obtain more information on the presence of topo
logically protected edge states within the material. 
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