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Abstract. This paper presents a logistics serious game that describes an
anticipatory planning problem for the dispatching of trucks, barges, and
trains, considering uncertainty in future container arrivals. The problem
setting is conceptually easy to grasp, yet difficult to solve optimally. For
this problem, we deploy a variety of benchmark algorithms, including
two heuristics and two reinforcement learning implementations. We use
the serious game to compare the manual performance of human decision
makers with those algorithms. Furthermore, the game allows humans to
create their own automated planning rules, which can also be compared
with the implemented algorithms and manual game play. To illustrate
the potential use of the game, we report the results of three gaming ses-
sions: with students, with job seekers, and with logistics professionals.
The experimental results show that reinforcement learning typically out-
performs the human decision makers, but that the top tier of humans
come very close to this algorithmic performance.

Keywords: Intermodal transport * Serious gaming * Reinforcement
learning - Approximate dynamic programming - Heuristics

1 Introduction

Despite the development of sophisticated logistics planning algorithms to auto-
mate decisions and the increasing availability of real-time data, planning in the
logistics sector still heavily relies on human planners. There are several reasons
why manual planning is often preferred. First, human planners require decisions
to be sensible and explicable [18]. They tend to quickly lose faith in decision
support algorithms when presented with counter-intuitive suggestions, even if
consistently following the decision rules would work well in the long term. Sec-
ond, humans are able to perform surprisingly well on certain planning tasks
with vast numbers of potential solutions [8,25], therefore not always recogniz-
ing the benefits of automated planning. Third, the algorithmic expertise and
experience of logistics companies with sophisticated decision support systems is
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often limited, yet experience is a key determinant for successfully introducing
new technologies [23].

Serious games may overcome some of the aforementioned challenges. Such
games can be used to educate and stimulate a “mental switch” towards deci-
sion support and automated planning within the logistics sector. They offer
an opportunity for (future) planners to learn about the challenges involved in
logistics planning, to gain experience with new technologies, and to become con-
vinced about the advantages such technologies may bring. In addition, games
may demonstrate the benefits of decision support, increasing faith in such sys-
tems by experimenting in an environment without real-life consequences. Finally,
they illustrate the use of automated planning rules and the way such rules can be
designed. Venkatesh [22] shows that game-based training is more effective than
other forms of training with respect to user acceptance of new technologies. He
also indicates that the effects of perceived usefulness and perceived ease of use
of a new system — the main drivers behind technology acceptance — are stronger
for people who have enjoyed game-based training.

This paper presents a logistics serious game that mimics an anticipatory
planning problem in intermodal transport, considering uncertainty in future con-
tainer arrivals. This anticipatory planning problem is based on Pérez Rivera and
Mes [13] and can formally be defined as a Delivery Dispatching Problem (DDP)
[12]. In its simplest form, this single-player game with group competition simu-
lates a logistics service provider (LSP) that needs to assign containers to trucks,
barges, and trains on a daily basis. The game consists of various predefined
scenarios (varying in number of containers, container characteristics, and costs
structures) that can be modified by a game master. For the planning algorithms,
we make use of two heuristics and two implementations of reinforcement learn-
ing (RL). Implementation of these algorithms in practice is not always easy,
especially for RL, due to the aforementioned lack of experience from the human
planners and due to often being perceived as a ‘black box’ [18]. To address this
phenomenon, we compare the performance of various algorithms with the human
performance. Depending on the game mode, human players can either plan the
containers manually, use decision support from our RL algorithms, or create
their own automated planning rules.

The remainder of this paper is structured as follows. Section 2 positions our
research in the body of existing literature and highlights its contributions. In
Sect. 3, we describe the decision problem as represented in the game. Section 4
discusses the various solution methods deployed in this paper. The solution meth-
ods can all be evaluated using our serious game as introduced in Sect. 5. The
experiments with this game are described in Sect. 6. We end with conclusions in
Sect. 7.

2 Literature

This literature section is composed as follows. First, we present some related
serious games. Second, we reflect on several aspects of human decision-making
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that are relevant to logistics planners, and highlight various experiments that
have been conducted on human performance in this context, including the use
of serious games. Third, we briefly describe the reinforcement learning frame-
work that we use as a benchmark as well as for providing decision support to
the human. Fourth, we discuss the anticipatory planning problem and several
reinforcement learning algorithms that have been developed for variants of this
problem.

In the transportation domain, serious games have mostly been developed for
raising awareness about the interaction among different actors in a transporta-
tion system [17]. For example, the rail cargo management game [11] simulates
the interaction among transporters, clients, and network managers. Games about
training a single-actor are scarce and focus mostly on passenger or public trans-
port as seen in the review of Raghothama and Meijer [16]. For example, Ecodeal-
ers and Waze are two location-based games (using a mobile phone) described in
Rossetti et al. [17], where a single player is trained for the improvement of public
and passenger transport, respectively. Similarly, Drakoulis et al. [4] considered
an interactive game to motivate public transport users to participate and behave
correctly with the proposed demand-responsive transport service. Examples of
single player games that are closely related to ours are SynchroMania [3], the
follow-up game MasterShipper, and the Modal Manager game [10].

In human decision-making, bounded rationality has a major impact on every-
day decisions. Due to time pressure and cognitive limitations, humans often set-
tle for an acceptable solution rather than the optimal one [19]. In this spirit,
so-called fast-and-frugal heuristics are often used to make decisions [5]. Such
decisions are constructed out of three building blocks, requiring limited informa-
tion and processing: (i) search rules that specify how information is collected, (ii)
stopping rules that specify when the information search is halted, and (iii) deci-
sion rules that specify which decision should be selected. Heuristic algorithms,
as often used in logistics, reflect such intuitive human decision-making methods,
yet are faster (especially for large problem instances) and more consistent.

We may extract some insightful results from experiments with humans in
logistics planning problems. For example, experiments have been performed with
the MIT ‘Beer Distribution Game’, in which multiple participants manage part
of a simulated inventory distribution system [20]. Human performance is rather
poor, with identified causes being anchoring (initial stock levels strongly influ-
ence decisions later on), failure to take into account time lags in supply, and a ten-
dency to perceive controllable events as external influences. Other experiments
consider capacited VRPs with time windows, for which Anderson et al. [1] show
that humans — with visual aid — are able to find good solutions. For the Travel-
ing Salesman Problem (TSP), Wiener et al. [25] conclude that humans tend to
quickly identify good general solution structures, which they subsequently refine.
In Kefalidou and Ormerod [7] it is shown that human participants came close
to optimal VRP solutions, especially those relying on visual solution methods.
Finally, Keller and Katsikopoulos [8] evaluate various human solution approaches
in operations management, claiming that such methods are particularly
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effective when the model contains a single attribute that typifies good solu-
tions (e.g., efficient capacity utilization). Furthermore, the authors state that
humans perform well after relatively few trials, implying a steep learning curve.
However, they also identify diminishing performance when dealing with larger
problem instances. Summarizing, experimental studies show that humans per-
form well with visual cues and clear solution structures, but performance quickly
declines when facing larger and more complex tasks.

Whereas logistics planners rely on manual planning for many decisions,
sophisticated planning algorithms are widely spread in the industry as well.
This paper considers an anticipatory planning problem, which may be formal-
ized mathematically by a Markov Decision Process (MDP) that in theory may
be solved to optimality. However, for realistic-sized problems in logistics plan-
ning this is typically not feasible [15]. To overcome computational limitations
in solving the model, reinforcement learning (RL) techniques are often applied.
For comprehensive and broad descriptions of RL, we refer to Powell [15] and
Bertsekas [2]. RL exploits Monte Carlo simulation techniques to learn value
functions by observation. Often Value Function Approximation (VFA) is used
to computationally simplify the problem; for human designers the key challenge
is to define a set of attributes (explanatory variables) that help estimating the
downstream costs. In our serious game, we use this VFA to offer the player
decision support.

The anticipatory planning problem that we study in this paper may formally
be defined as a Delivery Dispatching Problem (DDP) [12]. The DDP involves
one or more capacitated transport modalities that may be dispatched at certain
decision moments. Containers with stochastic properties arrive dynamically over
time and must be dispatched to their destination using the available transport
modalities. Costs are minimized by utilizing the modalities’ capacity as efficiently
as possible, both considering the currently available containers and anticipating
future arrivals. Many variants of the DDP exist; we build upon the variant
presented by Pérez Rivera and Mes [13], involving a barge that can carry multiple
containers and trucks that serve as alternative transport modality. For closely
related DDP variants, Pérez Rivera and Mes [14] and Van Heeswijk et al. [21]
present several baseline heuristics composed of simple decision rules that achieve
consolidation, yet these heuristics ignore various considerations that humans
would intuitively make. The aforementioned papers also develop VFA-based RL
algorithms, testing a variety of attribute designs. In contrast, Voccia et al. [24]
and Klapp et al. [9] present RL algorithms that utilize policy rollout, relying on
scenario sampling to estimate downstream costs.

The main contribution of this paper is that we quantitatively compare
between human performance and a variety of logistics planning algorithms, uti-
lizing a serious game for this purpose. Such a comparison has not yet been
made for the DDP. Furthermore, we provide insights into the drivers of human
performance for the DDP and how well they are able to translate their own
decision-making strategy into automated planning rules.
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3 Problem Description

We formalize the DDP for intermodal transport, which forms the basis of our seri-
ous game, as a Markov Decision Process (MDP) model. The objective is to min-
imize the dispatching costs over a planning horizon of T' days (representing deci-
sion moments), with dispatching decisions being made at day ¢t € 7 = {0,...,T}.
New containers arrive daily; they are characterized by a destination d € D, a
release day r € R = {0,1,..., R™**} relative to t, and a time window length
ke K ={01,..., K™} relative to r. Containers with r > 0 are determin-
istically known to arrive at ¢ + r, but cannot be dispatched until » = 0. Each
container characterized by r = 0 must be dispatched at or before ¢ + k to guar-
antee timely delivery; the window length only starts decreasing when r = 0.

Every day t, we decide which containers to transport by which transport
modality m € M: trucks (m = 0), a barge (m = 1), and a train (m = 2).
Capacities are restricted by Q™. The costs for both barge and train transport
are given by a fixed component depending on the subset of destinations visited
and variable costs depending on the number of containers per destination visited.
However, the train can visit only one destination per day. Economies of scale
apply to both barge and train, as there is a fixed cost component, but the
variable costs per container are lower than for the truck. Trucks have a capacity
of one container (Q° = 1), and we assume the number of trucks is infinite. A
container with » = 0 and k£ = 0 must always be transported; the infinite truck
fleet guarantees that each container can be delivered on time. The container
dock also has infinite capacity. Each unique combination of destination, release
day, and time window length constitutes a container type. The problem state
Sy € § is a vector that describes the number of containers of each type:

St = [St,d,r kV]d,r k]l eDxRx K-

At each day t € T, we decide how many containers of each type to dispatch,
and whether we deliver them by trucks, barge or train. Recall that only contain-
ers with a release day r = 0 can be dispatched, that containers with time window
k > 0 do not need to be dispatched, and that each dispatched container must
be assigned to a transport modality m € M. Let X(S;) be the set of feasible
decisions while being in state S¢, and x; € X'(S;) the decision defined by:

Ty = [xt,m,d,k]v[m,d,k]e./\/l><D><)C7
S.t.
Tt,m,d,k < St,d,o,k V[m, d, k] eEMxDx K:7

> Timao=Staoo VdED,
meM

Z Tem,dk < QM Ym e M,
[d.k]eDXK
Ttm,d,k € N V[m, d, /f] eMxDxK.
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Each decision z; has an associated cost C'(St, z¢). We introduce some neces-
sary notation. Let cf p be the fixed costs for modality m for visiting the subset
of destinations D’ C D (for the train D’ consists of at most one destination, and
for the truck the costs cme, are always zero). Next, we define ¢}, ; as the variable
costs per container, i.e., the marginal costs of transporting a single container to
destination d by modality m. Let I, p» € {0,1} be a binary variable indicat-
ing whether destination subset D’ C D is visited by modality m. To prevent
postponing shipments until 7' and to consistently compare solution methods,
we define so-called cleanup costs for the freight remaining at 7', approximating
the costs to dispatch the remaining containers at the end of the time horizon.
We define cleanup costs with a function CT : (Sp,z;) — R* that is added to
the cost function, and I; € {0,1} the corresponding binary variable that only
activates when ¢t = T'. The cost function at day ¢ is defined as follows:

C’(St7xt Z ( Z I, D C ,) + Z Cvmd'CUt’m,d’k"-[tCT(Sth’t),

meM \D'CD [m,d,k]EMXDxK

s.t.

1 if ( H <E zt,m,d,k) > 0) A < Z Tt.m,d,k = 0) )
Iypr = deD’ \kek [d,k]€D\D’ x K

0 otherwise

1 if t=T
I = '

0 otherwise

We aim to find the policy that minimizes the costs over our planning horizon.
A policy 7 € IT is a function 7 : S; — x; that maps each state to a corresponding
decision. The optimal policy 7* may be found by solving the well-known Bellman
optimality equations for each state:

Vgr* (St) = min St,:ct + Z St+1 | St,xt) V'tir:l (St+1)) VS: € S.
Tt €X(St) Si41€S

The problem definition supplied in this section enables us to outline our
solution methods to tackle the anticipatory planning problem. A graphical illus-
tration of the problem can be found in Fig. 1.
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Fig. 1. Schematic representation of the problem. Left is the state, showing containers
and their due dates. Right is a possible decision that allocates a subset of containers
to barge and truck. Assuming a barge capacity of 8 containers, over 100 decisions exist
for this example state, yet decision rules may be readily derived.

4 Solution Methods

This section discusses the following solution methods to the problem described
in the previous section: (i) a heuristic policy, (ii) a myopic deterministic opti-
mization policy, (iii) two reinforcement learning policies, (iv) human decision-
making, (v) manually created planning rules, and (vi) human decision-making
using decision support from one of the reinforcement learning policies. These
methods are briefly described below. To ease the presentation, and because the
train is not included as a modality in our experimental scenarios from Sect. 6,
we only consider trucks and barges.

Heuristic. The heuristic follows three steps. In step 1 it calculates — for each
possible destination for which we have an urgent container (k = 0) — the costs for
filling up the remaining barge capacity using containers with this destination. For
those destinations for which the barge is cheaper than truck, all urgent containers
are assigned to the barge. In step 2, for all destinations already visited by the
barge, remaining containers of the same destinations are also assigned to the
barge, starting with those with smaller time windows, as long as there is capacity
left. In step 3, we check which destination has the most containers remaining.
We fill up the remaining barge capacity with these containers, starting with the
lower time windows, when it is cheaper to transport these containers by barge
compared to truck, and when either (i) the total number of containers with this
destination, both released and non-released, is above a specified threshold or
(ii) we do not have any non-released containers with this destination. The first
condition accounts for future capacity problems when postponing the transport
of containers. The second condition accounts for the idea that it is less likely
that these containers can be consolidated more efficiently the next day.
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Direct Cost Minimization. A flawed yet deliberate approach to tackle the
planning problem is to simply minimize the direct costs at day ¢, without con-
sidering downstream effects: ), min,, cx,(s,) C(S¢, 2¢). When multiple deci-
sions yield the same costs, we select the one that loads the highest number of
containers onto the barge, thereby stimulating capacity utilization. This method
corresponds to a naive application of traditional OR techniques such as linear
programming, optimizing only for the information deterministically known at
the decision moment.

Reinforcement Learning. Even for the relatively small problem instances
considered in our game scenarios, it is not possible to solve the MDP model
exactly. Therefore, we resort to the reinforcement learning (RL) framework to
approximately solve the optimality equations through Monte Carlo simulations.
More specifically, the algorithm performs N learning iterations, and in each
iteration, we loop over the planning horizon 7 and use the resulting obser-
vations to improve our estimates of the downstream costs, thereby facilitating
better decisions. Instead of storing estimates for each possible state (the so-called
lookup table approach), we apply value function approximation (VFA) using the
basis function approach, where we estimate the state-decision costs V;*(S;, x)
by V"(St,x0) = Y pca0ra®a(Se, zi). Here ¢q : (Sy,x¢) — R returns a given
attribute from the state-decision pair (e.g., the total number of containers) that
explains — to some extent — the cost of the state-decision pair. The attribute value
is multiplied with a weight 07, € R. The weights 07’ ,,V[t,a] € T\ {T} x A are
updated after every iteration. So, the value of a state is using a weighted linear
combination of the basis functions; for more information we refer to Powell [15].
Our RL implementation is exactly the same as the one described in Pérez and
Mes [14], except that we consider the single trip version, i.e., we only consider
deliveries and not pickups.

Reinforcement Learning with Extended VFA. The extended RL algorithm
only differs in the features used in the basis function approach. To explain the
features, we introduce the notion of MayGo and MustGo containers. MustGo
containers are those that must be transported today, i.e., containers with r = 0 A
k = 0. MayGo containers are those that we might transport today, i.e., containers
with » = 0 A k > 0. The basis function approach considered in our standard RL
implementation uses the following features: (i) the number of containers per type
(resulting in |D| x |R| x |K]| features), (ii) the number of destinations having
MustGo containers, (iii) the number of MustGo containers, (iv) the number of
destinations with MayGo containers, (v) the number of MayGo containers, (vi)
the number of destinations of the non-released containers, (vii) the number of
non-released containers, and (viii) a constant. For our extended RL algorithm,
we introduce additional features that are based on the set of containers that
remain after applying our decision z;. For each possible destination subset D’,
we introduce two binary variables indicating whether the subset may or must be
visited the next day.
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Manual Planning. For the human planners, the notion of bounded rationality
applies. The planner has access to all cost information as well as the probabil-
ities of container arrivals. However, as the decision time to solve the decision
problem for each day is limited, players might cognitively not able to evaluate
all feasible decisions. In addition, the human planner cannot possibly anticipate
the potential downstream effects of their decisions. It is therefore expected that
players seek a satisfactory solution rather than an optimal one. Note that in
practical business settings, the combination of time restrictions and cognitive
limitations would typically also apply. Humans are known to be good at deci-
sions that involve clustering, this is reflected in the observed decision-making
processes during the game. Common decision rules are to combine containers
with the same destination onto the barge, postpone visiting a certain destina-
tion when containers with similar destinations are known to arrive the next day,
and utilize the capacity of the barge as well as possible.

Planning Rules. The game includes a graphical algorithm creator. With this
tool, the players can define their own decision rules. These rules typically have
a structure similar to the manual strategies used by the players. To create an
algorithm, players first define filters. A filter is a collection of container types,
e.g., all containers having a time window of 1. The filters are strongly connected
to the features considered in our RL methods. There is no restriction on the
number of filters that can be created. After defining filters, the decision rules can
be created. Each rule consists of an action and a condition. The action is applied
to a given filter, and consists of transport by a certain modality or withholding
transport. The action will only be performed when the conditions are met. There
are three types of conditions. First, the condition that the selected transport
modality in the action can only be used for containers whose destination is
already assigned to the transport modality. Second, conditions related to certain
thresholds that compare (<, <,=,>,>) the number of containers in some filter
with (i) some number, (ii) the capacity of a modality, or (iii) the number of
containers in another filter. Third, conditions related to costs, where we compare
the costs of the proposed action with the costs of another action (combination of
a filter and transport mode). The player can use as many conditions as needed
for each action, and all conditions can be combined with and/or operators.
Also for the number of decision rules, there is no limit. Players may change
the sequence of decision rules; each rule will act only on the containers that
are not yet assigned by one of the previous rules. After creating the algorithm,
the players can apply them in the game. Depending on the game settings, the
player might be allowed to (i) overrule the decisions taken by their algorithm,
i.e., manually change them or (ii) adjust their algorithm during the game.

Decision Support. For any decision and its corresponding features, the learned
VFA weights can be used to compute the expected downstream costs. We use
the VFA to provide decision support in the form of estimated marginal costs or
savings. More specifically, we show the difference in estimated value V;"(Sy, z;) of
the decision z; (certain assignment of containers to modalities) and the decision
of doing nothing. These estimated marginal costs can be balanced against the
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direct costs of the decision z;. As the calculation of Vt"(St,xt) only requires
multiplying (fixed) weights and features for a single manual decision at a time,
this form of decision support can easily be provided in real-time environments.

5 Serious Game: Trucks and Barges

This section introduces the serious game that is used to compare the human
planning performance with those of the algorithms from Sect. 4. The game is
called Trucks & Barges and is publicly available at www.trucksandbarges.nl.

The purpose of the game is to let players gain experience with transport plan-
ning under uncertainty, raise awareness about some of the trade-offs in antic-
ipatory planning, and familiarize them with decision support and automated
planning. The game is designed to provide the player with insight into (i) a
typical intermodal planning problem, (ii) the benefits and challenges in antici-
patory planning, (iii) the benefits of decision support and automated planning
rules, (iv) the complexity of the planning problem, and (v) the formalization of
automated planning rules. On the other hand, the game also provides the game
master with insights related to the behavior of the participants, their awareness
about the trade-offs in anticipatory planning, their learning process, and the way
they respond to various forms of decision support, automated planning rules and
optimization algorithms.

The game can be played individually as well as within a serious gaming ses-
sion under the guidance of a game master (e.g., a classroom setting). When
playing the game within a serious gaming session, the game master first selects
a scenario that describes all problem settings, such as the modalities, costs, con-
tainer arrival probabilities, destination probabilities, etc. Using these settings,
the game master can represent different logistics challenges. As such, human
performance can be evaluated from various perspectives. Next, the game master
defines the rounds to be played. Each round consists of a pre-defined number of
weeks where a player is in the same mode: practice, normal, support, planning,
or automated. In the practice and normal round, the player only sees the direct
costs of each selected decision. The normal round corresponds with “manual
planning” in Sect. 4. The practice round has a build-in tutorial where players
receive information on all elements within the game. Furthermore, the perfor-
mance in the practice round does not affect the player’s game score. The support
round corresponds with “decision support” in Sect. 4. Here, the learned VFA
weights are used to estimate the downstream costs of decisions. For each man-
ual decision, the player sees both the direct costs and the estimated marginal
downstream costs on top of the playing screen (see Fig. 2). The sum of these
two costs supports the player in evaluating the marginal future impact of deci-
sions with different immediate costs, i.e., to find the decision that is expected to
be beneficial in the long run. The planning round corresponds with “planning
rules” from Sect. 4. Here, the player uses the algorithm creator to make decisions
according to his/her own fixed rules (but depending on the game settings, the
player can either overrule these decisions or change the planning rules during the
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game). Finally, in the automated round, the player can see all the algorithms
from Sect. 4 into action, without the option to manually intervene.

future

1400 + -2982 - -1582

" &0 €y ©e 0
3 r

Edit rules Undo Truck Costs  Menu

-
END DAY o 4

Fig. 2. Screenshot of Trucks & Barges serious game. Containers to be transported can
be dragged to truck, barge, or train. Container colors indicate destination, container
numbers reflect the remaining time window. (Color figure online)

The player takes the role of an LSP planner who schedules the transport of con-
tainers from the hinterland to a deep-sea port using trucks, barges, and trains. The
underlying problem is as described in Sect. 3. The main playing screen is shown in
Fig. 2. Containers are colored according to their destination (red, green, and blue
for the three destinations considered in the game) and are located in one of two
container yards. The container yard to the left holds containers that are released
for transport (r = 0) and the yard on the right holds container that are to be
released the next day (r = 1). Furthermore, containers are labeled with a white
number in the middle according to their current time window, which decreases
as days pass and containers are not transported. In the game, the possible time
windows are k € {0,1,2} (incremented in-game by 1 to reflect travel times of
1day) after the release day r. To schedule the transport of containers, the player
can drag-and-drop containers from the left container yard onto a truck, barge, or
train. The player can also undo such movements, dragging containers back from
the modalities onto the container yard. The daily barge and train, as well as the
trucks, take one day to bring a container to its destination, meaning that a con-
tainer with a time window of 1 must be transported today. All containers must be
transported within their time window; the unlimited number of trucks guarantees
this is always feasible. The daily plan is finalized and executed when the end but-
ton is pressed or when the maximum time for a day’s decision has elapsed, which
is indicated by a clock in the bottom left corner.



Decision-Making with a Logistics Serious Game 709

Dispatch decisions result in “immediate costs”, which are displayed next to
the used modalities. At the end of each turn, containers that had a time window
of 1 and were not transported will be automatically assigned to the trucks. Then,
the barge, train, and trucks depart — visualized by an animation — and a daily
report is presented to the player with the costs of his or her decisions. In the
transition to the next turn, two things happen: (i) containers to be released
the next day (i.e., containers in the right-hand yard) are moved to the left-
hand yard, and (ii) new containers arrive to the two container yards. The turns
continue until the end of the week, where the game “cleans” the containers that
were left and assigns cleaning costs to the player. At the end of a week, the
player gets a report on his or her costs for each day and the cleanup costs.
At the end of a round, a round report is displayed providing insights into the
player’s performance (or algorithmic performance). The game also has a dynamic
leaderboard, where players can see their ranking and the performance of other
players in the game session in real-time.

The initial state at the beginning of each week, as well as the daily order
arrivals are generated up front, such that all players face exactly the same
game instance. However, even though this information is generated up front,
none of the policies from the previous section will utilize information regarding
future events, e.g., the RL policies only use the probabilities used to generate
the container arrivals. All costs components and container arrival probabilities
are accessible by the player through the info button.

6 Experimental Results

To illustrate the possible usage of the game, we now report on three gaming
sessions with a different audience: students, job seekers, and logistics profession-
als. Depending on the audience, we consider different game scenarios and round
types. For all game scenarios, we exclude the train as transport modality to not
overly complicate the human decision-making process. We distinguish between
two game scenarios: easy and difficult. In the easy scenario, the barge is always
cheaper per container compared to truck, even though there are still setup costs
for using the barge, depending on the combinations of destinations that need to
be visited. In the difficult scenario, the barge is only cheaper compared to truck
when sufficiently being utilized. Each rounds consist of 3 weeks, and each week
consists of 5 days/turns. For each turn, we use a time limit of 60s, which seems
to be more than sufficient given that the average decision time of the players in
all of the three gaming sessions was 17.8s, and 85.4% of the decisions were made
within 30s. Note that the times for our heuristics and RL algorithms to make
decisions are negligible («1s). Here the RL algorithms benefit from the fact
that the VFA is learned offline once per game scenario, which typically requires
a couple of seconds.

The settings of the game scenarios can be found in the publicly available
‘rooms’ denoted by “low/high barge costs 4 rounds” at www.trucksandbarges.nl.
Note that the rounds themselves are different in these publicly available games
compared to the rounds of the serious gaming session as described in Sect. 4.
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Two psychological effects are important with respect to the performance of
the players: the anchoring effect and the reference effect [6]. Within our gaming
sessions, there is a heavy reliance of players on the information initially offered.
Also, if the player already played a round using decision support, this typically
affects his/her behavior in subsequent rounds. Similarly, the costs made in the
first round will serve as a reference for the performance in later rounds. To
filter our these effects as much as possible, all players in all sessions first had to
complete 3 weeks in the practice round.

For all groups, we studied various aspects, such as the relation between perfor-
mance and decision time, and the relation between performance and the number
of times the participants consulted the screens with cost information. However,
given the limited number of participants and the huge fluctuations in perfor-
mance, none of these relations were significant (a = 0.05). Therefore, we only
show the results of the performance of the players and algorithms in terms of
costs. These results are all summarized in graphs showing the cumulative distri-
bution function of the human players, scaled relative to the performance of our
heuristics and RL policies. With respect to the cumulative distribution function,
we first rank the players from good (low costs) to bad (high costs), and plot their
scaled performance against the fraction of players that scored as least as well.
With respect to the scaled performance, we compare the human performance
against the four algorithms from Sect. 4: Heuristic, Myopic (direct cost mini-
mization), RL (reinforcement learning), and RLext (reinforcement learning with
extended VFA). We index the performance of the best performing algorithm to 0
and the performance of the worst performing algorithm to 1. In all experiments,
RLext resulted in the best performance. The worst algorithmic performance was
achieved by either Heuristic or Myopic. A player having a score higher than 1
means that all four algorithms performed better than this player.

6.1 Gaming Session 1: With Students

We first performed an extensive gaming session with 40 students from the master
program Industrial Engineering and Management at the University of Twente.
All students had to play 3 rounds: normal, support, and planning. We divided
the group of students into two: one group first playing a normal round followed
by a support round and the other group playing the rounds in reverse order. All
groups ended with the planning round. Furthermore, all students had to play
both the easy and difficult gaming scenario.

We first assess the difference in performance due to changing the sequence
of the normal and support round. Players that first played support had on aver-
age 3.7% lower costs in the normal round. This suggests that lessons from the
support round might be transferred to the normal round. However, given the
huge fluctuations among the limited number of players, this difference is not
significant. As only minor differences were observed between normal and sup-
port rounds, these results have been aggregated in Fig. 3 under the term manual
(hence the graph corresponding with manual has twice as many observations as
the graph corresponding with rules).
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Fig. 3. Cumulative distribution in Session 1 of the scaled human performance relative
to RLext (=0) and the worst-performing heuristic (=1). Both RLext and RL consis-
tently outperform human players. In the difficult scenario, players’ results considerably
decrease.

Figure 3 visualizes the game results. When looking at the left-hand graph
(representing the easy scenario), we observe that 98% and 94% of the students
outperformed Myopic and Heuristic, respectively. With the algorithm creator,
only 33% of the students outperformed the myopic solution method. For the dif-
ficult scenario (right-hand graph), we observe that 38% and 26% of the students
outperformed the Heuristic and Myopic, respectively. In both scenarios, students
had a hard time creating planning rules that improved their manual game play
or one of the heuristics.

6.2 Gaming Session 2: With Job Seekers

The second gaming session was performed at a logistics fair organized in the
Netherlands. This fair was organized for everyone looking for a job in the logistics
sector, specifically aimed at students in pre-vocational secondary schools. At
this fair, visitors could, e.g., drive trucks and forklifts, control drones, design a
warehouse, stack pallets, but also play our game. As time is limited in such a
situation, we let players first practice, then play only one round to measure their
performance, and end up with an automated round in which they could see our
algorithms in action. The results of 60 players are shown on the left-hand side of
Fig. 4. Average performance is worse than for master students, possibly due to
a lack of domain knowledge inherent to young job seekers. Best- and worst-case
performance are comparable to that of students though.
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Fig. 4. Cumulative distribution in Sessions 2+3 of the scaled human performance rel-
ative to RLext (=0) and the myopic algorithm (=1). Note that some logistics profes-
sionals outperform the RL algorithms.

6.3 Gaming Session 3: With Logistics Professionals

Finally, we performed a gaming session at one of the larger logistics companies
within The Netherlands. With 17 logistics professionals, we played the same
rounds as with the students, but only considering the easy scenario and using the
following sequence of rounds for all players: normal, support, and planning. The
results are shown on the right-hand side of Fig. 4. In contrast with the results
of the students, we now show the results of the two manual rounds (normal
and support) separately, as there is a clear increase in performance when using
support (but differences are still not significant given the limited number of
players). Furthermore, a few players actually outperformed the RL algorithm.
Finally, we observe that the logistics professionals were able to create planning
rules, using the algorithm creator, that improved their manual game play.

6.4 Interpretation of Algorithmic Performance

We conclude the assessment of our results by briefly reflecting on algorithmic
performance. For the easy scenario, the performance of the myopic policy is
poor, being outperformed by most human players. This result highlights the
challenges of anticipating the future impact of current dispatching decisions. For
the difficult scenario, myopic performance drastically improves though. In this
scenario, rules-of-thumb no longer work well; evaluating many solutions pays
off here. The heuristic performs relatively well for the simple scenario, yet most
humans are able to obtain better results. The heuristic embeds some rudimentary
logic, but cannot handle exceptions and information about the future. These
flaws are aggravated in the difficult scenario. Finally, RL outperforms virtually
all players even in the easy scenario; only a handful of logistics professionals
can beat its score. It is our only algorithm that explicitly considers downstream
costs, which is crucial in anticipatory planning.
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7 Conclusions and Further Research

This paper describes an anticipatory planning problem for the dispatching of
trucks, barges, and trains, considering uncertainty in future container arrivals.
We design several algorithms — a myopic policy, a heuristic and two reinforcement
learning strategies — to solve the problem. Furthermore, we develop a serious
game called Trucks & Barges to compare the performance of algorithms and
human planners. Within the game, players can plan the containers manually
both with and without decision support. In addition, the players may create
their own planning rules using a graphical algorithm creator.

Test results are obtained through three serious gaming sessions: with stu-
dents, with job seekers in the logistics sector, and with logistics professionals.
The experimental results show that sophisticated heuristics and reinforcement
learning on average outperform the human decision makers, but that the top
tier of humans comes very close to the algorithmic performance. Both the cre-
ation of heuristic rules and of value function approximations in reinforcement
learning require considerable domain knowledge. The results of the best logis-
tics professionals in particular highlight the importance of domain knowledge
in algorithmic design. Nevertheless, well-designed algorithms outperform most
human decision makers. These insights imply that both human expertise and
algorithmic developments remain necessary to advance the art of anticipatory
planning in the logistics sector.
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