
Improving the Semantic Interoperability
of IoT Early Warning Systems: The Port
of Valencia Use Case

João Moreira, Luís Ferreira Pires, Marten van Sinderen, Roel Wieringa,
Prince Singh, Patrícia Dockhorn Costa and Miguel Llop

Abstract An early warning system (EWS) is a distributed system that monitors the
physical world and issues warnings if it detects abnormal situations. The Internet
of Things (IoT) offers opportunities to improve monitoring capabilities of EWS and
to realize (near) real-time warning and response. This paper presents the develop-
ment of an interoperable IoT-based EWS to detect accident risks with trucks that
deliver goods at the Valencia port area. Our solution addresses the semantic inte-
gration of a variety of data sources with processing in safety-critical applications
for effective emergency response. The solution considers existing domain-specific
ontologies and standards, along with their serialization formats. Accident risks are
assessed by monitoring the drivers’ vital signs with ECG medical wearables and the
trucks’ position with speed and accelerometer data. Use cases include the detection
of health issues and vehicle collision with dangerous goods. This EWS is developed
with the SEMIoTICS framework, which encompasses a model-driven architecture
that guides the application of data representations, transformations, and distributed
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software components. This framework enables an EWS to act as a semantic broker
for situation-aware decision support.

Keywords Semantic interoperability · Early warning system · IoT

1 Introduction

Disaster risk reduction (DRR) is a systematic approach to analyze potential disasters
and reduce their occurrence rate and potential impact. The main DRR component is
an early warning system (EWS), which is a distributed information system that is
able to monitor the physical world and issue warnings if it detects abnormal situa-
tions [1]. EWSs can benefit from the Internet of Things (IoT) technologies to realize
(near) real-time data acquisition, risk detection, andmessage brokering between data
sources andwarnings’ destinations [2]. Threemajor challenges in the development of
IoT-based EWS are: (i) semantic integration of a variety of data sources that adhere
to different standards, ontologies and data models; (ii) near-real-time processing
in time- and safety-critical applications; and (iii) data analysis for effective situa-
tion awareness and decision support [2]. In this paper, we describe the SEMIoTICS
framework [3], which has been designed to address these challenges.We discuss how
SEMIoTICS is being used to develop an interoperable IoT EWS (INTER-IoT-EWS)
to detect accidents with trucks delivering goods at the port of Valencia, which is a
scenario of the H2020 INTER-IoT project [4]. This project aims to enable semantic
integration among IoT platforms at the device, network,middleware, application, and
semantic layers. The INTER-IoT-EWS integrates health and logistics data provided
by different devices, made available through different IoT platforms and represented
with different syntactic and semantic standards. INTER-IoT-EWS use cases include
the early detection of a vehicle collision, health issues with drivers, and accidents
involving dangerous goods. The use cases’ validation plan is presented and lists the
performed and current activities. This paper is further structured as: Sect. 2 presents
the motivation of our research, Sect. 3 presents the SEMIoTICS framework, Sect. 4
presents the INTER-IoT case study, and Sect. 5 the lessons learned, limitations, and
the future work.

2 Motivation

2.1 Early Warning System (EWS)

An EWS is a system for “the provision of timely and effective information, through
identified institutions, that allows individuals exposed to a hazard to take action to
avoid or reduce their risk and prepare for effective response” [1].
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Fig. 1 Typical EWS architecture interacting with the environment

An effective EWS must be people-centered and integrate knowledge about the
risks, risks’ monitoring and warning, dissemination of meaningful warnings, and
public awareness [5]. Modern EWSs comprise software and hardware for data acqui-
sition, situation awareness, decision making, and information dissemination. Some
experimental prototypes incorporate IoT technology to improve their functionality
[2]. The conceptual architecture of EWS typically consists of three parts [1, 2, 6]
(Fig. 1):

• Upstreamdata acquisition: Distributed sensor systems transformobservations into
digital signals, preprocess the associated data values to ensure that they contain
relevant information for decision making, and transmit these data values to a
message- and/or event-oriented middleware (broker).

• Decision support: Data are stored in data storage and are subject to rules to detect
situations of interest. These rules are represented as models, which can be deter-
ministic (e.g., rule-based approach) and/or non-deterministic (e.g., machine learn-
ing approach). Once a situation is detected, the EWS considers the requirements
of the alert targets to assess the risk and determine the emergency response.

• Downstream information dissemination: Different target groups, com-
prising humans (e.g., the public) and machines (e.g., sirens), receive
adequate notifications.

Interoperability is an important feature of effective EWSs for the integration of
internal components and interworking of different EWSs. The level of interoper-
ability depends on the standardization of interfaces, data exchange formats, and
protocols [6]. The design problem addressed by our research is the improvement
of IoT EWSs’ interoperability among different data sources and targets, including
other EWSs, enabling risky situation identification, and early warning emergency
notifications.
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2.2 Problem Definition

IoT standards have been defined to improve EWSs syntactic interoperability in
multi-agency sensor information integration [7–9], such as the OGC’s Sensor Web
Enablement (SWE),1 theOASISEmergencyDataExchangeLanguage (EDXL)2, and
Health Level Seven (HL7) standards. For example, the FEMA’s (USA) Integrated
Public Alert and Warning System (IPAWS) and the German Indonesian Tsunami
Early Warning System (GITEWS) implement EDXL-CAP, which is a common alert
data format protocol [10]. However, these approaches only target syntactic interop-
erability while we also need semantic interoperability.

The semantic interoperability of EWSs has been addressed by approaches that
apply domain-specific ontologies to support meaningful data integration [11, 12].
These semantic solutions usually have poor performance and do not support effec-
tive response preparation [13]. In contrast, the Semantic IoTEWS approach [2] targets
the challenges of scalable time-sensitive data handling from heterogeneous sources,
enabling effective responses. This approach balances lightweight and heavyweight
semantics: the former for upstream and the latter for downstream data. Moreover,
this approach introduces an ontology, theDecision Support Ontology (DSO),3 which
is extended with the W3C Semantic Sensor Network (SSN) and OGC SWE terms.
Although DSO’s goal is “to aggregate and align multiple ontologies to support com-
pound EWS semantics and ontology commitments,” it lacks the support for multiple
domain ontology alignments at runtime, i.e., it does not provide a mechanism for
describing and executing ontology alignments at runtime. Furthermore, the DSO
was serialized as XML with the Web Ontology Language (OWL), which inherits the
verbosity of RDF/XML and the complexity of OWL, affecting the performance on
data exchange and processing.

Our research goal is to improve the semantic interoperability of emergency ser-
vices for IoT EWSs, i.e., improve the semantic integration capacity of components
of an IoT EWS and enable seamless integration with other IoT EWSs. We identified
the following challenges to achieve this goal:

(C1) Semantic integration of a variety of data sources:Avoid loss of semanticswhen
multiple ontologies, standards and data models from different and overlapping
domains are involved, considering their syntactic and semantic alignments.

(C2) Processing in time- and safety-critical applications: Provide the required per-
formance for upstream data acquisition, emergency risk detection and broker-
ing messages, in terms of scalability and total transaction time.

(C3) Data analysis for effective responses: Enable high-quality situation aware-
ness (perception, comprehension, and projection) to avoid false positives and
improve decision support based on emergency procedures.

1http://www.opengeospatial.org/ogc/markets-technologies/swe.
2https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=emergency.
3http://tridec.server.de/ontologies/TRIDEC5.2.2.owl#.

http://www.opengeospatial.org/ogc/markets-technologies/swe
https://www.oasis-open.org/committees/tc_home.php%3fwg_abbrev%3demergency
http://tridec.server.de/ontologies/TRIDEC5.2.2.owl%23
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3 The SEMIoTICS Framework

The “SEmantic Model-driven development for IoT Interoperability of emergenCy
serviceS” (SEMIoTICS) framework aims at improving semantic interoperability
among EWSs and their components [3, 14].

SEMIoTICS consists of an architecture (Fig. 2), technologies, and guidelines that
are based on model-driven engineering (MDE), inspired by the mediation informa-
tion system approach [15] and the semantic healthcare lifecycle [16]. SEMIoTICS
uses the Endsley’s situation awareness theory [17], which is harmonized with the
Unified Foundational Ontology [3], enabling high-quality situation awareness (chal-
lenge C3). The framework also applies MDE transformations to integrate models
and generate code for each component of the architecture, according to use case
requirements. More details of SEMIoTICS can be found in [18].

The framework architecture has six elements that address the threemain functions
of anEWS: (1) input handler: upstreamdata acquisition; (2) abstraction: foundational
ontology; (3) context model: domain ontology; (4) situation model: complex event
processing; (5) situation awareness: data flows; and (6) output handler: downstream
emergency notification. It follows the publisher/subscriber pattern and has RESTful
services using JSON and XML, addressing challenge C1 by enabling web services’
syntactic interoperability. JSON for Linked Data (JSON-LD) was adopted in SEMI-
oTICS to support semantic interoperability and upstream data acquisition perfor-
mance. JSON-LD is a structured way of using JSON, designed to be a lightweight
syntax to serialize RDF, providing interoperability to JSON data at web scale. JSON-
LD is a W3C standard recommended by schema.org and Google.

JSON-LD does not fully address challenge C1 because data can still be rep-
resented with multiple different ontologies. To tackle this issue, the architecture
supports the identification of functional components that reflect possible decentral-
ized control of EWS functions, recommending interoperability standards to connect
these components, and identifying adaptor components to bridge different standards
or standards and proprietary solutions. The framework separates adaptors for syn-
tactic interoperability from adaptors for semantic interoperability, allowing adaptor
solutions that focus on one particular interoperability problem, and mix and match
syntactic and semantic standards with a minimum of different adaptors. Adaptors

Fig. 2 SEMIoTICS framework for semantic IoT EWS
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are implemented as syntactic and semantic translations [19]. The input handler is
responsible for message translation, which relies on the syntax of each ontology
being used and, therefore, also requires semantic as well as syntactic translations,
e.g., from RDF/XML to JSON-LD and from HL7 to EDXL. Messages are translated
from the original ontologies to our context model (core ontology) [18], which is
aligned to W3C SSN and incorporates terms from EDXL and HL7. This approach
aims at facilitating the data and semantics maintenance when integrating distinct
domains, measuring, and tracking data quality.

The abstraction component refers to foundational ontologies, which are designed
to maximize the support for interoperability of high-level categories, e.g., event,
process, physical object, and system. The core ontology and SSN are grounded on
the UFO (through OntoUML) and DOLCE Ultralite (DUL), respectively [3]. UFO
and DOLCE share the same definitions for some conceptualizations, facilitating the
alignment between the ontologies extendedwith them. This component benefits from
the harmonization and axiomatization of terms related to “situation awareness” in
UFO [3] and its impact on languages for context and situation modeling, discussed
in [18].

The situation model is responsible for the situation identification mechanism, i.e.,
the formalization of the emergency risk detection [18]. Our approach allows the spec-
ification and implementation of complex event processing (CEP). CEP is a common
component of IoT platforms to correlate data using temporal predicates (events’ rela-
tions). For example, Cepheus4 is the CEP engine of FIWARE IoT platform, based on
Java ESPER5 and, therefore, the event processing language (EPL). The SEMIoTICS
guidelines describe how CEP technologies can implement the situation models in
ESPER/EPL or SCENE (Drools Fusion) [20]. The situation model addresses C2, by
incorporating adequate technology, and C3, by enabling situation awareness.

Decision support is enabled by the adoption of a workflow management system
that enables the end user to design business processes as data flows, e.g., emergency
plans. Big data integration tools for workflow development can generate code and are
able to deploy data flows at runtime, e.g., Node-RED.6 We cover the deployment and
execution of the data flows for decision making by adopting such tool, addressing
challenge C3.

The output handler is responsible for brokering the emergency risk notifications
to the proper targets, according to the emergency procedures defined in the decision
support component. For each predetermined risk, targets are enumerated with their
information requirements. The data format of the notifications follows EDXL stan-
dards serialized as JSON-LD. Risk notification services are exposed as publishers.

4https://catalogue.fiware.org/enablers/iot-data-edge-consolidation-ge-cepheus/.
5http://www.espertech.com/.
6https://nodered.org/.

https://catalogue.fiware.org/enablers/iot-data-edge-consolidation-ge-cepheus/
http://www.espertech.com/
https://nodered.org/
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4 Case Study: EWS to Detect Accidents at the Port
of Valencia

We proposed SEMIoTICS from our research in interoperability of IoT-based emer-
gency systems, and, to validate it, we need to develop an IoT EWS and test in within
an emergency scenario (i.e., a case study) composed of use cases. For demonstration
and validation purposes, the INTER-IoT project described a scenario to decrease
the risk of fatal accidents at the port of Valencia, improving health prevention and
enabling quick reaction by reducing time response [21]. The goal is to exploit how
e-Health can use IoT platforms dedicated to logistics to prevent the occurrence of
accidents and to support evacuation or attention in case of emergency situations.

4.1 Requirements and Use Cases

The requirements of the scenario are:

(FR1) IoT platforms should be able to coordinate with emergency systems by
detecting risks of accidents and accidents with trucks within the port area
(collision and drivers’ health issues), alerting their urgency and severity.
The acceptance criterion is to check whether the port IoT platform is able
to coordinate with emergency systems located in the vicinity.

(FR2) The hauler IoT platform and the port IoT platform should be able to share
health information about the driver, monitored in real time through an
electrocardiography (ECG) device. This device should be used for real-
time ECG monitoring of drivers, transmitting data to a smartphone, which
should act as a gateway, transmitting data to the cloud, both raw and cal-
culated data, e.g., ECG sequence and heart rate (HR). These data need to
be integrated with the port emergency control system.

(NFR1) IoT platforms should be semantically and syntactically interoperable. The
acceptance criterion is the existence of amechanism to translate data format
and semantics of exchanged message to achieve communication with a
common understanding on both sides.

(NFR2) E-Health and logistics should be integrated at the application and semantics
level, including primitives for data interpretation ofmedical and transporta-
tion data.

(NFR3) The energy consumption (battery level) of the devices being used for the
situation identification mechanism should be monitored.

Five use cases were defined to validate the achievement of these requirements:

(UC01) Vehicle collision detection: Uses accelerometer data of the truck from
mobile phone and health device;

(UC02) Hazardous health changes: Detect occurrences of stress and arrhythmia
(e.g., bradycardia and tachycardia);
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(UC03) Temporal relations between UC01 and UC02: Detect if a health issue
occurred before, during, or after a vehicle collision;

(UC04) Wrong-way driving: Integrates the trucks location data and the streets’
direction within the port;

(UC05) Accidents with dangerous goods: Monitor dangerous goods being trans-
ported (according to the UN list of dangerous goods) in all use cases (1–4),
adding adequate information regarding emergency procedures for effective
response.

UC03 is particularly interesting because it requires the integration of data from
both domains (health and logistics) and represents complex behaviors. For example,
there is a possibility that bradycardia is detected followed by a continuous decrease
in the heart rate after a collision. This situation reflects an accident where the driver is
injured, classified as extremely severe with immediate urgency. In this situation, the
vehicle collision is identifiedwith both accelerometers from theECGdevice and from
the smartphone, considering device features as accuracy and energy consumption.

4.2 INTER-IoT-EWS: EWS Developed with SEMIoTICS

Our solution prototype (Fig. 3) includes the Shimmer ECG 3 device7 to collect ECG
data from drivers. This device has high accuracy and usability, being able to transmit
data from a TinyOS application (running within the device) to a mobile phone appli-
cation (Android) through Bluetooth. This mobile application receives and forwards
the data to the cloud, acting as a gateway. Data are sent to the cloud and published
in a broker as RDF/XML messages following the European Telecommunications
Standards Institute (ETSI) Smart Appliances REFerence ontology (SAREF)8 ontol-
ogy extended with HL7 aECG (Annotated ECG), supported by the UniversAAL IoT
platform.9

Similarly, the MyDriving mobile application for logistics (open use case of the
Azure IoT platform10) transmits the data about the truck position, speed, accelerom-
eter, and goods information to the cloud infrastructure. These logistics data are
serialized as JSON messages, following the structure of SAREF ontology aligned
to LogiCO ontology.11 SAREF was chosen because of its capabilities for tracking
devices’ energy consumption. The IoT Platform Semantic Mediator (IPSM) mod-
ule [22] is responsible for syntactically and semantically translating these data: from
JSONandRDF/XMLto the INTER-IoT JSON-LDsyntax,which is structured JSON-
LD (two@graph) withmiddleware information, and from SAREF to the INTER-IoT

7http://www.shimmersensing.com/products/ecg-development-kit.
8http://ontology.tno.nl/saref/.
9http://www.universaal.info/.
10https://azure.microsoft.com/en-us/campaigns/mydriving/.
11http://ontology.tno.nl/logico/.

http://www.shimmersensing.com/products/ecg-development-kit
http://ontology.tno.nl/saref/
http://www.universaal.info/
https://azure.microsoft.com/en-us/campaigns/mydriving/
http://ontology.tno.nl/logico/
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Fig. 3 EWS to detect accident risks and accidents at the port of Valencia

core ontology semantics, which is aligned with SSN. These translations are config-
ured a priori in IPSM by the developer through a REST service.

The data represented as INTER-IoT JSON-LD syntax and INTER-IoT core ontol-
ogy semantics are published in the broker in a topic, to which the EWS subscribes
to receive real-time data. Then, the EWS input handler certifies whether new trans-
lations to harmonize the data in the SEMIoTICS core ontology are necessary and if
so, the input handler requests the translations to IPSM.

Data are annotated with the core ontology and stored in a NoSQL database (Mon-
goDB) as historical data. Both real-time data and historical data are used by the
risk identification component, i.e., the SCENE CEP engine [20]. Situation types
are defined a priori, as rule sets, describing the risky situations of interest based
on emergency plans. Each situation type is linked to a response process, i.e., the
specific workflow to be executed once a situation is identified. Therefore, the risk
identification component triggers a workflow, which executes the linked processes.

The workflow component is responsible for checking the information require-
ments of each alert target, passing this information to the output handler, which
is responsible for transforming the data to EDXL compliant semantically enriched
messages. Therefore, the output handler enables the brokering of notifications of
the situations detected, following the JSON-LD syntax and the EDXL data model,
which is able to link to the used semantics. A web UI application shows each alert
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Table 1 Data sources External Health Logistics

Data Driver’s ECG, HR,
accelerometer

Position, speed,
accelerometer,
goods

Device Shimmer ECG 3
(capture), mobile

Mobile (MyDriving
Android or iOS)

IoT platform UniversAAL MS Azure IoT

Ontologies ETSI SAREF,
HL7/aECG, FHIR

ETSI SAREF,
LogiCO

sent by the EWS with its severity and urgency, and other information, including the
targets that received the notification and the message sent to each target. The EWS is
developed with Node.js and Node-RED. Table 1 summarizes the data sources used
in the prototype.

4.3 Validation Plan

The validation plan of our solution follows the challenges C1, C2, and C3 listed in
Sect. 2.2 and is given in Table 2. It is organized as (a) factory acceptance tests (FAT):
In a laboratory environment, the EWS is deployed in the cloud and the components
integration tested through mock objects; and (b) site acceptance tests (SAT): a pilot
in the port, where accidents will be simulated in accordance with the port emergency
exercises. Both FAT and SAT assess whether the systemworks for the intended risks’
detection and warning.

Since our approach is based on semantic translations, semantic loss at runtime
will be used to calculate semantic interoperability, which will also be based on the
semantic expressiveness of the EWS models (on specification level).

A comparison is included between our solution and a non-semantic approach for
upstream data acquisition (from multiple devices), risks detection, and brokering.
Thus, the plan includes the performance evaluation of data transfer, process, and
brokerage. This plan includes data management according to the “Findable, Acces-
sible, Interoperable and Reusable” (FAIR) data principles,12 which enables research
data to be reused.

Currently, the INTER-IoT-EWS is under implementation and testing phase. The
initial execution and first results of A2 are presented in [19] and for A3 in [18].
Activities A1, A4, and A5 are ongoing. The first results of A4 show that using

12https://www.force11.org/group/fairgroup/fairprinciples.

https://www.force11.org/group/fairgroup/fairprinciples


Improving the Semantic Interoperability of IoT Early Warning … 27

Table 2 Validation activities

# Activity Description Addresses

A1 Functional evaluation Test cases with different
levels of severity and
urgency, checking the
adherence with
emergency procedures
(pragmatic
interoperability)

C1, C2, C3, FR1, FR2

A2 Semantic interoperability
tests: semantic loss

Transformations in
sequence from ontology
A to ontology B and from
B to A, i.e., check how x
differs from
T(T(x)A>B)B>A, where
T(x)A>B represents the
semantic translation
function from A to B [19]

C1, NFR1, NFR2

A3 Semantic interoperability
tests: expressiveness

Specification level, i.e.,
how the models describe
reality from different
points of view [18]

C1, NFR1, NFR2

A4 Performance evaluation:
data transfer

Compare JSON and
JSON-LD as payload,
measuring the impact of
using JSON-LD rather
than JSON, following the
structure of the involved
ontologies

C2, NFR3

A5 Performance evaluation:
data process

Total time to translate;
annotate data and insert
into the database; access
and process data for risk
identification; and create
alert messages (serialize
as EDXL)

C2, NFR3

A6 Performance evaluation:
data brokering

Scalability and resilience
measured for single
cluster and multi-broker,
e.g., semantic IoT EWS
approach [2], with sensor
throughputs of up to 700
msg/sec

C2, C3, NFR3
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JSON-LD brings an irrelevant burden to total transaction time when compared to
JSON, and thus, migrating from JSON to JSON-LD is viable for the majority of the
IoT solutions.

5 Conclusions

Current proposals for IoT-based EWS only partially address the semantic integration
of a variety of data sources alongwith processing in time-critical applications anddata
analysis for effective responses. Our SEMIoTICS framework addresses this problem
by applying different modeling languages, ontologies, and technologies toward the
improvement of interoperability within and between IoT EWSs. To validate this
framework, we are developing an EWS prototype, and we are currently applying it
for detecting accidents at the port of Valencia.

Preliminary results include the INTER-IoT-EWS solution architecture, the
required syntactic and semantic translations, and a validation plan guiding factory and
site acceptance tests for measuring the interoperability support of the SEMIoTICS
framework through the INTER-IoT-EWS. Initial tests indicate that the solution is
adequate to cover the challenges, but this is an ongoing work to be reported in the
near future.

The SEMIoTICS framework has been designed to be general enough to be appli-
cable to other types of emergencies. However, the framework still lacks a mechanism
to cope with the quality of information (QoI) at the network level, such as a Grubbs’
test for outlier detection, and a statistical algorithm that can classify anomalous or
invalid sensor values. Future work includes the development of a QoI mechanism
and the completion of the execution of the validation plan.

Acknowledgements This work has been carried out under the CAPES funding BEX 1046/14-4
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