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Landslide susceptibility assessment in a lesser Himalayan
road corridor (India) applying fuzzy AHP technique and
earth-observation data
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aAmity Institute of Geo-Informatics and Remote Sensing, Amity University-Sector 125, Noida, India;
bDepartment of Geology, Central University of South Bihar, Gaya, India; cDepartment of
Geoinformatics—Z_GIS, University of Salzburg, Salzburg, Austria; dFaculty of Geo-Information
Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands

ABSTRACT
The Kalsi-Chakrata road corridor, located in the Lesser Himalayas,
experiences several landslides every year, resulting in a consider-
able amount of damage to roads, assets, and other infrastructure
and even loss of lives. During the monsoon season
(June–August), the disruption of routes due to landslide resulted
in economic losses and barred villagers from accessing critical
and essential facilities, thus impacting the livelihood of the com-
munities residing along the road corridor. Hence immediate
requirement was to systematically assess the landslide susceptibil-
ity for the study area that would support in the preparation of
the planning and mitigation goal, both short and long term. The
present study adopted the fuzzy analytic hierarchy process (fuzzy
AHP) method integrated with geospatial technology that may be
highly effective for landslide susceptibility assessment in the land-
slide-prone Lesser Himalayas. The use of validated landslide inven-
tory data and high-resolution remote sensing images for selection
and mapping of landslide conditioning factors gratifies the geo-
spatial aspect of local variations across the Kalsi-Chakrata road
corridor. For fuzzy AHP model setup, prominent landslide contri-
buting factors viz., slope, aspect, altitude, lithology, proximity to
road, fault & drainage, Stream Power Index (SPI), Topographical
Wetness Index (TWI), rainfall, land use/land cover (LULC), soil, and
seismicity, were mapped and classified into significant classes.
The resultant landslide susceptibility map (LSM) shows that about
55% (45.23 km2) of the study area was categorized as a very high
and high landslide susceptibility zone. Of this, about 21%
(17.7 km2) was within very high LSM zone, while 33% (27.5 km2)
fell under high landslide susceptibility categories. Approximately
17.6% (14.5 km2) areas fall within the moderately susceptible
zone, where chances of future landslides may be amplified with-
out periodic observation and prospective study. At the village
level, it was observed that Jhutaya village, located nearer foothill
of Lesser Himalayas, is most susceptible to landslide followed by
Dhaira, Chapanu, and Sairi villages. The fuzzy AHP model shows
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86.52% accuracy in landslide prediction evaluated through the
ROC curve (at 95% confidence level). Hence, the output LSI may
be referred by the planners and engineers for monitoring, preven-
tion, and mitigation of landslide hazards and development of
infrastructure in the Kalsi-Chakrata road corridor, and the fuzzy
AHP methodology adopted may be applied in other areas of the
Lesser Himalayas.

1. Introduction

In the Himalayan terrain, landslides are among the most common natural hazards
that carry a significant threat to the socio-economic development in an area and the
life and livelihood of the communities residing in those mountainous regions. The
statistics published by the Geological Survey of India (GSI) shows that about 0.14
million sq km area in North West Himalayas (Uttarakhand, Himachal Pradesh, and
Jammu & Kashmir) are prone to landslide hazard. It is estimated that approximately
13% of Indian land has witnessed landslide events that had caused a loss of over 4.5
million USD (Thai Pham et al. 2018). During the monsoon season (June–August),
large numbers of landslides are triggered in the Himalayan mountain chain due to its
unique geological setup and tectonic movements. The steep slopes, deep weathering
of substrata, and intense southwest Monsoon rainfall in the Lesser and the Middle
Himalayas in conjunction develop complex geological conditions that are favorable
for the frequent occurrence of landslides (Gabet et al. 2004; Ambrosi et al. 2018). In
Uttarakhand, a northern state of India, the landslides are among the most critical nat-
ural hazards that cause considerable damages every year. Most often triggered either
by heavy precipitation and earthquakes, or anthropogenically due to heavy vehicles’
movement or, usually, human activities on unstable slopes. In addition to rugged ter-
rain, high seismicity, and climatic phenomena that are the main triggering factor for
landslide occurrence (Kwan et al. 2014; Li et al. 2014), the hydro-geological condi-
tions, and anthropogenic activities are among the key elements that too strongly
influence the landslide occurrences in the Himalayan region of India (Rai et al. 2014;
Singh et al. 2020).

The Himalayas are an extensive range of landmass shadowing the subcontinent
of India that differs from one region to another regarding topography, climate,
soils, and rock types. The seismically active Lesser Himalaya, a comparatively recent
formation, is bounded by two tectonic planes, i.e., the Main Central Thrust (MCT)
in the north and the Main Boundary Thrust (MBT) in the south. Due to intense
folding and faulting, this rugged and hilly terrain is highly fractured, sheared, less
consolidated, and highly weathered (Pachauri 2010). Moreover, compared to other
Himalayas regions, the Lesser Himalayas experience a higher degree of human
interference through construction activities, cultivation, deforestation, construction
of roads cutting the slopes, more vehicular movements, mining, and other economic
activities. These factors make the Lesser Himalayan terrain fragile and weak and
often aggravate landslides phenomena, particularly during the Monsoon
(Khanduri 2017).
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Located in the Lesser Himalayas on the right bank of Amlana River, the Chakrata-
Kalsi road corridor is 42 km long corridor situated in the western part of the
Dehradun district of Uttarakhand state bordering with Himachal Pradesh. This road
corridor well connects the famous hill station of Chakrata with the neighboring
densely populated northern plains. During the southwest monsoon season
(July–September) every year, the Kalsi-Chakrata road corridor experiences several
landslides that incur a considerable amount of damage to roads, buildings, and other
assets, even loss of lives. Some of these landslides are even recurring every year (e.g.,
Amroha landslide). The incidents reported in the national and local newspapers show
that this road corridor is frequently blocked by landslide debris in July and August
every year. The most common types of landslides in this area include debris slide,
debris flow, rock slide, and rockfall. Besides direct damages in the form of property
loss and infrastructure disruption, the indirect damages due to landslide include dis-
ruption of road transport, interruption, and losses in economic activities (rotten fruits
and vegetables) and livelihood of the communities residing in those areas.
Significantly, blocked, and sometimes washed out village roads left the mountain
communities in a challenging situation barred from access to critical and essential
facilities (Figure 1).

In the last two decades, the Lesser Himalayas has witnessed a substantial increase
in developmental activities, which was proven to be disastrous, coupled with extreme
climate events (Allen et al. 2016). Therefore, the requirement was obvious to conduct
a thorough investigation at a finer resolution applying a reliable statistical technique.
It was observed that the area, particularly between Kalsi and Sahiya town, experienced
recurring landslides every year, disrupting the road connectivity and often bringing
the life to a complete stand-still. The literature survey available on landslides in the
Kalsi-Chakrata road corridor reveals that so far, no in-depth and holistic scientific
research has been conducted for this area except one published paper on terrain clas-
sification and land hazard mapping (Choubey and Litoria 1990). The present investi-
gation was carried out at a sub-regional scale by generating base maps for land
hazard evaluation using only five conditioning factors. Hence, to fill in the voids, it is
necessary to assess detailed landslide susceptibility applying advanced and predictive
contemporary statistical models using advanced geospatial techniques to detect the
landslide susceptible areas that require immediate attention.

The predictions associated with landslide studies are always subjected to certain
degrees of uncertainties. Hence, investigations concerning ‘when’ ‘where’ and ‘what
magnitude’ is considered crucial aspects of prediction (Singh and Sharma 2015). In
this regard, the landslide susceptibility mapping (LSM) may be a significant step
towards landslide management and mitigation. It effectually helps to delineate the
spatial distribution of probable landslide occurrences. The investigation of LSM has
been carried out using different prediction methods worldwide, however, their accur-
acy and predictability vary widely (Chen et al. 2016). Therefore, it is notable to select
a present-day approach that locally addresses the landslide issues considering the
above speculation. There has been quite a lot of proper research works conceded in
the prior two decades to assess landslide susceptibility based on both qualitative and
quantitative methods (Varnes 1984; Guzzetti et al. 1999; Pradhan and Lee 2010; Tien
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Figure 1. Landslide in 2018 razed the village access road and temple near Amroha.
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Bui et al. 2012, 2015; Thai Pham et al. 2017; Marinos et al. 2019). In recent years,
statistical and heuristic landslide prediction models integrated with Geographic
Information System (GIS) have been instrumental for improved mapping of hazard
footprints. More often, it includes modeling approaches, for example, multi-criteria
evaluation, index of entropy, weights of evidence, statistical information value, linear
and logistic regression, discriminant analysis, frequency ratio, fuzzy systems, and
neuro-fuzzy models, neural networks, random forests (Guzzetti et al. 1999; Lee and
Pradhan 2007; Tien Bui et al. 2015; Chen et al. 2017; Thai Pham et al. 2017; Ambrosi
et al. 2018; Noorollahi et al. 2018; Taalab et al. 2018; Sur and Singh 2019; Sharma
et al. 2020; Singh et al. 2020). It should be kept in consideration that the reliability
and accuracy of LSM of a particular area depend on the spatial and temporal fre-
quency of landslides and the modeling methodologies adopted (Glade 2001, Pellicani
et al. 2014, Wang et al. 2020).

Saaty introduced the analytic hierarchy process (AHP) as a valued tool for multi-
criteria decision-making (MCDM) adopted as a thriving natural resource manage-
ment technique and environmental and ecological impact assessment. Literature
shows that AHP can be successfully applied in natural resource management, eco-
logical studies, susceptibility mapping, planning, and development (Saaty 1990; Ouma
and Tateishi 2014; Hanine et al. 2016; Mallick 2016). However, in practice, while
dealing with complex natural environments, the crisp data are often found inadequate
to represent the system’s relationships and uncertainties (Mallick et al. 2018). In the
fuzzy AHP method, the pairwise comparisons or two-dimensional priority matrix
through a linguistic variable are performed for both criteria and the alternatives. Such
pairwise comparisons are represented by triangular numbers (Ayhan 2013; Mallick
et al. 2018). Hence, in many cases, the experts prefer to choose intermediate pairwise
comparison ratings for factors in AHP instead of definite ratings because, in complex
natural systems, the evaluation method of fuzzy set theory shows a better representa-
tion of human experiences, judgments, and thinking styles addressing real-world
complications (Gorsevski and Jankowski 2010; Hanine et al. 2016). Zadeh (1965)
introduced the fuzzy set theory as a tool to address complex problems. The fuzzy set
theory is based on a membership degree for specific attributes of interest known as
membership function (Shahabi et al. 2012). Because of this, the application of the the-
ory can be found in many disciplines such as data processing, artificial intelligence,
decision support, engineering, medicines, expert systems, operational research, and
others (Zimmermann 1992). Over the years, fuzzy AHP has evolved as an imperative
MCDM technique in a fuzzy environment where the best choices can be selected.
The weight of criteria can be determined according to pairwise comparisons and hier-
archical relationships between criteria (Mallick et al. 2018). In this study, the fuzzy
set theory was adopted to determine the fuzzy membership function (MF) based on
the conditioning factors’ spatial relationships.

Several procedures are discussed in various literature to compute the factor weights
using the fuzzy AHP technique (Bozbura et al. 2007). Laarhoven and Pedrycz (1983)
were among the researchers who applied fuzzy AHP for the first time. Among the
successors, Buckley (1985), and later Chang (1996) were phenomenal. Chang intro-
duced a new method based on the degree of probabilities of each criterion using
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triangular numbers in a pairwise comparison. The next step is to develop a pairwise
construction matrix. This task is carried out for a particular level on the hierarchy by
placing triangular fuzzy values for the linguistic variables. By comparing each couple,
membership functions are then constructed, and the intersections’ are determined.
The membership value here represents the degree of possibility of the value. The
minimum degree of possibility of the situation defines a particular criterion’s weight.
Subsequently, weights for each criterion are normalized to get the final weights (also
known as final importance degrees) for the hierarchy level (Chang 1996). The litera-
ture review suggests that LSM generated through the AHP technique was adopted
quite frequently by the researchers due to easier understanding and computation. The
author observed much literature on applying the AHP technique on LSM in India;
however, using the fuzzy AHP technique in this context was less, incredibly scarce
for the Himalayas. Moreover, although multiple LSM studies are conducted for
Uttarakhand’s main highways connecting the "four abodes," scientific research lacks
smaller road corridors such as Kalsi-Chakrata are experiencing frequent landslides
every year. Hence, the effort has been made to conduct a detailed investigation to
delineate landslide susceptible areas applying a GIS-based fuzzy AHP approach fol-
lowing Chang’s techniques. The outcome of this study provides a substantial predic-
tion of future landslide susceptible areas in the Kalsi-Chakrata road corridor that can
help decision-makers and planners emphasize on appropriate mitigation measures
that can lead to the prospective future economic growth of the area.

2. Study area

The Kalsi-Chakrata road corridor lies in the Lesser Himalayan ranges at the western end
of the Central Himalayas. Chakrata (2,118m above mean sea level) is a small hill station
and a famous tourist destination, and Kalsi is primarily a tiny Cantonment Town located
in the bank of river Yamuna in the foothill of the Lesser Himalayas. The Kalsi-Chakrata
road corridor is about 42 km long and located in the Dehradun district of Uttarakhand
state (Figure 2). The state highway starts ascending from Kalsi towards Chakrata. The
road corridor is linked with Dehradun (Capital of Uttarakhand state) and Saharanpur (a
market hub in Uttar Pradesh state) through Vikasnagar-Kalsi road.

The study area’s whole terrain has a very rugged topography with altitude varying
from 433m near Yamuna River and 2456m near Chakrata town (mean ¼ 1445m,
std. dev. ¼ 585m). The temperature ranges from 1.4� C in winter to 34� C in sum-
mer, with an average annual rainfall varies between 1,339 cm and 1,479 cm. The study
area typically experiences three seasons. The winter season starts in October and ends
in February, and the summer months extend from March to June. The rainy season
begins in July, and it ends in September. Often this area gets heavy rainstorms, some-
times cloudbursts, in July and August, which cause lots of damages resulting in ero-
sion, floods, and landslides. The road corridor is situated in the Siwalik and Middle
Himalayas, one of the most seismically active regions. The geology, structures, and
lithology of the area have been mapped using geological maps acquired from GSI. In
the study area, the outer sedimentary belt consists of the Krol belt, while the inner
belts constitute thick sequences of unmetamorphosed sediments. There are seven
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geological formations observed in the study area, of which the Jaunsar group is the
predominant formation that covers more than 90% of the geographical area. During
the field investigation, the Mandhali-Chakrata Formation (Proterozoic II) and
Chandpur Formation (Proterozoic III lower), where most of the landslides occur,
were studied concerning other landslide conditioning factors. The Main Boundary
Thrust (MBT), passes through the road corridor, can be distinguished after crossing
Kalsi town moving towards Chakrata.

In this study, 34 Census villages and one municipal corporation (Chakrata) intersect
with the Kalsi-Chakrata road corridor, have been considered for susceptibility mapping.
According to the Census of India (2011) village boundary, the study area spreads over
more than 80 sq. Km. with more than 19,679 persons residing in 3,961 households.
Agriculture and social forestry play an essential part of livelihood among the villagers.
The fruits and vegetables produced here have been transported to the nearby wholesale
market in Saharanpur, further connected with the large vegetable market of Delhi.

3. Data, materials and methods

In any LSI study, the first important step is to detect the past and the present land-
slide locations in an area, followed by the determination of conditioning factors such

Figure 2. Location of the Study Area.
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as terrain, geology, hydrology, climate, and anthropogenic activities that are liable to
contribute to the occurrence of landslides (Guzzetti et al. 2012; Deng et al. 2017;
Ambrosi et al. 2018). Next, based on literature review and field data analysis, the crit-
ical conditioning factors (geo-environmental factors) that might have been responsible
for triggering a past landslide have been identified for further consideration in pre-
dictive models (Marinos et al. 2019). The geo-environmental factors commonly con-
sidered for LSM include terrain, geology, hydrology, climate, and anthropogenic
activities (Wang et al. 2019). More emphasis was put to select the high resolution and
latest vintage landslide conditional data layers from authentic sources judiciously.
These data were duly validated before inclusion in the chosen statistical model
through available literature and published open-source information. The following
sub-sections briefs the data and materials used and the methodology adopted for
fuzzy AHP based LSM:

3.1. Data types, resolution and sources

The data types for various conditioning factors and their resolution, vintage and sour-
ces used in this study are the following (Table 1).

3.2. Landslide inventory mapping

The landslide inventory dataset helps to understand the factors or conditions that
might be accountable for triggering a past landslide or signify the incidence of an
active landslide (Marinos et al. 2019). In this study, an extensive landslide inventory
dataset was prepared using two primary sources: (1) the landslide records collected
from the GSI portal (http://bhukosh.gsi.gov.in/Bhukosh/Public) and the Public Works
Department (PWD), Uttarakhand; (2) identification of possible past landslide events
from higher resolution periodic earth observation data (LISS-IV satellite images cap-
tured in March 2017 and Google Earth satellite images between the year 2001 and
2017). The landslide extent was delineated as precisely as possible, along with meta-
data for future use. The records collected in this process were examined through
extensive field surveys mostly along the road corridor, including the connecting vil-
lage roads using the Global Positioning System (GPS) instrument and geo-tagged
camera during the Monsoon and post-Monsoon periods (Figure 3). It was observed
that the most common types of rain-induced landslides in this area include debris
slide, debris flow, topple failure, rock slide, and rockfall. The landslide inventory com-
prises the type of movement, type of material, the slide’s dimension, the damages/
losses caused by past events. The most widespread and threatening landslide in the
area was observed in Amroha, a rotational slide with steep slopes and road undercut
areas. The analysis of satellite images and ancillary reports from PWD shows that the
Amroha landslide has increased by more than ten times in size over the past two dec-
ades and presently covering an area of about 0.05224 sq km. For both modeling and
validation, the landslide point locations (demarcated at the centroid of the delineated
landslide areas) were used. Though there are no standard procedures for the choosing
the training dataset (for model preparation) and validation dataset (for verification of
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model’s performance) (Guzzetti et al. 2012), however, the most commonly practiced
ratio is 70/30 for training and validation samples (Tsangaratos and Ilia 2016, Deng
et al. 2017, Nachappa et al. 2020). The compiled landslide inventory finally comprises
55 records as of June 2019, and these were divided randomly into 38 training data
(70% of the inventory) and 17 validation data (30% of the inventory).

3.3. Selection and mapping of landslide conditioning factors

The landslide conditioning factors (also called geo-environmental factors), without
any predefined criteria for selection, are picked up based on a thorough literature
review, and the numbers may vary from a few factors (Pradhan and Lee 2010; Akgun
2012) to a large number of factors (Catani et al. 2013; Tien Bui et al. 2015; Xu et al.
2016; Zhang et al. 2018; Nachappa et al. 2020). In the current investigation, 14 land-
slide conditioning factors were carefully selected based on hydro-geomorphological
characteristics, literature, and expert consultation. These are slope, aspect, rainfall,
lithology, normalized differential vegetation index (NDVI), soil, altitude, proximity to
road/drainage/fault, seismicity, land-use, and land-cover (LULC), topographic wetness
index (TWI), and stream power index (SPI). The conditioning factor thematic layers
were arranged from authentic sources using remote sensing and geographic informa-
tion system (GIS) software with a pixel size of 10m and categorized applying Jenks
natural breaks. Among these factors, the digital terrain model (DTM) was used to
produce the thematic layers for topographical parameters such as altitude, slope,
aspect, TWI, SPI. The DTM was generated from Cartosat digital elevation model
(DEM) (10m resolution) and LISS-IV satellite images (5m resolution) in Global
Mapper software at a 10m resolution. The DTM was validated through the Survey of

Figure 3. Field photographs showing (a) rock fall on Kalsi-Chakrata Highway in 2018 (b) slope
instabiliy at a landslide site near Sahiya (2017) (c) warning board (rarely found) for frequent rock
fall (2017) (d) major landslide area in Amroha (2017).
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India (SOI) spot heights, GPS reading collected during field visits, and differential
global positioning system (DGPS) points already used in other published reports in
the Chakrata-Kalsi area. The remaining conditioning factors were generated using
ArcGIS 10.8 software from secondary sources selected carefully based on their
authenticity, scale, and vintage (Table 1). See Figure 4 for all the conditioning factors.

The slope, directly influences shear strength, is one of the most critical factors
accountable to the slope failure (Zhang et al. 2018; Thai Pham et al. 2019; Wang
et al. 2019). The topographies with steeper slopes are usually more susceptible to fail-
ure. The slope angle was produced from the DTM in raster format and categorized
into five distinct slope classes of <10�, 10�–20�, 20�–35�, 35�–50�, >50� applying
Jenk’s Natural Breaks method.

The aspect has a significant impact on vegetation growth. The vegetation cover retains the
soil’s moisture capacity, which can instigate landslide (Das et al. 2011; Basharat et al. 2016).
Aspects represent the slope direction. In this study, the aspect map generated from the DTM
was classified into nine distinct sub-classes as flat (-1), north (337.5�–360�, 0�–22.5�), north-
west(22.5�–67.5�), east (67.5�–112.5�), southeast (112.5�–157.5�), south (157.5�–202.5�),
southwest (202.5�–247.5�), west (247.5�–292.5�) and northwest (292.5�–337.5�).

The variation in altitude influences the geomorphological and biological processes
and is often attributed to spatial landscape variability (Raja et al. 2018; Sur and Singh
2019). The elevation may be correlated to different environmental settings, such as
fluctuations in rainfall and vegetation types variation. Elevation was categorized into
five classes: 39–500m, 500–1000m, 1000–1500m, 1500–2000m, and 2000–2660 above
mean sea level.

For landslide initiation, rainfall is often considered the main triggering factor as it
affects slope stability through surface overflow and pore water pressure (Wu et al.
2016; Wang et al. 2019). The spatiotemporal differences in rainfall quantity and
intensity can instigate landslides both over large and small areas (Nachappa et al.
2020). The daily rainfall records for eight sub-districts headquarter stations surround-
ing the road corridor were obtained from the Indian Meteorological Department
(IMD) for the past 70 years (from 1947 to 2017). Using the inverse distance weighted
(IDW) method in ArcGIS 10.8 software, the mean annual rainfall thematic layer was
produced having five classes: 1339–1371mm, 1371–1398mm, 1398–1426mm,
1426–1453mm, and 1453–1479mm. It was observed that about 75% of the landslides
occurred in the high and very high rainfall classes.

Lithology is another widely accepted and significant conditioning factor in LSM
studies (Chen et al. 2017). Lithological units determine the strength and permeability
of rocks. From the literature, it is evident that landslides often originate along with a
rock stratum with less shear strength and less permeability. We have eight lithological
units captured from the geological map. One significant observation from the map is
the Mandhali-Chakrata Formation and Chandpur Formation that covers large areas
along the road corridor containing highly weathered and less amalgamated greywacke
rock materials. The investigation also depicted that the majority of past landslides
occurred in the Mandhali-Chakrata Formation and Chandpur Formation.

The anthropogenic factors like distance to roads have been considered a vital con-
ditioning factor for landslide occurrence (Meena et al. 2019). It has been observed
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that a considerable number of landslides occur across the road cuts mainly due to
slope excavation, additional hydrologic load change, deforestation that affects the sta-
bility of the slope (Wang et al. 2019). The distance to roads was categorized into six
classes: 0–100m, 100–200m, 200–300m, 300–400m, 400–500m, and >500m. The
interval was chosen based on the fact that most of the landslides occurred within a
distance of 500m due to road construction activity. In this regard, it may be kept in
consideration that there is no standard procedure to determine the distance to roads,
drainage, faults as landslide conditioning factor in the literature. By changing the

Figure 4. Thematic maps of the conditioning factors used in this study: (a) slope, (b) aspect, (c)
Altitude, (d) rainfall, (e) lithology, (f) distance to roads, (g) distance to drainage, (h) distance to
fault, (i) NDVI, (j) LULC, (k) seismicity, (l) soil, (m) TWI, (n) SPI.
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distance to any of these parameters, the output will be different. Hence, based on
expert opinion, past studies, and observations during the field investigation, the dis-
tance parameters are usually determined for the LSM studies as carried out in this
study too.

The distance to drainage controls the slope’s stability due to runoff and leads to
landslides by eroding slopes (Wang et al. 2019). The presence of drainage near land-
slides has comparatively more impact on landslide initiation than areas located far-off
(Bera et al. 2019). The effect of streams on the slope failure was correlated using five
drainage buffer zones were generated, each 100m wide, using the Euclidean distance,
namely, 0–100m, 100–200m, 200–300m, 300–400m, and >400m.

Figure 4. Continued.
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The distance to faults is another influential factor for landslide activities as the tec-
tonic breaks usually reduce the adjacent rock strength (Meena et al. 2019). With an
increase in distance from faults, the number of landslides decreases sharply (Xu et al.
2016; Wang et al. 2019). The faults were delineated from the geological map obtained
from GSI. The tectonically active Himalayan Main Boundary Thrust (MBT) passes
through the road corridor, and the same can be detected passing near to Kalsi across
the road corridor. The distance to faults was categorized into an interval of 500m,
namely <500m, 500–1000m, 1000–1500m, 1500–2000m, and >2000m.

NDVI is another important conditioning factor that strongly influences the likeli-
hood of land sliding. Bare earth without vegetation coupled with steeper slope and
higher rainfall is more susceptible to frequent landslides (Singh and Sharma 2015; Sur
and Singh 2019). The NDVI values (near to �1) specifies that the bare earth surface
devoid of vegetation, while value (near to þ1) indicates a higher and healthier vegeta-
tion cover. The NDVI data was generated from LISS-IV satellite imagery and classi-
fied into five classes: �0.24–0.19, 0.19–0.31, 0.31–0.39, 0.39–0.48 and 0.48–0.77.

LULC directly or indirectly reflects the natural process and human-made activities
that influence the slope stability in an area. Usually, the land cover like forested areas
has fewer landslides than that of barren lands. In this study, The LULC layer was
generated from the LISS-IV satellite image applying the pixel-wise classification tech-
nique following the classification scheme followed by the National Remote Sensing
Centre (NRSC), which was further validated with available SOI toposheets and NRSC
maps. There are 14 distinct LULC classes derived from the study area. It has been
noted that 67% of the landslides incidents occurred in LULC classes of sparse

Figure 4. Continued.
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vegetation, scrubland, and barren rocky areas where weathering of rocks and erosion
is more intense.

The effect of seismicity in the Lesser Himalayas is another critical factor for earth-
quake-induced landslides (Pachauri 2010). In this study, the Bureau of Indian
Standards (BIS) Earthquake map was referred to produce the seismicity layer in GIS,
which was further modified after USGS Vs30 data (the time average shear wave vel-
ocity at 30m depth). The final thematic layer had five classes with the ground accel-
eration varying between 3.5 and 3.84m/s2.

Soil characteristics such as clay content in the mountainous terrain become poten-
tial slip zone that can lead to slope failure resulted in landslides . The fundamental
soil properties such as texture, organic matter content, structure, and permeability
greatly influence the soil erodibility. Hence, the soil layer, generated from the
National Bureau of Soil Survey (NBSS) soil map, was categorized into four distinct
categories based on the depth of soil cover, soil texture, morphology related to slope,
and drainage, and used in this study. These are- (i) moderately shallow, excessively
drained, thermic, loamy skeletal soils on moderately steep slopes with loamy surface,
moderate erosion and moderate stoniness (found mainly in summits and ridge tops);
(ii) moderately deep, excessively drained, thermic, loamy skeletal soils on moderately
steep slopes with loamy surface and moderate erosion (found in side slopes); (iii)
moderately deep, well drained, thermic coarse loamy soils on moderate slopes with
loamy surface and moderate erosion (found in fluvial valleys); and (iv) moderately
shallow, excessively drained, thermic, coarse loamy soils on steep slopes with loamy
surface, moderate erosion, and strong stoniness (found in side slopes).

Topographic wetness index (TWI) is a ‘steady-state wetness index; that describes
topography’s influence. It identifies the water saturation zones in an area when there
is a high catchment area with a low slope gradient. TWI, after Moore et al. (1988), is
defined as:

TWI ¼ ln
a

tan b

� �
(1)

where, ln¼ Natural logarithm; a¼ Flow accumulation/specific catchment area of each
cell; b ¼ Slope gradient in degrees.

In this study, TWI was generated from DTM using ArcGIS software and divided
into four categories, namely, 0–4, 4–8, 8–12, and 12–14.

The stream power index (SPI) represents the erosive power of the streams. The
slope gradient in the catchment area and the streams’ erosive power show a positive
relationship. According to Moore et al. 1988 and Wang et al. 2019-

SPI ¼ ln a � tan bð Þ (2)

where, ln¼ Natural logarithm; a¼ Flow accumulation/specific catchment area of each
cell; b ¼ Slope gradient in degreesgradient in degrees

The SPI values generated were further classified into two distinct classes ranging
from 0–10 to 10–15.
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3.4. Modeling approach for fuzzy AHP

As discussed in the introduction section of this paper, the fuzzy AHP modeling approach
in the present study adopted the Chang’s (1996) extent method using triangular fuzzy
numbers (TFN) to calculate the fuzzy weights for the selected landslide conditioning fac-
tors. The fuzzy AHP modeling was conducted in open source (LPGL 3) package for ‘R’
programming language using the ‘Fuzzy AHP’ package developed by Jan Kaha (version
0.9.5, 2019) (http://github.com/JanCaha/FuzzyAHP/) after necessary adjustment in the
code. This package follows the fuzzy comparison matrix approach described by Siebert
et al. (2016). While Figure 5 presents the workflow that was followed by the authors for

Figure 5. Fuzzy AHP methodology adopted in this study.
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generating the LSM for the study area. The following section briefly details the fuzzy
AHP modeling steps followed.

3.4.1. Step-1: Development of hierarchical structure
In this step, the AHP method is adopted based on the literature survey and expert
opinion specific to the study area. Next, a judgment matrix is developed using pair-
wise comparison, and decision-makers/experts are invited with their judgments. The
matrices were examined for consistency, and eigenvalues and eigenvectors were calcu-
lated to compare the priority of the elements (Li et al. 2009). This step is followed by
checking of consistency of the matrix judgments in the pairwise evaluation. If the
consistency test fails, the pairwise comparison matrix’s original values have to be
revised (Table 2).

3.4.2. Step-2: Determination of degree of membership and computation of fuzzy
evaluation matrix
The fuzzy logic in decision-making uses the fuzzy set theory to determine the fuzzy
membership function (MF) based on the conditioning factors’ spatial relationships. In
the fuzzy set theory, the objects can be assigned a membership value ranging between
0 and 1 that shows MF’s degree. The scores of pairwise comparisons in Step-1 above
are transformed into linguistic variables to assess alternatives under the fuzzy envir-
onment following Chang’s fuzzy AHP theory. Therefore, all the landslide condition-
ing factors were converted in the range of 0 (low susceptible) to 1 (high susceptible).
In Chang’s fuzzy AHP method, the fuzzy MF and Si (synthetic extent value) were
computed for the ith criteria through the following equation:

Si ¼
Xm
j¼1

Mj
gi �

Xn
i¼1

Xm
j¼1

Mj
gi

" #�1

(3)

where, gi is the goal set for (i¼ 1, 2, 3, 4, :::::::::::n) and all the

Mj
gi(j ¼ 1, 2, 3, 4, :::::::::::m) are Triangular Fuzzy Numbers (TFNs).

Here, to obtain
Pm

j¼1 M
j
gi , i.e., to perform ‘fuzzy addition’ operation of 0m0 extent,

sub-totals are calculated for each row of the matrix and new set (l,m, u) is obtained,
where l is the lower limit value, m is the most promising value and u is the upper
limit value. The equation can be presented as-

Table 2. Development of hierarchical structure.

code Linguistic variables

Fuzzy Triangular Scale

L M U

1 Equally important 1 1 1
2 intermediate value between 1 and 3 1 2 3
3 Slightly important 2 3 4
4 intermediate value between 3 and 5 3 4 5
5 Important 4 5 6
6 intermediate value between 5 and 7 5 6 7
7 Strongly important 6 7 8
8 intermediate value between 7and 9 7 8 9
9 Extremely important 9 9 9
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Xm
j¼1

Mj
gi ¼

Xm
j¼1

lj,
Xm
j¼1

mj,

Xm
j¼1

uj

" #
(4)

Similarly, to get
Pn

i¼1

Pm
j¼1 M

j
gi

h i�1
, the inverse of the vector is calculated (Table 3).

3.4.3. Step-3: Evaluation of fuzzy index weights (degree of possibility of value)
In this step, the comparison of fuzzy values (degree of possibility) were computed.
The degree of possibility of is determined using the following equations-

The degree of possibility of M2 ¼ ðl2,m2, u2Þ � M1 ¼ ðl1,m1, u1Þ is defined by-

V M2 � M1ð Þ ¼ sub y � x min uM1ðxÞ, uM2ðyÞ
� �� �

(5)

¼
1,
0, l1�u2

m2 � u2ð Þ � m1 � l1ð Þ

8<
:

9=
; if m2 � m1

if l1 � u2
(6)

Otherwise,

d0 Aið Þ ¼ minV Si � Skð Þ (7)

where, i ¼ 1, 2, 3, 4, :::::::, k and d is the ordinate of the highest intersection point.
For k ¼ 1, 2, 3, 4, ::::::, n; k 6¼ i, the weight vector is calculated by-

W 0 ¼ d0 A1ð Þ, d0 A2ð Þ, d0 A3ð Þ, d0 A4ð Þ, ::::::::::::, d0 Anð Þ� �T
(8)

where, Aiði ¼ 1, 2, 3, 4, :::::::, nÞ are n elements.

3.4.4. Step-4: Generation of normalized fuzzy decision matrix
Finally, through normalization of fuzzy decision matrix using maximum likelihood
function, the normalized fuzzy weight vectors are calculated.

W ¼ d A1ð ÞPn
i¼1d Aið Þ ,

d A2ð ÞPn
i¼1d Aið Þ , ::::::::,

d Anð ÞPn
i¼1d Anð Þ

" #T

(9)

where W is a non-fuzzy number.
The weights calculated from the model were used for weighted sum overlay ana-

lysis in GIS. The final landslide susceptibility score was obtained for the study area
by integrating various landslide factor weights through the following-

3.5. Landslide susceptibility mapping

The weights derived from the fuzzy AHP model were used for weighted sum overlay
analysis in ArcGIS software (Version 10.8). The final LSI score was obtained for the
study area by integrating various landslide factor weights through-
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Landslide Susceptibility Index LSIð Þ ¼
Xn
j¼1

Wjwij (10)

where Wj is the normalized fuzzy AHP weights for conditioning factor j, wij is the
weighted value of sub-class i in conditioning factor j, and n is the number
of parameters.

i.e., LSI for each grid cell ¼ (0.11 � Slope sub-class weights of the cell) þ (0.104 �
Lithology sub-class weights of the cell) þ … … … … … …þ (0.01 � SPI sub-class
weights of the cell)

The LSI values were further classified into five distinct LSM categories (very high,
high, moderate, low, very low) using Jenk’s Natural Breaks. The results attained from
the fuzzy AHP model were validated using the validation dataset using Receiver
Operating Characteristics (ROC) curve and relative landslide density index (R-index).

4. Results

As presented in Table 4, concerning the goal defined in Chang’s fuzzy AHP, the slope
is the top priority among the conditioning factors. The next priorities are rainfall,
lithology, NDVI, aspect, road buffer, LULC, drainage buffer, fault buffer, altitude,
soil, seismicity, TWI, and SPI obtained weights. More precisely, considering each fac-
tor weights derived applying fuzzy AHP for all 14 landslide conditioning factors,
slope >50� is the most critical landslide conditioning class. Next in the priority
classes are rainfall >1450mm, NDVI < 0.2, slope 35�–50�, rainfall 1427–1450mm,
road buffer < 100m, drainage buffer < 100m, fault buffer < 100m, NDVI 0.2–0.3,
lithology class L1 having greywacke content, slope class 20�–35�, road buffer
100m–200m, drainage buffer 100m–200m, aspect class S and SW. Conversely, slope
< 10�, LULC class of agriculture, soil class 13 (moderately shallow, excessively
drained, thermic, loamy skeletal soils on moderately steep slopes), lithology class L-7
(micaceous sandstone, purple clay, mudstone), and aspect class flat are the condition-
ing factors having the least weightages.

The geospatial technology integrated with the fuzzy AHP based MCDM tech-
nique focuses more on the correlation of landslide conditioning factors and the
spatial distribution of landslide susceptibility. The resultant LSI data overlay on
the village boundary depicts that as high as about 55% (45.23 sq km) of the study
area fall within the very high and high landslide susceptibility zones (Figure 6).
About 21% (17.7 km2) was under very high LSI, while 34% (27.5 km2) fell under
high LSI categories (Table 4). Approximately 17.6% (14.5 km2) areas fall within
the moderately susceptible zone. These are the areas where future landslides
possibilities are high, which may be amplified without periodic observation and
prospective study.

This landslide susceptibility assessment technique provides a strong basis to com-
prehend the nature of the threat for the decision-makers, architects, and engineers to
minimize the damages and losses and help mitigate risks caused by existing and
future landslides at the village level. The analysis shows that Nevi village, located near
Sahiya town, is most vulnerable to landslides. It has 61.6% of its areas fall within a
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Figure 6. (a) Landslide susceptibility map applying fuzzy AHP model (b) Distribution of LSI zones.
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very high LSI zone. The other villages that also show the higher distribution of very
high landslide susceptibility are Chapanu (59.8%), Kakari (52.3%), Kanbua (48.9%),
and Pajiya (46.7%). Conversely, the villages having very low LSI (less than 5% of the
village area are highly susceptible to potential landslides) are Chakrata CB (1.1%),
Bantar (2.3%), Vyas Bhood (3.6%), Rani (4.4%), and Mangrauli (4.8%).

Since the likelihood of landslide is notably higher in both very high and high LSM
zones, the overlay analysis was performed to identify the villages that have more areas
fall in those categories. The result specifies that Nevi (93.4%), Dadhau (92.7%),
Chapanu (91.5%), and Kanbua (91.2%) are the villages that are likely to be more sus-
ceptible to future landslides. Table 5 presents the villages put in order as per the % of
geographical areas under very high and combined very high & high LSI classes. The
top ten villages having considerably high landslide susceptibility in descending order
are- (i) Kakari, (ii) Kanbua, (iii) Pajiya, (iv) Koti (Bamrad), (v) Malaitha, (vi)
Udapalta, (vii) Sainsa, (viii) Samalta Dadauli, (ix) Dadhau and (x) Sainda. In continu-
ation of the present investigation, we recommend conducting a detailed landslide risk
reduction assessment in these villages for appropriate preparedness and mitigation
in future.

5. Model validation

The validation of the LSM results from the fuzzy AHP model was performed through
the Area Under the Curve (AUC) approach and relative landslide density (R-index)
in terms of prediction probability.

5.1. Receiver operating characteristics (ROC)

The ROC curve represents the true positive rates known as sensitivity versus the
false-positive rates (also known as specificity) consistent with the cut-off value or the
threshold (Mohammady et al. 2012). In this study, the training sample or the valid-
ation data sets were used to validate the LSM model output. The ROC curve was cre-
ated by plotting the cumulative distribution of the false alarm probability on the y-
axis and the variable’s detected probability on the x-axis (Qianqian et al. 2017). Next,
the LSM was spatially correlated with the landslide validation datasets, and rate
curves were produced, and finally, the AUC was estimated (Figure 7).

The validation result indicates a higher accuracy of the adopted fuzzy AHP model
in classifying existing landslides. The AUC value obtained for the Kalsi-Chakrata
road corridor, using 30% of the total observed landslides, was 86.52% at a 95% confi-
dence level. This figure depicts that the current model coupled with the use of high
resolution latest vintage data has an excellent prediction capability, and the LSM gen-
erated has a close resemblance for future landslide scenarios at specified locations.
Hence, the fuzzy AHP model adopted here is statistically significant for landslide sus-
ceptibility assessment and is endorsed for landslide susceptibility mapping.
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5.2. Relative landslide density (R-index)

In addition to the ROC validation above, the LSM output accuracy was tested using
the relative landslide density approach (R-index). R-index assesses the relationship
among landslide validation datasets and the LSM result (Meena et al. 2019). The R-
index can be computed using the following equation-

R ¼ ni=Nið Þ=
X

ni=Nið Þ � 100 (11)

where Ni is the percentage of landslide susceptible area in each landslide susceptibility
class, and ni is the percentage of landslide in each landslide susceptibility class. The
R-index for each vulnerability class is graphically represented in Figure 7 that illus-
trates the landslide distribution detected in the classes, indicating the consistency of
vulnerability levels.

6. Discussion

The study outcomes reveal that the GIS-based fuzzy AHP technique adopted in the
present study is a powerful and essential MCDM tool for landslide susceptibility
assessment in the Kalsi-Chakrata road corridor. As presented in the introduction sec-
tion of this paper, the two-dimensional priority matrix (criterion vs. criterion) follow-
ing Chang’s AHP method is instrumental and the output LSM has closer resemblance
with the prevailing landslide sites observed during the field investigation.

Fuzzy AHP deals substantially well with the qualitative conditioning factors (e.g.,
slope, aspect, soil, geology, LULC) in LSM studies that are difficult to correlate using
crisp values in AHP method. Hence, the decision making procedure becomes more
comprehensive and rational as both priorities and data are calculated by fuzzy sets
(Chen et al. 2011; Mallick et al. 2018). Though a few authors pointed out the lack of
matrix consistency in fuzzy AHp studies (Duru et al. 2012), several authors estab-
lished that the integrated fuzzy sets with AHP give high adaptability in decision mak-
ing (Mallick et al. 2018; Noorollahi et al. 2018). The fuzzy logic adopted with AHP
technique is much easier to comprehend and implement; hence, the weighting can be
defined by the experts and data for any measurement scale can be contained within
the system (Chen et al. 2011; Feizizadeh et al. 2013; Mijani and Samani 2017).

To better understand the fuzzy AHP model results, the LSI estimated through the
fuzzy AHP model was correlated with the landslide conditioning factors adopted in
the study. The areas under the very high LSI classes were overlaid on the slope, rain-
fall, lithology, NDVI, road proximity, and LULC thematic layers. Figure 8 presents
the % distribution of the LSI area on these conditioning factors. While correlating the
slope classes with the very high LSI areas, it was observed that steeper slope reflects
higher landslide susceptibility. The areas with a greater slope than 35� have accounted
for about 83% of the very high LSI areas. About 88% of the very high LSI areas are
covered by average annual rainfall more than 1,400mm for rainfall categories. Such
higher rainfall areas are located in the study area’s central and southern parts between
Kasli and Sahiya. The NDVI classes that represent sparse vegetation cover shows
more landslide susceptibility. The lithology classes of Chandpur formation and
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Mandhali-Chakrata formation contains about 92% of the very high landslide suscep-
tible class. Therefore, it is evident that the higher presence of greywacke and uncon-
solidated rocks are more vulnerable to landslides. About 48% of the area under 200m
proximity from roads shows more landslide susceptibility due to mining activity, cut-
ting slope, and heavy vehicles movement in the study area. Among the LULC classes,
the open areas account for more than 53% of the total very high LSI followed by
sparse vegetation and forest having 24%, and 18% of their areas fall under very high

Figure 7. Validation of landslide susceptibility index through ROC curve and R-index.
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LSI, respectively. Hence, more attention is needed. It has been observed that land-
slides in the study area are mainly affected by slope, rainfall, lithology, NDVI, aspect,
construction of roads by cutting slopes, and land-use practices. This fact is well sup-
ported by the field observations by the author that supports the incidence of past
landslides along with the correlation of various conditioning factors in those areas.
Overall, the areas located in the southern and south-central part of the road corridor
are characterized by a lack of vegetation cover (rocky and barren land class in LULC
with NDVI value of less than 0.2) coupled with the steeper slope of >50�, rainfall
>1420mm and greywacke type lithology along the Kalsi-Chakrata highway are more
prone to potential landslide occurrences.

7. Conclusion

In the preceding two decades, landslides have been considered quite disastrous,
coupled with extreme climate events in India’s Himalayas. Therefore, to systematically

Figure 8. Correlation of fuzzy AHP model output and the landslide conditioning factors a) Slope
classes, b) Rainfall classes, c) NDVI classes d) Lithology/ Geology Classes, e) Land use classes, f)
Road proximity classes.
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assess the landslide hazard in both the short and long term, this study adopted an
integrated GIS-based fuzzy AHP – MCDM approach to understanding the processes
that contribute to landslides landslide-prone Lesser Himalayas.

The proposed fuzzy AHP based on Chang’s approach ascertains that this method
of GIS-based MCDM can be highly effective for landslide susceptibility assessment.
The combined use of validated landslide inventory data and high-resolution satellite
images to select and map landslide conditioning factors gratifies the geo-spatial aspect
of local variations across the Kalsi-Chakrata road corridor. Regarding choosing the
probabilistic LSI model for complex geo-environmental setup, the crisp weights and
consistency index method of conventional AHP is not appropriate because of the
fuzziness. Following Chang’s theory, the fuzzy AHP method is a proven method
where the membership values or possibilities are compared during the pairwise com-
parison. Thus, this method provides more comprehensive, flexible, and substantial
results when the decision criteria are qualitative, as in the landslide risk assessment.

The study area’s resultant landslide susceptibility zones were identified and mapped
into five categories: very low susceptibility, low susceptibility, moderate susceptibility,
high susceptibility, and very high susceptibility. The susceptibility map’s spatial pattern
shows that higher landslide susceptibility areas are mainly concentrated along the south-
central and central part of the study area along the Kalsi-Chakrata highway. The analysis
presents that about 55% (45.23 km2) of the study area was categorized as a very high and
high landslide susceptibility zone (Table 5). About 21% (17.7 km2) was under very high
LSI, while 34% (27.5 km2) fell under high LSI categories. At the village level, the result
specifies that Nevi (93.4%), Dadhau (92.7%), Chapanu (91.5%), and Kanbua (91.2%) are
the villages that are likely to be more susceptible to future landslides.

The present study contributes significantly to providing a useful prediction for the
decision-makers and authorities in adopting appropriate approaches to minimize the
potential damages and losses from existing and future landslides in the Kalsi-
Chakrata road corridor. It has been observed that landslides along the road corridor
are predominantly more affected by slope, rainfall, lithology, NDVI, aspect, construc-
tion of roads, and land use practices. Due to the uncertainties inherent in the land-
slide conditioning factors, certain uncertainties will always persist in landslide
susceptibility assessment. The subjectivity of evaluation by experts also may have
some limitations. Therefore, the fuzzy AHP approach in the future may consider
other significant conditioning factors such as spatiotemporal change of rainfall distri-
bution and frequency under the climate change scenarios. The fuzzy AHP model
applied in this study shows 86.52% accuracy in predicting landslides evaluated
through the ROC curve (at 95% confidence level). Thus, the current model has an
excellent prediction capability, and the LSM generated for this study has a close
resemblance for future landslide scenarios at specified locations. Hence, the fuzzy
AHP method applied herein may be encouraged for landslide susceptibility assess-
ment in the other Lesser Himalayan road corridors.
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