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A B S T R A C T   

The validation of global remote sensing data comprises multiple methods including comparison to field mea
surements, cross-comparisons and verification of physical consistency. Physical consistency and cross- 
comparisons are typically assessed for all pixels of the entire product extent, which requires intensive 
computing. This paper proposes a statistically representative sampling approach to reduce time and efforts 
associated with validations of remote sensing data having big data volume. A progressive sampling approach, as 
typically applied in machine learning to train algorithms, combined with two performance measures, was 
applied to estimate the required sample size. The confidence interval (CI) and maximum entropy probability 
distribution were used as indicators to represent accuracy. The approach was tested on 8 continental remote 
sensing-based data products over the Middle East and Africa. Without the consideration of climate classes, a 
sample size of 10,000–100,000, dependent on the product, met the nominally set CI and entropy indicators. This 
corresponds to <0.01 % of the total image for the high-resolution images. All continuous datasets showed the 
same trend of CI and entropy with increasing sample size. The actual evapotranspiration and interception (ETIa) 
product was further analysed based on climate classes, which increased the sample size required to meet per
formance requirements, but was still determined to be significantly less than the entire dataset size. The proposed 
approach can significantly reduce the processing time while still providing a statistically valid representation of a 
large remote sensing dataset. This can be useful as more high-resolution remote sensing data becomes available.   

1. Introduction 

Global and continental remote sensing data sets are increasingly 
available in terms of access and dataset type. Satellite temporal and 
spatial resolution, i.e. the pixel size and return period, are also 
increasing as satellite technology improves. As the dataset resolution 
improves, the processing time increases not only for production but also 
for validation. 

A common part of validation procedures for continental (and larger) 
datasets is verification of spatial and temporal consistency and cross- 
comparison to other datasets (Loew et al., 2017; Zeng et al., 2019, 
2015). Spatial and temporal consistency is a physical consistency test 
that considers the variation and relative uncertainty of the product over 
space and time, while cross-comparison compares the product directly 
to a reference product developed by a different producer, or using a 
different satellite, algorithm etc. Physical consistency analyses variation 
of the product, dependent on factors such as climate and season. This is 

seen as a component of the validation strategies of various producers 
including the Copernicus Global Land Surface Products, which includes 
vegetation (e.g. dry matter productivity and leaf area index), energy (e. 
g. surface albedo), water (e.g. water bodies) and cryosphere products 
(Smets et al., 2013), Advanced Along-Track Scanning Radiometer 
(AATSR) Land Surface Temperature (LST) Validation Strategy 
(Schneider et al., 2012), the FAO Water Productivity Open-access portal 
(WaPOR) of Remotely sensed derived data validation methodology, 
which includes vegetation (e.g. net primary productivity - NPP) and 
water (precipitation and evapotranspiration - ETa) products (FAO, 
2018) and Moderate-resolution Imaging Spectroradiometer (MODIS) 
land validation strategy (MODLAND), which includes vegetation (e.g. 
vegetation indices and NPP) and energy (e.g. LST) (Morisette et al., 
2002). 

Typically, physical consistency and cross-comparisons are evaluated 
over the entire extent of the dataset on a pixel-by-pixel basis to deter
mine spatial and temporal trends and differences. This not only requires 
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substantial computational costs as spatial resolution increases but can 
also be excessive to understand the performance of the dataset. Alter
natively, samples can provide enough insight to accuracy with less 
computation to evaluate these arbitrarily large datasets. In several 
fields, including in land use classification (Heydari and Mountrakis, 
2018), machine learning, bioinformatics (Kim, 2009), clinical studies 
(Gupta et al., 2016; Kirby et al., 2002; Lachin, 1981) and classifier 
design studies (Fukunaga and Hayes, 1989), scaling-down techniques 
are used to approach the problem of training large datasets by selecting 
a sample of the data which is meant to accurately represent the entire 
dataset. However, determining the appropriate sample size with large 
datasets is not always obvious and has not been applied in validation. 

Machine learning frequently deals with developing and training al
gorithms for large databases. In machine learning the primary categories 
of scaling-down sampling methods are random selection, active learning 
techniques and progressive sampling (ElRafey and Wojtusiak, 2017). 
Random sampling uses passive learning, active learning uses 
semi-supervised machine learning to choose data from which it learns. 
Active learning and passive learning methods typically use an arbitrary, 
predefined sample size (Warmuth et al., 2003). Active learning algo
rithms seek to select the most informative cases for training while pro
gressive sampling aims to minimize the amount of computation for a 
given performance target. 

Progressive sampling incrementally increases the sample size until 
the accuracy of the algorithm no longer improves, or converges (Luo, 
2016) and is designed to efficiently produce models with high accuracy 
(Meek et al., 2002). This prevents processing the entire database, which 
may be resources heavy (Ng and Dash, 2006). Progressive sampling 
helps balance the prediction accuracy and the data processing effort 
(Sarkar et al., 2016) to determine the optimal sample size (Gu et al., 
2001). 

Progressive sampling is sparsely identified in literature in remote 
sensing applications. It has been applied to learn neural network en
sembles of arbitrarily large datasets (Peng et al., 2004), digital terrain 
modeling (DEM) data acquisition (Chen and Li, 2013; Makarovic, 1973), 
and has been integrated into digital image mapping (Rauhala, 1989). 
Most commonly, progressive sampling has been used in clinical studies 
(Figueroa et al., 2012) and in training algorithms in machine learning 
and association rules in data mining (Last, 2009; Ng and Dash, 2006; 
Umarani and Punithavalli, 2011; Zeng and Luo, 2017). Examples in 
other fields include field sample design for ecological studies (Stein and 
Ettema, 2003) and argo-ecological characterization (Steduto and 
Todorovic, 2001). 

The accuracy or performance of a product can be estimated through 
many metrics. For discrete variables, such as land classification or in 
machine learning applications, the accuracy is often taken as the number 
of correct predictions over the total number of data predictions (Con
galton and Green, 2009; Foody, 2002). For continuous datasets, the 
accuracy metrics used are more diverse. Regression metrics are 
commonly used when true value is known. However, physical consis
tency and cross-comparisons is performed in the absence of known true 
values and is a method to observe comparative performance of the data 
over space and time rather than provide absolute accuracy. 

The coefficient of variation (CV) is an index of reliability or relative 
variability, which is commonly used in several fields of science (Payton, 
1996; Reed et al., 2002; Schectman, 2013). The confidence interval (CI) 
is expressed in terms of the variation around the expected value in terms 
of the CV or standard deviation. The CI can be used to express relative 
accuracy (Burt et al., 1997; Young and Lewis, 1997). The Principle of 
Maximum Entropy states that the distribution with the maximum en
tropy best matches the current state of knowledge and provides a 
measure of the amount of information needed to represent an outcome 
from a probability distribution for a random variable. Entropy was first 
formulated to understand the diversity and uniformity of discrete vari
ables otherwise known as the Shannon’s Index (Shannon, 1948). It was 
later generalised to the differential entropy and to continuous random 

variables (Jaynes, 1957; Santamaría-Bonfil et al., 2016). It has recently 
been used as an indicator, among others, to evaluate satellite based soil 
moisture retrievals as compared to ground-truth measurements (Kumar 
et al., 2018). These indicators may be useful for assessing the repre
sentative sample size as they reflect both mean and standard deviation, 
along with probability distributions without prior information (Cover 
and Thomas, 1991; Sim and Reid, 1999). 

The purpose of this manuscript is to estimate the sample size 
required to accurately represent the modelled or estimated dataset. The 
purpose of this manuscript is not to estimate the sample size required to 
determine the ‘true’ value, or to determine the accuracy of the dataset as 
compared to a ‘true’ value. 

It is proposed that validation of large remote sensing datasets, such 
as physical consistency and cross-comparison, can be analyzed through 
a representative sample size, which can be determined by the perfor
mance requirements of the dataset. This paper proposes that the CI and 
the maximum entropy probability of the sample dataset can define the 
threshold of the required sample dataset size to run these validation 
activities. A simple progressive sampling approach, used in machine 
learning and algorithm training, is adapted and used to determine the 
sample size to yield statistically significant results. 

2. Materials and methods 

The approach consists of four steps. First, the datasets are acquired 
(section 2.1). Second, the sampling schedule is defined and the samples 
are extracted (section 2.2). Third the performance measures defined and 
calculated for each sample (section 2.3). Last, the sample size at which 
convergence is achieved is detected (section 2.4). 

2.1. The dataset 

The approach was applied to six remote sensing-based datasets that 
cover continental Middle East and Africa (Fig. 1). Remote sensing-based 
products include actual evapotranspiration and interception (ETIa), net 
primary productivity (NPP), solar radiation (SR), reference evapo
transpiration (RET), relative soil moisture index (SM) and normalized 
difference vegetation index (NDVI). The data used covers two spatial 
resolutions and two temporal resolutions. The resolution, image date, 
pixel count, image CI and sensor or data product used as input, for each 
image used is shown in Table 1. 

All data was sourced from the Level 1 continental products in the 
WaPOR database version 1 (FAO, 2017). The ETIa, NPP and RET are 
sourced directly from the WaPOR portal (https://wapor.apps.fao.org/h 
ome/WAPOR_2/1), and the NDVI, SR and SM were provided by the 
WaPOR dataset producers. The WaPOR datasets are produced by the 
FRAME Consortium, led by eLEAF and comprised of The Flemish insti
tute for technological research (VITO), International Institute for 
Geo-Information Science and Earth Observation at the University of 
Twente and WaterWatch. WaPOR undertakes gap filling, therefore all 
products are void of data gaps. 

The ETIa, SM, NPP and NDVI are derived from the Moderate Reso
lution Imaging Spectroradiometer (MODIS)/Terra Surface Reflectance 
Daily L2G Global 250 m SIN Grid (MOD09GQ). The SR product uses the 
Digital Elevation Model (DEM) from the Shuttle Radar Topography 
Mission (SRTM) and transmissivity from the Meteosat Second Genera
tion (MSG). 

WaPOR ETIa, SM and NPP further relies on input from weather data 
(i.e. air temperature, relative humidity wind speed) which is obtained 
from Modern-Era Retrospective analysis for Research and Applications 
(MERRA). The weather data is resampled using a bilinear interpolation 
method to the 250 m resolution. The temperature is also resampled 
based on elevation data (FAO, 2018). The RET product is based only on 
the weather data and solar radiation. 

Further, the CI performance criterion was applied to the ETIa prod
uct, and tested for different climate classes using a Köppen-Geiger 
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classification (Kottek et al., 2006). It is suggested that this approach can 
be used in evaluating the dataset for physical consistency, convergence 
should be achieved, or quantified, for each class or characteristic in 
which the physical consistency test is applied. For example, division of 
regions or classes can be based on hemisphere, climate or land use. The 
four major climate classes were: Arid (2.6E09 km2), Equatorial (1.1E09 
km2), warm temperate (0.3E09 bil km2) and humid continental (360, 
450 km2). The class arid, equatorial, warm temperate and humid 

continental are represented with all classes starting with B, A, C and D 
respectively. 

2.2. Sampling schedule 

The sample schedule in this research followed a geometric approach, 
due to the large size of the data (Estrada and Morales, 2004), using one 
geometric constant – a = 10, and two starting sample sizes, n0 = 100 and 
n0 = 300: 

Si =
[

a⋅n0, a2⋅n0, a3⋅n0, …
)

where n0 = 100 and n0 = 300 
where Si is the sampling schedule, n0 is the starting sample size, a is 

the geometric factor and Ni is the sample size. Each sample increment, or 
sample size, is referred to as Ni. Each sample size was extracted 10 times 
(a sample set), with samples within a sample size referred to as Nj, Nj+1, 
Nj+2… Nj+9. This allows repetition of the test. The constant, a, was 
selected so the sample size can be identified quickly, considering the 
large size of the dataset (Table 1). The starting sample sizes were 
selected randomly as a way to reduce the aggressiveness of the 
approach. The sampling schedule tentatively reached Ni = 3000,000, 
which can be extended if convergence is not met. A random sampling 
method was used for all sampling schedules to ensures consistency. It 
was assumed that the results achieved for a single image can be 
extrapolated over time. 

Fig. 1. The extent of the images used in the progressive sampling.  

Table 1 
Dataset properties for images used.  

Data Resolution Image 
date 

Pixel 
count 

CI* Data 
product/s 

Sensor/s 

ETIa 250 m|10- 
day 

10 Apr 
2009 

1.22E +
09 

1.78 MOD09GQ MODIS; 
MERRA; 
MSG 

SM 250 m|10- 
day 

10 Apr 
2009 

1.22E +
09 

0.84 MOD09GQ MODIS 

NPP 250 m|10- 
day 

10 Apr 
2009 

1.22E +
09 

2.81 MOD09GQ MODIS; 
MERRA; 
MSG 

NDVI 250 m|10- 
day 

10 Apr 
2009 

1.22E +
09 

1.27 MOD09GQ MODIS 

SR 250 m|1- 
day 

18 Nov 
2009 

1.22E +
09 

0.66 STRM 
(DEM) 

MSG 

RET 25 km|1- 
day 

15 Dec 
2009 

2.38E+05 0.92 STRM 
(DEM) 

MERRA; 
MSG  

* CI is confidence interval as defined in Equation 2. 

M.L. Blatchford et al.                                                                                                                                                                                                                          



International Journal of Applied Earth Observations and Geoinformation 94 (2021) 102235

4

2.3. Sample extraction 

All spatial samples were randomly generated in R software. One 
sample was generated for each test. Therefor there are 100 random 
samples per dataset (NPP, ETI etc), i.e. 10 randomly generated samples 
for each of the 10 sample sets. These random spatial point datasets were 
then used to extract the dataset values for each of the datasets. Where 
climate classification is considered, the climate class associated with 
each spatial point in the random spatial dataset was over-layed to 
extract the feature (climate class) of that point. 

2.4. Performance measure 

This study will use the CI and the differential entropy, or maximum 
entropy distribution, of the sample dataset (x) as indicators or perfor
mance criterion. Nominally, the acceptable performance for this case 
study was taken as 5% (ΔCIi,j = 5%). The acceptable entropy was 
defined as the entropy where the dependence on Nj is negligible. It is set 
nominally as ΔH(x) = 0.05. 

The definition of the CI used as an indicator in this research is taken 
as (Clemmens and Burt, 1997): 

CIx = ± 2CVx  

Where, CIx is the CI and CVx is the coefficient of variation. This CI 
definition is commonly applied in hydrology. It gives a measure of the CI 
relative to the magnitude of the expected value rather than the actual 
value which is found when using the z-coefficient (i.e. number of stan
dard deviations) (Clemmens and Burt, 1997). The CVx is defined as: 

CVx = sdx/mx  

Where sdx is the standard deviation of the sample dataset and mx is the 
mean of the sample dataset. The sdx is the standard statistical measure of 
variability. Although the CI is formally taken as the mean ±2sdx, the CI 
defined in equation (4) provides a relative accuracy, with no units and 
often expressed as a percent. 

The Principle of Maximum Entropy for continuous distributions, the 
differential entropy, is defined as (Jaynes, 2003, 1957): 

H(x) = −

∫ ∞

− ∞
p(x)lnp(x)dx  

Where H(x) is the differential entropy and p(x) is the probability density 
function. This function applies to any probability density function that 
can be defined. The base of log is not important as long as it is uniform, 
as changing the base simply changes the scale of the entropy (Rajan 
et al., 2017). This requires a randomly generated sample dataset. The 
natural logarithm (ln) is used in this case. The entropy of the dataset will 
increase with an increasing population. The higher the entropy, the 
more information is given to that distribution. Therefore, when the 
marginal increase in entropy is negligible or minimal, little to negligible 
information can be gained by increasing the population size. 

2.5. Detecting convergence 

Detecting convergence requires statistical judgement on what per
formance is suitable. Once the required performance is determined, the 
suitability of the sample size can be determined. The Probably Close 
Enough Criteria (PCE) is a deduction procedure used in machine 
learning. It outputs an expression that has a high likelihood of closely 
approximating the expression to be learned (Valiant, 1984). Meaning 
that there is only a small chance that the mining algorithm could do 
better in training the algorithm using the entire database instead of the 
defined sample size. The PCE defines the suitable sample size as (John 
et al., 1996; Provost et al., 1999): 

(acc(Ni+1) − acc(Ni) > ΔE ) ≤ δ  

Where acc(N) refers to the accuracy (acc) of the sample size (Ni). ΔE 
refers to the acceptable increase in accuracy (or marginal increase) and δ 
is the probability that the maximum accuracy will be exceeded on any 
run, therefore, satisfying the accuracy requirement for each run of a 
sample size and any increase in sample size. 

The PCE criterion is adapted to determine the suitable sample size 
with the selected performance measures. The marginal increase in per
formance, referred to as ΔE in equation 5, is determined by calculating 
the statistical variation in CI, or the differential entropy with increasing 
sample size steps (Ni): 
(
CIi+1,j – CIi,j ≤ ΔCIi

)
and (H(x)i+1,j – H(x)i,j ≤ ΔH(x)i)

Where the ΔCIi and ΔH(x)i is the marginal change of CI and H(x) with 
increasing sample size. If the difference in the CI is greater than the 
acceptable CI (ΔCIi) for any sample size increase, Ni, the sample size is 
rejected, and the sample size is increased. 

The probability of that the maximum performance will be exceeded 
on any run, referred to as δ in equation 5, is considered by running the 
test on each sample size several times. Equation (6) is adapted to refer to 
the statistical variation in CI, or the differential entropy, of any sample, 
Nj, within the sample size, Ni, becoming: 

(CIi,j+1 – CIi,j ≤ ΔCIj) and (H(x)i,j+1 – H(x)i,j ≤ ΔH(x)j)

Where the ΔCIj and ΔH(x)j is the range of performance of samples Nj for 
sample size Ni. If the difference in the CI is greater than the acceptable CI 
(ΔCIj) for any sample, Nj, the sample size is rejected and sample size is 
increased. Both equations 8 and 9 need to be met for the sample size to 
be considered suitable. This was undertaken for the entire sample data 
set. 

The expected trend of the CI and the entropy for an infinitely large, 
positive, continuous dataset, with increasing sample size, is shown in 
Fig. 2. The black crosses represent the CI or differential entropy for each 
sample Nj for a given sample size Ni, within the sampling schedule, Si. 
The black lines show the expected maximum (plotted for CI and entropy) 
and minimum (plotted for CI only) values of the sample set. The 
decreasing range in performance metric values for increasing sample 
size reflects convergence. The CI is expected to converge at a mean 
value, while entropy is expected to converge to a maximum value. 

2.6. Cross-comparison 

An internal cross-compared was undertaken to determine if re
lationships between datasets remained with increasing sample size. 
There is a strong link between ETIa and NPP (Blatchford et al., 2019), 
which is therefor used to assess the relationship variation with 
increasing sample size. Correlation was selected as the metric. The 
correlation was estimated for all samples in all sample sets. 

3. Results 

The CI for the full set of sampling schedules and for all datasets, are 
shown in Fig. 3. The sample size is plotted on the x-axis, using a loga
rithmic scale, and the CI is plotted on the y-axis. The CI shows the most 
variation at low sample sizes and converges as the sample size increases. 
The range of CI is decreasing with increasing sample size for all samples 
to the CI value seen in Table 1. The rate of convergence is also greatest 
when the sample size is low, and decreases with increasing sample size. 
There are 3 occasions where the range in CI increases with an increasing 
step size: the ETIa CI range is greater when Ni = 100,000 than when Ni =
30,000, the RET CI range is greater at Ni = 1000 than when Ni = 300 
and the NPP when Ni = 100.000 and Ni = 300.000. This type of vari
ation before convergence is expected as extreme values are expected to 
have a greater influence in the data distribution and CI when the sample 
size is small. 
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Fig. 2. Expected learning curve trend of the CI (a) and the entropy (b) for repeated tests and increasing sample size. Black lines indicate trends. The black line shows 
the expected trend of variation for increasing sample size. 

Fig. 3. CI plotted against sample size for the sampling schedule for each iteration (x10). Note that each plot has a different scale for Y-axis, AET is ETIa.  
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The smallest CI range (ΔCIj) occurs at Ni = 3000,000 for all datasets, 
which is less than 0.05 % for all datasets. The SR, SM and NDVI datasets 
reached a CI range of less than 5% at Ni = 3000, with CI ranges of 3.34 
%, 3.57 % and 2.51 % respectively. The ETIa and RET datasets both 
reached a CI range of less than 5% at Ni = 10,000, with CI ranges of 4.63 
% and 3.41 % respectively. The NPP reached a CI range of less than 5% 
at Ni = 100,000 or 3.16 % of total sample size. 

The CI range with increasing step size (ΔCIi) is less than 5% at a 
sample size of 30,000 for NPP. The ΔCIi condition is met at the same 
sample size that ΔCIj is met for ETIa, SR, SM, NDVI and RET. Therefore 
for ΔCIi,j range of 5% is met at Ni = 3000 for SR and SM and at Ni =
10,000 for ETIa, RET and NDVI. While for NPP it is met at Ni = 100,000. 

The distribution of the ETIa samples sets Ni = 300, Ni = 3000 and Ni 
= 30,000, and the differential entropy plotted against the sample size is 
shown in Fig. 4. The 1—day ETIa is plotted on the x-axis and the density 
for a given ETIa is plotted on the y-axis. Each line represents a single 
sample Nj, for a given sample size, Ni. The variation in the distribution 
functions is greatest when the sample size is low, Ni = 300. The range in 
the amplitude of both peaks varies, and with high ETIa values. The 
greatest variation for Ni = 3000 is seen at the peaks and troughs. The 
variation for Ni = 30,000 is only visible at the second peak, but the 
variation is less visible than the smaller sample sizes. The higher sample 
sizes have a greater convergence. This is represented by the merging 
distribution functions. While different datasets had a different distri
bution function, all showed converging distribution functions with 
increasing sample size. 

Fig. 5 shows the entropy of all samples for all datasets. The entropy 
values converge with increasing sample size for all datasets. All datasets 
show increasing entropy with increasing sample size. Entropy values are 
sometime higher at lower sample sizes as compared to higher sample 
sizes. However, the values are converging to higher mean values for 
each increasing sample size. The range of CI values are highest for all 
datasets at Ni = 100 or Ni = 300. The rate of convergence is greatest 
when the sample size is low, and decreases with increasing sample size. 

There are only 2 occasions where the range in CI increases with an 
increasing step size; the ETIa entropy range is greater when Ni = 3000 
than when Ni = 1000 and the NDVI entropy range is greater at Ni =
1000 than when Ni = 300. The minimum entropy range ΔH(x)j occurs at 
Ni = 3000,000 and is less than 0.003, for all datasets. This is followed by 
Ni = 1,000,000, where the range is entropy is less than 0.006 for all 
datasets. At Ni = 300,000, Ni = 100,000, Ni = 30,000 and Ni = 10,000 
the ΔH(x)j is less than 0.04, 0.05, 0.06 and 0.08 respectively. For sample 
sizes less than Ni = 3000, the entropy ranges are much larger, ranging 
from RET ΔH(x)j = 0.05 when Ni = 3000, to NPP ΔH(x)j = 0.68 when Ni 
= 100. The ΔH(x)i ≤0.05 performance indicator is met at Ni = 3000 for 
RET, Ni = 10,000 for SR and SM and Ni = 30,000 for NDVI, NPP and 

ETIa. The ΔH(x)j ≤0.05 performance indicator is met at Ni = 3000 for 
RET, Ni = 10,000 for SM, SR and RET, at Ni = 30,000 for NPP and ETIa. 
Therefore for ΔH(x)i,j condition is met at Ni = 3000 for RET, Ni =
10,000 for SR and SM, at Ni = 30,000 for NPP, ETIa and NDVI. 

The CI and entropy precision increases for both the CI and the dif
ferential entropy with increasing sample size. This is reflected in the 
increasing density of the cluster for increasing sample sizes. The CI 
values are converging to a single, central value. Comparatively, the 
differential entropy values are converging to a higher value. Differential 
entropy increasing coupled with decreasing variation for increasing 
sample size conforms to expectations (Fig. 1). 

The ETIa dataset was used as example to show the performance of 
the CI indicator when using for climate classes. The CI range for each 
climate class and each sample size is shown in Fig. 6. The classes with 
the largest CI interval ranges have the deepest saturation of red and the 
classes with the lowest ranges have the deepest saturation of green. The 
classes where the sample size was not large enough for any of the 
samples in the sample set to provide information on the CI are grey. The 
smallest sample size, Ni = 100, shows the greatest CI variation for all 
classes, with the CI range frequently exceeding 2 (or 200 %). This in
cludes classes with the largest representation, such as the arid desert hot 
class (BWh). As the sample size increases the CI range decreases for most 
classes. Exceptions occur for some sample size increments where the 
class has a faction of total area of less than 1%. When the sample size 
reached Ni = 300,000, the CI is below the previous sample size, Ni =
100,000, for all classes. At Ni = 100,000, one class has greater CI than 
the class before (greater than CIj >0.05). This is for the class with the 
smallest area, temperate dry warm summer (Csb), and the number of 
sample points representing this class is still <100. At Ni = 3000, all 
classes had samples to estimate the CI for the entire sample set. 

When the sample size is Ni = 3000 the CI range is ΔCIj <2 for all 
classes and at 1000, the CI range is ΔCIj >2 on one occasion, cold 
(continental) dry warm summer (Dsb). When the sample size is Ni =
30,000, one class has a ΔCIj = 1 and all other classes have a range in CI 
of less than 0.8. Four classes have a range in CI with ΔCIj <0.05 and 
seven classes with ΔCIj <0.15. When the sample size is Ni = 100,000 the 
maximum CI range is ΔCI = 0.51. Four classes have a range in CI with 
ΔCI <0.05 and 12 have a ΔCI<0.15. When the sample size is Ni =
300,000 the maximum CI range is ΔCI = 0.34. Eight classes have a range 
in CI with ΔCIj<0.05 and 14 (of 16) have a ΔCIj<0.15. The samples that 
exceed ΔCI<0.15 are from the humid continental classes (cold (conti
nental) dry hot summer (Dsa) and Dsb). 

When applying the test to only the major classes - arid, equatorial 
temperate and humid continental – the same overall CI trend is 
observed, a decreasing ΔCIj for all major classes with increasing sample 
size. When the sample size is Ni = 3000, one class has a range in CI of 

Fig. 4. Density functions of ETIa sample size sets, a) Ni = 300, b) Ni = 3000 and c) Ni = 30,000.  
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ΔCIj <0.05 (equatorial) and two others have a ΔCIj <0.15 (equatorial 
and arid). When the sample size is Ni = 300,000 the maximum CI range 
is ΔCIj = 0.34. When the sample size is Ni = 10,000 up to and including 
Ni = 100,000, one class has a range in CI of ΔCI<0.05 (equatorial) and 
three have a ΔCIj <0.15 (equatorial, arid and warm temperate). When 
the sample size reaches Ni = 300,000, three classes have a range in CI of 
ΔCIj <0.05 (equatorial, arid and warm temperate). The minimum ΔCIj 
in humid continental class is ΔCIj = 0.19 and occurs at Ni = 300,000. 
The humid continental has the smallest area, <1% of the total area, and 
therefore has the smallest number of representative sample points. 

Fig. 7 shows the correlation between the AET and NPP with 
increasing sample size. Similar to the CI for each dataset, the correlation 
shows the most variation at low sample sizes and converges as the 
sample size increases. This shows that, like CI and H(x), negligible 
further insight into the relationship is gained beyond a certain sample 
size. In this case depending on the users preferred margin of error, this is 
likely to fall between a sample size of 30,000, where correlation ranges 
from 0.41 to .45, and 300,000, where correlation ranges from 0.41-0.43. 

4. Discussion 

In this research, a new and operative methodology was proposed to 
define a representative sample for arbitrarily large, continuous datasets, 
using a progressive sampling approach combined with two performance 
indicators. The purpose being to increase efficiency of validation and 
quality assessment tasks where the entire dataset has previously been 
used. The results showed that the assessed datasets in the continent of 
Africa and the Middle East, without classification of zones, can suitably 
be represented by a small fraction dataset as the performance condition 
of both indicators, CI and entropy, was met at Ni = 10,000 for RET, SM 
and SR, Ni = 30,000 for ETIa and NDVI and at Ni = 100,000 for NPP. 
This represents 0.01 % for the of the total dataset size of the 250 m 
resolution datasets, and 0.41 % of the total dataset size 25 km resolution 
dataset (Table 1). 

Though no directly comparable study exists, several studies in other 
fields that use progressive sampling for to increase training efficiency of 
discrete datasets exist. Six studies that look at a combined 22 different 
datasets, including land cover type (Lazarevic and Obradovic, 2001; 
Peng et al., 2004), traffic data (Umarani and Punithavalli, 2011), 
waveform (Lazarevic and Obradovic, 2001; Ng and Dash, 2006; Peng 

Fig. 5. Entropy, H(x), plotted against sample size for the sampling schedule for each iteration (x10). Note that each plot has a different scale for Y-axis; AET is ETIa.  
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Fig. 6. The CI range for each sample set for ETIa using Köppen-Geiger climate classes for all sample sizes (Ni).  
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et al., 2004), simulated data (ElRafey and Wojtusiak, 2017; Umarani and 
Punithavalli, 2011), wine quality data (ElRafey and Wojtusiak, 2017), 
with varying number of categories or attributes. The effective sample 
size was determined by each author and is not related to the indicators 
selected in this study. Irrelevant of the parameter, the sampling schedule 
or the number of categories, we found a power relationship between the 
effective sample size per category among these studies (Fig. 8). Although 
a small pool of data, the power relationship between the total dataset 
size and the sample size required for effective algorithm training has a 
good coefficient of determination (R2 = 0.76). If this power relation is 
applied to the dataset size used in this research, as if there is one cate
gory, an effective sample size is extrapolated to be 0.2 % and 3% of total 
dataset size for the 250 m and 25 km resolution datasets respectively, 
which is similar to our results. However, none of these datasets are 
arbitrarily large, or continuous and in theory this should the sample size 
would stop increasing beyond a certain point (Cherkassky et al., 1999). 
The entropy performance measure accounts for this, as the negligible 
marginal gain in new information with increasing sample size is re
flected in a negligible marginal gain in entropy. 

While the proposed approach should remain effective regardless of 
different state variable with different spatial-temporal heterogeneity, 
the determined sample size may vary. This was seen between the six 
observed datasets. The required sample size should be particularly 
influenced by the dataset complexity rather than specifically dataset 
resolution (unless the resolution is increasing dataset complexity). For 
example, in non-discrete applications of progressive sampling, samples 
with increasing number of attributes is associated with increasing 

sample size, as the effective sample size was frequently determined per 
category. 

While the CI indicator can be easily determined based on user per
formance requirements, differential maximum entropy is less obvious. 
This study used a nominal requirement of ΔH(x) <0.05. If the acceptable 
value decreased to ΔH(x) <0.02 the required sample size required in
creases significantly. For example, the ETIa sample size requirement 
becomes Ni = 300,000 as compared to Ni = 30,000. Alternatively, if it is 
increased to ΔH(x) < 0.10 the acceptable sample size is Ni = 1000 for 
this indicator (although it would still need to meet the CI indicator 
requirement). This not only highlights the importance of selecting an 
acceptable entropy increment suitable to user application, but also 
highlights the sensitivity of the entropy indicator. 

The sample size required to reach the acceptable performance 
increased once climate classification was introduced. When the sample 
size reached 300,000 only 8 reached the acceptable ΔCI. A sample size 
of 30,000, achieved the acceptable performance for only 4 and 7 classes 
respectively. This suggests that the sample size included in the sampling 
schedule does not meet the PCE criterion when considering all classes. 
Similarly, the PCE criterion was not met when only the major climate 
classes were considered. The smallest classes, humid continental classes, 
did not meet the acceptable error for the entire sampling schedule. This 
was a result of the small representation of humid continental class. 
Rather than increase the sample size, it may be more appropriate to use 
methods such as a stratified random sample, or a progressive boosting to 
optimize sample size and account for imbalanced data (Lazarevic and 
Obradovic, 2001; Soleymani et al., 2018). This would align with ap
proaches used in land cover classification where a minimum sample size 
per class is often defined (EFTAS, FAO 2015). This highlights the 
importance of selecting a sampling approach that suits the user needs. 
For studies focused on the Middle East and Africa, a lower confidence in 
the humid continental class, which is located predominately in Europe, 
may be acceptable. 

While the approach has only been tested on the region of Africa and 
the Middle East to climate data, it is possible to extend the approach to 
other regions or for other categories. While the convergence point for 
both indicators is expected to change based on data distribution and on 
how the data is categorized (e.g, climate of land cover type), the pro
gressive sampling approach should still be valid, and is expected though 
the sampling size may increase based on data complexity resulting from 
increased environment, land cover climate, topography types etc. In the 
case of added complexity or categories a complexity measure, as applied 
with entropy to soil moisture retrievals (Kumar et al., 2018), may also by 
useful. 

This study used spatially continuous datasets (no data gaps). In cases 
where data gaps exist the sampling schedule should be applied to pixels 
where data exists (exclude no data), or the sample size will increase, 
however, dependent on dataset, this will result in areas with large data 
gaps missing from the evaluation. 

The two indicators selected cover both the mean and standard de
viations, through the CI of the dataset, and the distribution of the dataset 
through the differential entropy. They are useful indicators in the 
absence of true values, which is relevant for large spatial datasets with 
little ground-truth information available. These indicators are therefore 
not intended to define the accuracy of the dataset itself, but how accu
rately the sample represents the dataset. The condition of both in
dicators should be met when defining the suitable sample size. This was 
seen in this example when the CI acceptable criterion was met before the 
differential entropy acceptable was met. The usefulness of the approach 
is that the performance criterion (i.e. CI and entropy) can be defined 
dependent on the application and therefore accuracy requirement of the 
user. 

The selected indicators selected are not suitable for all continuous 
datasets, as not all data behaves as a continuous dataset. For example, 
although precipitation is a continuous variable, the number of zero rain 
points will cause the dataset to behave as a discrete-continuous 

Fig. 7. Correlation between AET and NPP plotted against sample size for the 
sampling schedule for each iteration (x10). 

Fig. 8. Effective sample size per category taken from literature. Note both axis’ 
use log scale. 
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distribution (Friederichs and Hense, 2007). For datasets that behave 
discretely, it may be useful to use the two-step approach that is 
commonly used in precipitation validation, whereby the product is first 
validated categorically and then quantitatively (Wilks, 2006). Though, 
this shows limitations as for precipitation this will no longer represent 
dry or arid regions well. 

Finally, a similar approach could, in theory, be applied to deter
mining sample size for comparison against ground-truth measurements. 
Many limitations are imposed on ground-truth data collection, such as 
sample design (due to access constraints) and resource limitations. 
However, it could guide a best practice or an or objective for a com
munity, for example fluxnet, where data collection is less intensive and 
can be collected without experts, for example citizen science. 

5. Conclusions 

The progressive sampling approach combined with CI and differen
tial maximum entropy performance measures, can be applied to deter
mine a suitable sample size for physical consistency and cross- 
comparison tests of a continuous, arbitrarily large remote sensing- 
based datasets. The approach showed that the amount of data 
required to represent large datasets (1.22E + 09 pixels) datasets is 
comparatively small (10,000–100,000 pixels) and therefore can signif
icantly reduce computing time and resources. This can be used to run 
initial tests or product analysis. It is suggested that using a representa
tive sample, rather than the whole dataset, can effectively balance 
insight to the quality of the dataset and reduce processing efforts 
required in validation procedures, such as continental cross- 
comparisons, that are computationally exhaustive. This will become 
even more useful as dataset resolution increases. 
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