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Abstract: This paper studies synchronization of homogeneous and heterogeneous discrete-time multi-agent systems. A class
of linear dynamic protocol design methodology is developed based on localized information exchange with neighbors which
does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The main
contribution of this paper is that the proposed protocols are scale-free and achieve synchronization for arbitrary number of agents.
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1 Introduction
The synchronization problem of multi-agent systems

(MAS) has attracted substantial attention during the past

decade, due to the wide potential for applications in several

areas such as automotive vehicle control, satellites/robots

formation, sensor networks, and so on. See for instance the

books [27] and [41] or the survey paper [24].

We identify two classes of multi-agent systems: homo-

geneous (i.e. agents are identical) and heterogeneous (i.e.

agents are non-identical). State synchronization inherently

requires homogeneous MAS. On the other hand, for a het-

erogeneous MAS generically, state synchronization cannot be

achieved and focus has been on output synchronization. For

homogeneous MAS state synchronization based on diffusive

full-state coupling has been studied where the agent dynam-

ics progress from single- and double-integrator dynamics

(e.g. [25, 26]) to more general dynamics (e.g. [28, 34, 39]).

State synchronization based on diffusive partial-state cou-

pling has also been considered, including static design ([19]

and [20]), dynamic design ([11], [29], [30], [33], [36]), and

the design with localized communication ([3] and [28]). For

MAS with discrete-time agents, earlier work can be found in

[26, 13, 9, 4, 35] for essentially first and second-order agents,

and in [15, 10, 12, 44, 43, 38, 37, 32, 31] for higher-order

agents. Recently, scale-free collaborative protocol designs

are developed for continuous-time heterogeneous MAS [22]

and for homogeneous MAS subject to actuator saturation [18]

and subject to input delays [17, 16].

In heterogeneous MAS, if the agents have absolute mea-

surements of their own dynamics in addition to relative in-

formation from the network, they are said to be introspective,

otherwise, they are called non-introspective. The output

synchronization problem for agents with general dynamics

has been studied in both introspective and non-introspective

cases. For heterogeneous MAS with introspective right-

invertible agents, [38] and [42] developed the output and

regulated output synchronization results for discrete-time and
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continuous-time agents. Reference [14] provided regulated

output consensus for both continuous- and discrete-time in-

trospective agents. On the other hand, for heterogeneous

MAS with non-introspective agents, [40, 6, 8] developed an

internal model principle based design for output and reg-

ulated output synchronization. Reference [2] designed a

static protocol design for MAS with non-introspective pas-

sive agents and [7] provided a purely distributed low-and

high-gain based linear time-invariant protocol design for non-

introspective homogeneous MAS with linear and nonlinear

agents and for non-introspective heterogeneous MAS.

In this paper, we design scale-free collaborative proto-

cols based on localized information exchange among neigh-

bors for synchronization of homogeneous and heterogeneous

discrete-time MAS. We study synchronization problem for

discrete-time homogeneous MAS with non-introspective

agents for both full- and partial-state coupling. Moreover,

we deal with output and regulated output synchronization for

heterogeneous discrete-time MAS with introspective agents.

The protocol design is scale-free, namely:

• The design is independent of the information about com-

munication networks such as a lower bound of non-zero

eigenvalue of associated Laplacian matrix.

• The one-shot protocol design only depends on agent

models and does not need any information about com-

munication network and the number of agents.

• The synchronization is achieved for any MAS with any

number of agents, and any communication network.

Due to space limitation, the results pertaining to regulated

output synchronization of heterogeneous MAS and some

proofs (proofs of Theorem 2, 3) and numerical simulation

are omitted. All of these are available in the full version of

this paper [23].

Notations and definitions
Given a matrix A ∈ Rm×n, AT denotes its conjugate trans-

pose. A square matrix A is said to be Schur stable if all

its eigenvalues are in the open unit disc. We denote by

diag{A1, . . . , AN }, a block-diagonal matrix with A1, . . . , AN

as its diagonal elements. A ⊗ B depicts the Kronecker prod-

Proceedings of the 39th Chinese Control Conference

July 27-29, 2020, Shenyang, China

4736

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 23,2020 at 10:31:01 UTC from IEEE Xplore.  Restrictions apply. 



uct between A and B. In denotes the n-dimensional identity

matrix and 0n denotes n× n zero matrix; sometimes we drop

the subscript if the dimension is clear from the context.

To describe the information flow among the agents we

associate a weighted graph G to the communication network.

The weighted graph G is defined by a triple (V,E,A) where

V = {1, . . . ,N} is a node set, E is a set of pairs of nodes

indicating connections among nodes, andA = [ai j] ∈ RN×N

is the weighted adjacency matrix with non negative elements

ai j . Each pair in E is called an edge, where ai j > 0 denotes

an edge ( j, i) ∈ E from node j to node i with weight ai j .
Moreover, ai j = 0 if there is no edge from node j to node i.
We assume there are no self-loops, i.e. we have aii = 0. The

weighted in-degree of a node i is given by din(i) =
∑N

j=1 ai j .
Similarly, the weighted out-degree of a node i, is given by

dout (i) =
∑N

j=1 aji . A path from node i1 to ik is a sequence of

nodes {i1, . . . , ik} such that (ij, ij+1) ∈ E for j = 1, . . . , k − 1.

A directed tree is a subgraph (subset of nodes and edges) in

which every node has exactly one parent node except for one

node, called the root, which has no parent node. A directed
spanning tree is a subgraph which is a directed tree containing

all the nodes of the original graph. If a directed spanning tree

exists, the root has a directed path to every other node in the

tree [5].

For a weighted graph G, the matrix L = [�i j] with

�i j =

{ ∑N
k=1 aik, i = j,
−ai j, i � j,

is called the Laplacian matrix associated with the graph G.

The Laplacian matrix L has all its eigenvalues in the closed

right half plane and at least one eigenvalue at zero associated

with right eigenvector 1 [5]. Moreover, if the graph contains

a directed spanning tree, the Laplacian matrix L has a single

eigenvalue at the origin and all other eigenvalues are located

in the open right-half complex plane [1].

2 Homogeneous MAS with Non-introspective
Agents

Consider a MAS composed of N identical linear time-

invariant agents of the form,

xi(k + 1) = Axi(k) + Bui(k),
yi(k) = Cxi(k),

(i = 1, . . . ,N) (1)

where xi(k) ∈ Rn, ui(k) ∈ Rm, yi(k) ∈ Rp are respectively

the state, input, and output vectors of agent i. Meanwhile,

(1) satisfies the following assumption.

Assumption 1 We assume that
• all eigenvalues of A are in the closed unit disk.
• (A,B,C) is stabilizable and detectable.

The communication network provides each agent with a

linear combination of its own outputs relative to that of other

neighboring agents. In particular, each agent i ∈ {1, . . . ,N}

has access to the quantity,

ζi(k) =
1

1 + din(i)

N∑
j=1

ai j(yi(k) − yj(k)), (2)

where ai j � 0, and aii = 0 for i, j ∈ {1, . . . ,N}. The

topology of the network can be described by a graph G with

nodes corresponding to the agents in the network and edges

given by the nonzero coefficients ai j . In particular, ai j > 0

implies that an edge exists from agent j to i. The weight of

the edge equals the magnitude of ai j . Next we write ζi as

ζi(k) =
N∑
j=1

di j(yi(k) − yj(k)), (3)

where di j � 0, and we choose dii = 1−
∑N

j=1, j�i di j such that∑N
j=1 di j = 1 with i, j ∈ {1, . . . ,N}. Note that dii satisfies

dii > 0. The weight matrix D = [di j] is then a so-called,

row stochastic matrix. Let Din = diag{din(i)} with din(i) =∑N
j=1 ai j . Then the relationship between the row stochastic

matrix D and the Laplacian matrix L is

(I + Din)
−1L = I − D. (4)

We refer to (2) as partial-state coupling since only part of

the states are communicated over the network. When C = I,
it means all states are communicated over the network and

we call it full-state coupling. Then, the original agents are

expressed as

xi(k + 1) = Axi(k) + Bui(k) (5)

and ζi(k) is rewritten as

ζi(k) =
N∑
j=1

di j(xi(k) − xj(k)). (6)

We define the set of graphs GN for the network communi-

cation topology as following.

Definition 1 Let GN denote the set of directed graphs of N
agents which contains a directed spanning tree.

If the graph G describing the communication topology of

the network contains a directed spanning tree, then it follows

from [26, Lemma 3.5] that the row stochastic matrix D has a

simple eigenvalue at 1 with corresponding right eigenvector

1 and all other eigenvalues are strictly within the unit disc.

Let λ1, . . . , λN denote the eigenvalues of D such that λ1 = 1

and |λi | < 1, i = 2, . . . ,N .

Obviously, state synchronization is achieved if

lim
k→∞

(xi(k) − xj(k)) = 0. (7)

for all i, j ∈ 1, ...,N .

In this paper, we also introduce a localized information

exchange among protocols. In particular, each agent i =
1, . . . ,N has access to the localized information, denoted by

ζ̂i(k), of the form

ζ̂i(k) =
N∑
j=1

di j(ρi(k) − ρj(k)) (8)

where ρj(k) ∈ Rn is a variable produced internally by agent

j and to be defined in next sections.

We formulate the following problem for state synchroniza-

tion of a homogeneous MAS based on localized information

exchange.
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Figure 1: Architecture of Protocol 1 and 2

Problem 1 Consider a MAS described by (1) and (3) satis-
fying Assumption 1. Let GN be the set of network graphs as
defined in Definition 1. Then the scalable state synchroniza-
tion problem based on localized information exchange is to
find, if possible, a linear dynamic controller for each agent
i ∈ {1, . . . ,N}, using only knowledge of the agents model,
i.e. (C, A,B), of the form:{

xi,c(k + 1) = Ac xi,c(k) + Bcζi(k) + Cc ζ̂i(k),
ui(k) = Fc xi,c(k),

(9)

where ζ̂i(k) is defined as (8) with ρi = Mc xi,c , and xi,c ∈ Rni ,
such that state synchronization (7) is achieved for all initial
conditions.

2.1 Protocol Design
We consider state synchronization problem of a homoge-

neous MAS for both cases of full- and partial-state coupling.

2.1.1 Full-state coupling

In this subsection, we consider state synchronization of

MAS with full-state coupling. The design procedure is given

in Protocol 1.

Protocol 1: Scale-free collaborative protocol design for ho-

mogeneous MAS with full-state coupling

We design dynamic collaborative protocols utilizing localized

information exchange for agent i ∈ {1, . . . ,N} as{
ηi(k + 1) = Aηi(k) + Bui(k) + Aζi(k) − Aζ̂i(k)

ui(k) = −Kηi(k),
(10)

where K is a matrix such that A − BK is Schur stable and ρi
is a variable produced internally by agent i and is chosen in

(8) as ρi = ηi , therefore each agent has access to the following

information:

ζ̂i(k) =
N∑
j=1

di j (ηi(k) − ηj (k)). (11)

meanwhile, ζi is defined in (6). The architecture of the protocol

is shown in Figure 1, where yi(t) = xi(t).

Our formal result is stated in the following theorem.

Theorem 1 Consider a MAS described by (5) and (6) satis-
fying Assumption 1. Let GN be the set of network graphs as
defined in Definition 1.

Then the scalable state synchronization problem based on
localized information exchange as stated in Problem 1 is
solvable. In particular, the dynamic protocol (10) solves the
state synchronization problem for any graph G ∈ GN with
any number of agents N .

Proof of Theorem 1: Firstly, let x̄i(k) = xi(k) − xN (k) and

η̄i(k) = ηi(k) − ηN (k), we have

x̄i(k + 1) = Ax̄i(k) + B(ui(k) − uN (k)),
η̄i(k + 1) = Aη̄i(k) + B(ui(k) − uN (k))

+A(x̄i(k) − η̄i(k)) +
∑N−1

j=1 d̃i j A(x̄j(k) − η̄j(k)),
ui(k) − uN (k) = −K η̄i(k).

where D̃ = [d̃i j] ∈ R(N−1)×(N−1) with d̃i j = di j − dN j . Then,

we define

x̄(k) =
����

x̄1(k)
...

x̄N−1(k)

�		
 and η̄(k) =
����
η̄1(k)
...

η̄N−1(k).

�		

Based on [23, Lemma 1], we have that eigenvalues of D̃

are equal to the eigenvalues of D unequal to 1. Then, we

have the following closed-loop system

⎧⎪⎪⎨⎪⎪⎩
x̄(k + 1) = (I ⊗ A)x̄(k) − (I ⊗ BK)η̄(k)
η̄(k + 1) = I ⊗ (A − BK)η̄(k)

+((I − D̃) ⊗ A)(x̄(k) − η̄(k))
(12)

Let e(k) = x̄(k) − η̄(k), we can obtain

x̄(k + 1) = (I ⊗ (A − BK))x̄(k) + (I ⊗ BK)e(k) (13)

e(k + 1) = (D̃ ⊗ A)e(k) (14)

We have that all eigenvalues of D̃ are in open unit disk.

The eigenvalues of D̃ ⊗ A are of the form λiμj , with λi and

μj eigenvalues of D̃ and A, respectively. Since |λi | < 1 and

|μj | � 1, we find D̃ ⊗ A is asymptotically stable. Then we

have ei(k) → 0 as k → ∞.

According to the above result, for (13) we just need to

prove the stability of

x̄(k + 1) = (I ⊗ (A − BK))x̄(k). (15)

given that A − BK is Schur stable, (15) is asymptotically

stable. Then, we will have

lim
k→∞

x̄i(k) = lim
k→∞

(xi(k) − xN (k)) → 0

i.e. xi(k) → xj(k) as k → ∞, which proves the result.

2.1.2 Partial-state coupling

In this subsection, we consider state synchronization of

MAS with partial-state coupling. The design procedure is

given in Protocol 2.
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Protocol 2: Scale-free collaborative protocol design for ho-

mogeneous MAS with partial-state coupling

We propose the following dynamic protocol with localized in-

formation exchange for agent i ∈ {1, . . . ,N} as follows:

⎧⎪⎪⎨⎪⎪⎩
ηi(k + 1) = Aηi(k) + Bui(k) + Ax̂i(k) − Aζ̂i(k)
x̂i(k + 1) = Ax̂i(k) − BK ζ̂i(k) + H(ζi(k) − Cx̂i(k))

ui(k) = −Kηi(k)
(16)

where K is a matrix such that A − BK is Schur stable and ρi is

chosen as ρi = ηi in (8) and with this choice of ρi , ζ̂i is given

by:

ζ̂i(k) =
N∑
j=1

di j (ηi(k) − ηj (k)). (17)

meanwhile, ζi is defined in (3). The architecture of the protocol

is shown in Figure 1.

Then, we have the following theorem for state synchro-

nization for discrete-time MAS with partial-state coupling.

Theorem 2 Consider a MAS described by (1) and (3) satis-
fying Assumption 1. Let GN be the set of network graphs as
defined in Definition 1.

Then the scalable state synchronization problem based on
localized information exchange as stated in Problem 1 is
solvable. In particular, the dynamic protocol (16) solves the
state synchronization problem for any graph G ∈ GN with
any number of agents N .

Proof of Theorem 2: See [23].

3 Heterogeneous MAS with Introspective Agents
In this section, we will study a heterogeneous MAS con-

sisting of N non-identical linear agents:

xi(k + 1) = Ai xi(k) + Biui(k),
yi(k) = Ci xi(k),

(i = 1, . . . ,N) (18)

where xi ∈ Rni , ui ∈ Rmi and yi ∈ R
p are the state, input,

output of agent i for i = 1, . . . ,N .

The agents are introspective, meaning that each agent has

access to its own local information. Specifically each agent

has access to the quantity

zi(k) = Cm
i xi(k), zi ∈ Rqi (19)

We also make the following assumption for the agents:

The communication network provides each agent with lo-

cal information ζi(k) as (3).

Assumption 2 For agents i ∈ {1, . . . ,N},
1) (Ai,Bi) is stabilizable.
2) (Ci, Ai) is detectable.
3) (Ci, Ai,Bi) is right-invertible
4) (Cm

i , Ai) is detectable.

Remark 1 Right-invertibility of a triple (Ci, Ai,Bi) means
that given a reference output yr (t), there exists an initial
condition xi(0) and an input ui(t) such that yi(t) = yr (t)
for all non-negative integers k. For example, every single-
input single-output system is right-invertible, unless its trans-
fer function is identically zero. The definition of right-
invertibility can be found in [21].

The heterogeneous MAS is said to achieve output synchro-

nization if

lim
k→∞

(yi(k) − yj(k)) = 0, for i, j ∈ {1, . . . ,N}. (20)

First, we formulate scalable output synchronization prob-

lem for heterogeneous networks as follows:

Problem 2 Consider a heterogeneous MAS described by
agent models (18) and local information (19), satisfying As-
sumption 2 and associated network communication (3). Let
G

N be the set of network graphs as defined in Definition 1.
The scalable output synchronization problem based on lo-
calized information exchange is to find, if possible, a linear
dynamic controller for each agent i ∈ {1, . . . ,N}, using only
knowledge of the agent model, i.e. (Ci, Ai,Bi), of the form:{

xi,c(k + 1) = Ai,c xi,c(k) + Bi,cζi(k) + Ci,c ζ̂i(k) + Di,c zi(k),
ui(k) = Ei,c xi,c(k) + Fi,cζi(k) + Gi,c ζ̂i(k) + Hi,c zi(k),

(21)

where ζ̂i(k) is defined as (8) with ρi = Ni,c xi,c(k), and
xi,c(k) ∈ Rni , such that for all initial conditions the output
synchronization (20) is achieved for any graph G ∈ GN with
any number of agents N .

3.1 Output synchronization
In this section, we design protocols to solve scalable out-

put synchronization problem as stated in Problem 2. After

introducing the architecture of our protocol, we design the

protocols through three steps.

3.1.1 Architecture of the protocol

Our protocol has the structure shown below in Figure 2.

As seen in the figure, the design methodology consists of

two major modules.

• The first module is reshaping the dynamics of the

agents to obtain the target model by designing pre-

compensators following our previous results in [38].

• The second module is designing collaborate protocols

for almost homogenized agents to achieve output syn-

chronization.

3.1.2 Protocol design

For solving output synchronization problem for heteroge-

neous network of N agents (18), first we recall a critical

lemma as stated in [38].

Lemma 1 Consider the heterogeneous network of N agents
(18) with local information (19). Let Assumption 2 hold
and let n̄d denote the maximum order of infinite zeros of
(Ci, Ai,Bi), i ∈ {1, . . . ,N}. Suppose a triple (C, A,B) is given
such that

1) rank(C) = p
2) (C, A,B) is invertible of uniform rank nq ≥ n̄d , and has

no invariant zeros.
Then for each agent i ∈ {1, . . . ,N}, there exists a pre-
compensator of the form{

ξi(k + 1) = Ai,hξi(k) + Bi,hzi(k) + Ei,hvi(k),
ui(k) = Ci,h(k)ξi(k) + Di,hvi(k),

(22)
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Figure 2: Architecture of Protocol 3

such that the interconnection of (18) and (22) can be written
in the following form:

x̄i(k + 1) = Ax̄i(k) + B(vi(k) + di(k)),
yi(k) = Cx̄i(k),

(23)

where di is generated by

ωi(k + 1) = Ai,sωi(k),
di(k) = Ci,sωi(k),

(24)

for i ∈ {1, . . . ,N}, where Ai,s is Schur stable.

Proof: The proof of Lemma 1 is given in [38, Appendix A.1]

by explicit construction of the pre-compensator (22).

Remark 2 We would like to make several observations:
1) The property that the triple (C, A,B) is invertible and

has no invariant zero implies that (A,B) is controllable
and (C, A) is observable.

2) The triple (C, A,B) is arbitrarily assignable as long
as the conditions are satisfied. In particular, one can
choose the eigenvalues of A in arbitrary desired place.

Lemma 1 shows that we can design a pre-compensator

based on local information zi to transform the nonidentical

agents to almost identical models given by (23) and (24).

The compensated model has the same model for each agent

except for different exponentially decaying signals di in the

range space of B, generated by (24).

Now, we design collaborative protocols to solve the scal-

able output synchronization problem as stated in Problem 2

in three steps. The design procedure is given in Protocol 3.

Then, we have the following theorem for output synchro-

nization of heterogeneous MAS. The proof is given in [23].

Theorem 3 Consider a heterogeneous MAS described by
agent models (18) and local information (19) satisfying As-
sumption 2 and associated network communication (3) and
(25). Let GN be the set of network graphs as defined in
Definition 1.

Then the scalable output synchronization problem based
on localized information exchange as stated in Problem 2
is solvable. In particular, the dynamic protocol (26) solves
the scalable output synchronization problem for any graph
G ∈ GN with any number of agents N .
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