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ABSTRACT 
Flexure joints are rapidly gaining ground in precision 

engineering because of their predictable behavior. However the 

range of motion of flexure joints is limited due to loss of support 

stiffness in deformed configurations. Most of the common flexure 

joints consist of prismatic leaf springs. This paper presents a 

simple non-prismatic beam formulation that can be used for the 

efficient modelling of non-prismatic leaf springs. The resulting 

stiffness and stress computed by the non-prismatic beam element 

are compared to the results of a finite element analysis. The 

paper shows that the support stiffness of two typical flexure joints 

can be increased up to a factor of 1.9 by using non-prismatic 

instead of prismatic leaf springs.  

Keywords: Computational Mechanics, Compliant 

Mechanisms, Design Optimization 

1. INTRODUCTION

Flexure joints are rapidly gaining ground in precision 

applications [1-4]. Flexure joints allow excellent predictable 

motion as they do not suffer from friction, backlash and have low 

hysteresis, in contrast to bearings. However their range of motion 

is limited due to loss of support stiffness under deformation. This 

limitation can potentially be reduced by using leaf springs that 

are non-prismatic instead of prismatic, i.e. leaf springs of which 

the width and the thickness vary over the length. 

Literature has been published on the optimization of the 

shape of non-prismatic notch flexures [5, 6]. This research does 

not provide knowledge about flexure joints for large range of 

motion as notch flexures are typically used for a small range of 

motion. Tschiersky et all [7] showed that for a gravity 

compensation device with flexure springs the ratio between the 

elastic energy stored in the device and the weight could be 

increased by 94% by using a variable thickness of the leaf 

springs. To the best of the author’s knowledge no other literature 

exists on the optimization of non-prismatic leaf springs for 

compliant devices undergoing large deformation. 

A reason for not considering non-prismatic leaf springs is 

the lack of a fast and accurate modelling tool. Such a tool is 

essential as the shape of flexure joints can become relatively 

complex and design optimization is commonly used to optimize 

the designs of these joints [8, 9]. In order to perform these design 

optimizations, the flexure joint should be modelled in such way 

that deformation, stress and stiffness properties over the full 

range of motion can efficiently be computed. The past has shown 

that leaf springs can be modelled accurately with spatial beam 

elements using the software SPACAR [10]. The accuracy of the 

beam element in SPACAR is significantly improved by explicitly 

accounting for foreshortening [11]. However, this beam element 

does not allow an accurate modelling of non-prismatic flexures. 

A simple modelling approach for the bending stiffness of 

non-prismatic beams is to use the Euler-Bernoulli or 

Timoshenko beam equations in which the variation of the 

stiffness coefficients is taken into account. In other words, the 

stiffness coefficients (e.g. 𝐸𝐼) are written as functions of the axial 

coordinate. This approach is used for the two-dimensional static 

case [12-16] and to study vibration of beams [17, 18].  Rao and 

Gupta [19] used this approach for a three-dimensional rotating 

beam. Awtar and Sen [20] used this approach in the beam 

constraint model that takes nonlinear effects into account which 

arise from load equilibrium in deformed configurations. It should 

be noticed that this simple modelling approach results in a small 

error as shown by Boley [21]. Therefore more accurate 

modelling methods are proposed [22-24]. However these 

formulations are either only valid in two dimensions or the 

resulting equations are complex. For optimization purposes the 

simple approach is sufficiently accurate as the error introduced 

by this simplified approach is small for small variations of the 

cross section. However, this simplified approach is never 
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formulated in the generalized deformation formulation that is 

used in SPACAR. 

In this paper a non-prismatic beam formulation is derived in 

the generalized deformation formulation and used to optimize 

the support stiffness of two different flexure joints. The beam 

formulation is presented in Section 2. The accuracy of the 

predicted stiffness is analyzed by a single leaf spring in Section 

3. Section 4 shows optimization results for a parallel flexure

guidance and Section 5 shows optimization results for a spherical 

flexure joint. The paper ends with the conclusions. 

2. NON-PRISMATIC BEAM FORMULATION

This section derives a three-dimensional finite-strain non-

prismatic beam formulation that accounts for foreshortening. 

Section 2.1 describes the relation between the forces and the 

displacements on both nodes of the beam. Section 2.2 expresses 

these relations in terms of deformation modes to obtain a 

stiffness matrix. Section 2.3 presents an expression to account 

for the foreshortening effect. Section 2.4 gives notes about the 

implementation of the element. 

2.1 Relation between nodal forces and nodal 
displacements 

In this section the relations between forces and 

displacements are derived by integrating the elasticity 

coefficients over the length of the beam. The resulting integrals 

are denoted by 𝐺𝑖. The integrals will not be evaluated

analytically, although these integrals can be evaluated for many 

standard variations in the cross section [14, 15, 17]. Evaluating 

the integrals numerically allows for more freedom in the 

variation of the cross section and only little computation time is 

required for this numerical integration. 

FIGURE 1: AXIAL DEFORMATION 

Axial deformation. Figure 1 shows a beam on which axial 

force is applied. The resulting axial displacement can be 

computed from: 

𝑢(𝜉) = 𝑢0 + 𝐹𝑥𝐿0∫
1

𝐸𝐴(𝑠)
𝑑𝑠

𝜉

0

, (1) 

where 𝜉 is the natural 𝑥-coordinate of the undeformed 

configuration (𝜉 ≡ 𝑥 𝐿0⁄ ), 𝑢0 is the displacement of the left

node, 𝐹𝑥 is the axial force, 𝐿0 is the undeformed length of the

beam, 𝐸 is the elasticity and 𝐴 is the cross sectional area which 

depends on the 𝑥-coordinate. 𝑠 is the integration variable. The 

integral-term will be denoted by 𝐺1(𝜉):

𝐺1(𝜉) ≡ ∫
1

𝐸𝐴(𝑠)
𝑑𝑠

ξ

0

, (2) 

The relation between the axial displacement of the left and right 

node and the forces on the nodes can therefore be expressed as: 

𝑢𝐿 − 𝑢0 = 𝐹𝑥𝐿0𝐺1(1), (3) 

where 𝑢𝐿 is the displacement of the right node. Henceforth we

will omit the argument of an integral 𝐺𝑖 if it is evaluated at 1, so

𝐺1 ≡ 𝐺1(1).

FIGURE 2: TORSION 

Torsion. Torsion is shown in Fig. 2 and can be computed by: 

𝜙𝑥(𝜉) = 𝜙𝑥0 +𝑀𝑥𝐿0∫
1

𝐺𝐼𝑡(𝑠)
𝑑𝑠

𝜉

0

, (4) 

where 𝜙𝑥0 is the rotation around the local 𝑥-axis of the left node,

𝑀𝑥 is the applied moment, 𝐺 is the shear modulus and 𝐼𝑡 is the

polar moment of inertia. By introducing: 

𝐺2(𝜉) ≡ ∫
1

𝐺𝐼𝑡(𝑠)
𝑑𝑠

𝜉

0

, (5) 

we can write: 

𝜙𝑥𝐿 − 𝜙𝑥0 = 𝑀𝑥𝐿0𝐺2, (6) 

where 𝜙𝑥𝐿 is the rotation of the right node.

FIGURE 3: BENDING IN XZ-PLANE 

Bending in xz-plane. Figure 3 shows the bending in the xz-

plane. The internal moment around the y-axis is: 

𝑀𝑦(𝜉) = 𝑀𝑦0 − 𝑃𝑧0𝐿0𝜉. (7) 

The rotation around the 𝑦-axis, 𝜙𝑦 in the beam is:

𝜙𝑦(𝜉) = 𝜙𝑦0 +∫
𝑀𝑦(𝑠)

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

, (8) 
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where 𝐼𝑦  is the second moment of area around the 𝑦-axis. By

substituting eq. (7), we obtain:  

𝜙𝑦(𝜉) = 𝜙𝑦0 +𝑀𝑦0𝐿0𝐺31(𝜉) − 𝑃𝑧0𝐿0
2𝐺32(𝜉), (9) 

where: 

𝐺31(𝜉) ≡ ∫
1

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

, 𝐺32(𝜉) ≡ ∫
𝑠

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

. (10) 

The displacement in the 𝑧-direction can be obtained by 

integrating the 𝑦-rotation over the 𝑥-coordinate and including the 

deformation due to shear:  

𝑤(𝜉) = 𝑤0 − 𝐿0∫ 𝜙𝑦(𝑠)𝑑𝑠
𝜉

0

− 𝑃𝑧0∫
1

𝐺𝐴(𝑠)𝑘𝑦(𝑠)
𝑑𝑠

𝜉

0

, 

(11) 

where 𝑘𝑦 is the shear correction coefficient according to Cowper

[25] that account for the non-uniform distribution of the shear 

stress over the cross-section. By defining:  

𝐺33(𝜉) ≡ ∫ 𝐺31(𝑠)𝑑𝑠
𝜉

0

, 

𝐺34(𝜉) ≡ ∫ 𝐺32(𝑠)𝑑𝑠
𝜉

0

−
1

𝐿0
2 ∫

1

𝐺𝐴(𝑠)𝑘𝑦(𝑠)
𝑑𝑠

𝜉

0

, 

(12) 

we can express the displacement in the 𝑧-direction like: 

𝑤(𝜉) = 𝑤0 − 𝜙𝑦0𝐿0𝜉 − 𝑀𝑦0𝐿0
2𝐺33(𝜉)

+ 𝑃𝑧0𝐿0
3𝐺34(𝜉).

(13) 

Eqs. (9) and (13) can be evaluated at the right node of the beam, 

i.e. at 𝜉 = 1, and combined to:  

{
𝜙𝑦𝐿 − 𝜙𝑦0

𝑤𝐿 −𝑤0 + 𝜙𝑦0𝐿0
} = [

𝐿0𝐺31 −𝐿0
2𝐺32

−𝐿0
2𝐺33 𝐿0

3𝐺34
] {
𝑀𝑦0
𝑃𝑧0

}. (14) 

This is a relation between the nodal displacements and nodal 

forces in the 𝑥𝑧-plane in terms of 4 integrals. However there exist 

a relation between three of these integrals which means that only 

three integrals have to be evaluated to obtain the relation between 

nodal forces and displacements. To show this relation, the rule of 

partial integration can be used, which implies that for two 

arbitrary functions 𝑓(𝜉) and 𝑔(𝜉):

∫ 𝑓(𝜉)𝑔′(𝜉)𝑑𝜉
1

0

= [𝑓(𝜉)𝑔(𝜉)]0
1 −∫ 𝑓′(𝜉)𝑔(𝜉)𝑑𝜉

1

0

. (15) 

By substituting 𝑓(𝜉) = 𝜉 and 𝑔(𝜉) = ∫ 1 𝐸𝐼𝑦(𝑠)⁄ 𝑑𝑠
𝜉

0
: 

∫ 𝜉
1

𝐸𝐼𝑦(𝜉)
𝑑𝜉

1

0

= [𝜉 ∫
1

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

]
0

1

−∫ 1∫
1

𝐸𝐼𝑦(𝑠)
𝑑𝑠

𝜉

0

𝑑𝜉
1

0

, 

(16) 

which is equivalent to 𝐺32 = 𝐺31 − 𝐺33. This relation is used to

substitute 𝐺33 in eq. (14):

{
𝜙𝑦𝐿 − 𝜙𝑦0

𝑤𝐿 −𝑤0 + 𝜙𝑦0𝐿0
} 

= [
𝐿0𝐺31 −𝐿0

2𝐺32
−𝐿0

2(𝐺31 − 𝐺32) 𝐿0
3𝐺34

] {
𝑀𝑦0
𝑃𝑧0

}. 

(17) 

This is a relation between the nodal displacements and nodal 

forces in the 𝑥𝑧-plane in terms of 3 integrals. 

Bending in the xy-plane. The relation between forces and 

displacements in the xy-plane can obtained similar to the 

derivation for the xz-plane, resulting in:  

{
𝜙𝑧𝐿 − 𝜙𝑧0

𝑣𝐿 − 𝑣0 −𝜙𝑧0 𝐿0
}

= [
𝐿0𝐺51 𝐿0

2𝐺52
𝐿0
2(𝐺51 − 𝐺52) 𝐿0

3𝐺54
] {
𝑀𝑧0
𝑃𝑦0

},
(18) 

where 𝐺51 till 𝐺54 are similar to 𝐺31 till 𝐺34, except from the fact

that 𝐼𝑦  and 𝑘𝑦 are replaced by 𝐼𝑧 and 𝑘𝑧 respectively.

This section showed the relation between nodal forces and 

nodal displacements in terms of 10 integrals that only depend on 

the distribution of the elasticity coefficients over the length of 

the beam-element. 

2.2 Stiffness in terms of deformation modes 

The previous section showed a relation between nodal 

forces and displacement for a specific choice of the position of 

the local frame of the element. The relations are therefore not 

directly applicable in a three-dimensional multibody analysis 

with multiple elements. This section will define deformation 

modes and use the relations from the previous subsection to 

derive the stiffness matrix in terms of these deformation modes. 

The chosen deformation modes are similar to the deformation 

modes defined by Jonker and Meijaard [11]. They defined 

relations between the deformation modes and three-dimensional 

absolute nodal coordinates such that the stiffness matrix of these 

deformation modes can be used in a 3D multibody analysis, as 

explained in Section 2.4. 

The generalized coordinates of the deformation modes are 

referred to as strains and denoted by 휀𝑖. These strains are related

to the nodal displacements that are defined in Section 2.1. This 

relations are called boundary conditions and listed in Fig. 4. 
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(a) Axial deformation (b) Torsion 

B.C.:     𝑢0 = 0,

𝑢𝐿 = 휀1.

B.C.:    𝜙𝑥0 = 0,

𝜙𝑥𝐿 = 휀2 𝐿0⁄ .

Stress:  𝜎1 = 𝐹𝑥. Stress:  𝜎2 = 𝑀𝑥 𝐿0⁄ .

𝑆11 =
1

𝐿0𝐺1
𝑆22 =

1

𝐿0
3𝐺2

(c) Bending in the xz-plane 

B.C.:     𝑤0 = 0,                 𝑤𝐿 = 0,

𝜙𝑦0 = −휀3 𝐿⁄
0
,    𝜙𝑧𝐿 = 휀4 𝐿0⁄ .

Stress:   𝜎3 = 𝑀𝑦0 𝐿0⁄ , 𝜎4 = 𝑀𝑦𝐿 𝐿0⁄ .

[
𝑆33 𝑆34
𝑆43 𝑆44

] =
1

𝐿0
3𝐷3

[
−𝐺32 + 𝐺34 𝐺34

𝐺34 −𝐺31 + 𝐺32 + 𝐺34
] 

where 𝐷3 = 𝐺31𝐺34 −𝐺32𝐺31 +𝐺32
2

. 

(d) Bending in the xy-plane 

B.C.:     𝑣0 = 0,                 𝑤𝐿 = 0,

𝜙𝑧0 = −휀5 𝐿⁄
0
,    𝜙𝑧𝐿 = 휀6 𝐿⁄

0
.

Stress:   𝜎5 = 𝑀𝑧0 𝐿0⁄ , 𝜎6 = 𝑀𝑧𝐿 𝐿0⁄ .

[
𝑆55 𝑆56
𝑆65 𝑆66

] =
1

𝐿0
3𝐷5

[
−𝐺52 + 𝐺54 𝐺54

𝐺54 −𝐺51 + 𝐺52 + 𝐺54
] 

where 𝐷5 = 𝐺51𝐺54 −𝐺52𝐺51 +𝐺52
2

. 

FIGURE 4: DEFORMATION MODES WITH CORRESPONDING 

BOUNDARY CONDITIONS, STRESS AND STIFFNESS 

RELATIONS. 

The generalized forces of the modes are called stress 

resultants, and are denoted by 𝜎𝑖. According to the principle of

virtual work, the element is in state of equilibrium if:  

𝛿𝒖𝑇𝑭 = 𝛿𝜺𝑇𝝈, (19) 

where 𝒖 is the vector with the 12 nodal displacements (the 3 

translations, 𝑢, 𝑣 and 𝑤 and the 3 rotations 𝜙𝑥, 𝜙𝑦 and 𝜙𝑧 for

both nodes of the element) and 𝑭 is the vector with forces in the 

same directions (the 3 forces 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 and 3 moments 𝑀𝑥,

𝑀𝑦 and 𝑀𝑧 for both nodes of the element).

Because the boundary conditions relate the nodal displacements, 

𝒖, to the strains, 𝜺, eq. (19) can be used to define relations 

between the stress resultants and nodal forces. These relations 

are given in Fig. 4 and referred to as stress relations. 

The stiffness relation between the strains and stress 

resultants can be expressed by a stiffness matrix like:  

{
  
 

  
 
휀1
휀2
휀3
휀4
휀5
휀6}
  
 

  
 

=

[
 
 
 
 
 
 
𝑆11

𝑆22
𝑆33 𝑆34
𝑆43 𝑆44

𝑆55 𝑆56
𝑆65 𝑆66]

 
 
 
 
 
 

{
  
 

  
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
  
 

  
 

(20) 

The coefficients 𝑆𝑖𝑗  can be obtained by substituting the boundary

conditions and stress relations in the equations of Section 2.1 as 

explained below. For the axial deformation, 𝑆11 can be obtained

by substituting the boundary conditions and stress relations in eq. 

(3). The stiffness coefficient for torsion, 𝑆22, can be obtained

using eq. (6). For bending in the 𝑥𝑧-plane, the boundary 

conditions and stress relations can be substituted in eq. (17), and 

the result can be rewritten to:  

{
휀5
휀6
} = 𝐿0

3 [
𝐺31 − 𝐺32 − 𝐺34 𝐺34

𝐺34 𝐺32 − 𝐺34
] {
𝜎5
𝜎6
} (21) 

Inverting this matrix results in the stiffness coefficients that are 

given in Fig. 4 (c). The stiffness coefficients for the 𝑥𝑦-plane can 

be obtained similarly. 

2.3 Second order expression for axial deformation 

The axial elongation is influenced by bending, this effect is 

called foreshortening. A better approximation for the axial 

deformation as defined in the first strain is therefore [11, 26]: 

휀1̂ = ∫
𝑑𝑢

𝑑𝑥
+
1

2
(
𝑑𝑣

𝑑𝑥
)
2

+
1

2
(
𝑑𝑤

𝑑𝑥
)
2

𝑑𝑥
𝐿

0

, (22) 

The evaluation of the first term in this integral equals the earlier 

introduced strain 휀1. The lateral displacements 𝑣 and 𝑤 can be

expressed in terms of the strains 휀3 till 휀6 as explained below. To

obtain 𝑤, the nodal forces 𝑃𝑦0 and nodal force moment 𝑀𝑧0 can

be expressed in terms of the nodal displacements by eq. (17) and 

4 Copyright © 2020 ASME



then substituted in eq. (13). This gives an expression for 𝑤 in 

terms of the nodal displacements. After substituting the boundary 

conditions from Fig. 4 (c), the displacement 𝑤 is expressed in 

terms of 휀3 and 휀4:

𝑤(𝜉) = 𝑁3(𝜉)휀3 +𝑁4(𝜉)휀4, (23) 

where 𝑁3 and 𝑁4 are the mode shapes corresponding to the third

and fourth strain respectively: 

𝑁3(𝜉) = 𝜉 +
(𝐺32 − 𝐺34)𝐺33(𝜉) − 𝐺32𝐺34(𝜉)

𝐷3
, (24) 

and: 

𝑁4(𝜉) = −
𝐺34𝐺33(𝜉) − 𝐺33𝐺34(𝜉)

𝐷3
, (25) 

In order to obtain the derivative 𝑑𝑤 𝑑𝑥⁄ , the derivatives of the 

modes shapes 𝑁3(𝜉) and 𝑁4(𝜉) should be derived, which can be

obtained using: 

𝑑𝐺33
𝑑𝜉

= 𝐺31(𝜉),
𝑑𝐺34
𝑑𝜉

= 𝐺32(𝜉) −
1

𝐺𝐴(𝜉)𝑘
. (26) 

Similar to the displacement 𝑤, the displacement  𝑣 can be 

expressed in terms of 𝑁5(𝜉), 𝑁6(𝜉), 휀5 and 휀6. We can now

define 휀1̂ in terms of the other strains:  

휀1̂ = 휀1 +
1

2𝐿0
[𝐻33휀3

2 + 2𝐻34휀3휀4 +𝐻44휀4
2

+𝐻55휀5
2 + 2𝐻56휀5휀6 +𝐻66휀6

2],

(27) 

where: : 

𝐻𝑖𝑗 ≡ ∫
𝑑𝑁𝑖
𝑑𝜉

𝑑𝑁𝑗

𝑑𝜉

1

0

𝑑𝜉. (28) 

The terms 𝐻𝑖𝑗 are 6 integrals that depend on the variation of the

stiffness over the length of the beam. By eq. (27) the second 

order axial strain is expressed in terms of the other strains, which 

means that it can be computed easily. 

2.4 Implementation 

The non-prismatic beam element is implemented in SPACAR 

[10] to validate the 3D static analyses. SPACAR describes the 

configuration of a mechanism based on the strains (deformation 

coordinates) and the three-dimensional absolute nodal 

coordinates. The implementation of an new element for static 

analyses requires two kind of relations. In the first place the 

stiffness relations in terms of the deformation modes as given in 

eq. (20). Secondly kinematic relations between the strains and 

the nodal coordinates 𝒙: 

𝜺 = 𝓓(𝒙), (29) 

The deformation modes of the non-prismatic beam element are 

chosen such that this relation is exactly the same as the linear 

relation defined in equations 5-7 of reference [11]. Therefore the 

linear relations in equations 5-14 of reference [11] can be used 

for the implementation. These linear relations are modified based 

on eq. (27) to implement the nonlinear foreshortening effect that 

is derived in Section 2.3. 

3. ANALYSIS OF A LEAF SPRING IN BENDING

The accuracy of the stiffness computed by the beam element 

is analyzed by a single leaf spring, shown in Fig. 5. The leaf 

spring is clamped at the base. The tip is displaced out of plane 

(i.e. in the y-direction), and the rotation about the x-axis and the 

z-axis are prescribed to be zero. The leaf spring is modelled by 5 

serial connected non-prismatic beam elements. A model in 

ANSYS is used as a reference, where the leaf springs were 

modelled by about 15 000 solid-shell elements (SOLSH190), 

with three layers of elements in the thickness-direction. The 

length of the leaf spring is 100 mm and it is made out of steel 

with an elasticity modulus of 200 GPa and a Poisson ratio of 0.3. 

Four different designs are considered, one prismatic design and 

three designs where the width or thickness is varied linear from 

the base to the tip: 

(P)  Width: 40 mm, thickness: 0.5 mm 

(W1) Width: from 60 to 40 mm, thickness: 0.5 mm 

(W2) Width: from 80 to 40 mm, thickness: 0.5 mm 

(T) Width: 40 mm, thickness: from 1.0 to 0.4 mm 

Figure 6 shows the axial stiffness and in-plane stiffness 

during the tip-displacement. The axial stiffness is computed 

accurately by the beam elements. The results of the in-plane 

direction show some differences between the beam elements and 

ANSYS. The stiffness at zero displacement is correct for the 

prismatic case, but it deviates slightly for the two designs where 

de width is varied (i.e. W1 and W2). This is as the variation of 

the width is significant with respect to the length of the leaf 

spring which is known to result in a small error as shown by 

Boley [21]. The stiffness of the (T)-design at zero displacement 

is computed correct as the variation of the thickness is small 

compared to the length of the leaf spring. For all of the four 

designs, the in-plane stiffness becomes inaccurate after a 

significant displacement of the tip. 

Table 1 shows the driving stiffness in undeformed 

configuration, showing a difference of about 5% between the 

non-prismatic beam element and ANSYS. The driving stiffness 

varies only a few percent during the tip-displacement and it is 

therefore modelled sufficiently accurate by the non-prismatic 

beam elements for the full range of motion. 
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FIGURE 5: LEAF SPRING WITH OUT-OF-PLANE 

DIAPLACEMENT OF THE TIP 

FIGURE 6: SUPPORT STIFFNESS OF THE LEAF SPRING 

DURING OUT-OF-PLANE DISPLACEMENT 

TABLE 1: DRIVING STIFFNESS OF THE LEAF SPRING IN 

UNDEFORMED CONFIGURATION 

P W1 W2 T 

Non-prismatic 

element (N/mm) 
1.00 1.24 1.45 2.43 

ANSYS (N/mm) 1.05 1.32 1.55 2.57 

Error (%) 4.6 6.3 5.9 5.4 

4. OPTIMIZATION OF A PARALLEL FLEXURE
GUIDANCE

To study the value of non-prismatic leaf springs compared 

to prismatic leaf springs, a parallel flexure guidance is optimized 

for support stiffness. Figure 7 shows the dimensions of the 

mechanism. The depth of the mechanism is 0.05 m and the 

elasticity of the flexures is 200 GPa with a Poisson ratio of 0.3. 

The mechanism should be able to move 0.02 m, without 

exceeding the stress limit of 600 MPa. The maximum stress in 

the material is computed based on the method explained in [27]. 

Four different design cases are considered for the shape of the 

leaf springs: 

(P) prismatic leaf springs 

(R) prismatic reinforced leaf springs, where the reinforced 

part is assumed to be infinite stiff and has length 0.1 ⋅
𝑑𝑟𝑒𝑖𝑛𝑓.

(LR) reinforced leaf springs of which the thickness of the 

slender parts varies linearly over the length, determined 

by thickness 𝑡1 (at the base) and 𝑡3 (just before the

reinforced part). 

(QR) reinforced leaf springs of which the thickness of the 

slender parts varies quadratic over the length, determined 

by thickness 𝑡1, 𝑡3 and 𝑡2 (at the center of the slender

part). 

 Table 2 shows the optimized results for three different 

directions in which the support stiffness is optimized: in the y-

direction, in the z-direction and the rotation around the x-axis, 

all evaluated in the initial center of compliance (the position of 

the frame in Fig. 7). The optimized designs for rotational support 

stiffness around the y-axis and z-axis are similar to the designs 

of the translational support stiffness in the z-direction and y-

direction respectively and are therefore not shown in Table 2. 

The results indicate that the support stiffness can be increased by 

a factor of 1.4 till 1.9 by using reinforced non-prismatic leaf 

springs instead of reinforced prismatic leaf springs. Using a 

quadratic thickness variation only marginally increases the 

support stiffness with respect to a linear thickness variation. 

FIGURE 7: DIMENSIONS OF THE PARALLEL FLEXURE 

GUIDANCE. THE FRAME IS ATTACHED TO THE POINT WHERE 

THE STIFFNESS IS EVALUATED 
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TABLE 2: OPTIMIZED SUPPORT STIFFNESS AND 

CORRESPONDING DESIGN PARAMETERS FOR OPTIMIZED 

SUPPORT STIFFNESS IN THREE DIRECTIONS. 

 Case 𝑲𝒐𝒑𝒕 
(1) Design parameters 

dir. 
𝑲 

De-
sign 

Abso-
lute F.P. 

𝒕𝟏 
(mm) 

𝒅𝒓𝒆𝒊𝒏𝒇 
𝒕𝟑

(mm)
𝒕𝟐 

(mm)

𝑦 

P 3.2 0.50 

R 9.7 3.03 0.30 0.73 

LR 12.8 4.01 0.35 0.75 0.30 

QR 12.9 4.01 0.34 0.75 0.30 0.32 

𝑧 

P 0.27 0.50 

R 0.27 0.99 0.50 0.00 

LR 0.48 1.81 0.89 0.11 0.41 

QR 0.51 1.89 0.92 0.14 0.39 0.69 

𝜃𝑥

P 0.50 0.50 

R 0.91 1.83 0.41 0.55 

LR 1.63 3.27 0.65 0.49 0.46 

QR 1.68 3.38 0.67 0.48 0.46 0.57 

1 The support stiffness is given as an absolute value in 106 N/m for

the translational cases and in 103 Nm for the rotational cases. The

second value (F.P.) is the support stiffness as a factor of the 

support stiffness of the prismatic case. 

The designs are validated in ANSYS, where the flexures were 

modelled by about 15 000 solid-shell elements (SOLSH190) in 

total, with three layers of elements in the thickness direction. 

Table 3 shows the stiffness in the rotational stiffness around the 

x-axis computed in the undeformed configuration with the non-

prismatic element and with ANSYS. The results indicates that the 

non-prismatic element results in an error of about 10% for both 

the prismatic design and only about 1% for the (non-prismatic) 

reinforced designs. 

Figure 8 shows the stress distribution for design case (R) and 

design case (QR), indicating that the stress distribution over the 

length of the beam becomes almost constant for the QR-case. 

This was also observed for all the other non-prismatic designs. 

Table 3 shows the maximum stress computed by ANSYS, which 

is considerable higher than the maximum stress of 600 MPa 

computed by the non-prismatic beam elements. This is due to the 

fact that the beam element does not account for the anticlastic 

curvature effects as can be observed in Fig. 8: the QR-case in this 

figure shows that the stress is about 600 MPa over the whole area 

of the leaf springs except from the sides. 

Figure 9 shows support stiffness, modelled with and without 

the second order expression for axial deformation as derived in 

Section 2.3. The stiffness result of the beam elements with the 

nonlinear axial deformation converge significantly faster to the 

accuracy that is reached by 8 serial connected elements. The 

computation time that is required for both elements is about the 

same. It is therefore useful to include the second order expression 

for axial deformation. The computation time to solve the total 

TABLE 3: SUPPORT STIFFNESS IN UNDEFORMED 

CONFIGURATION AND STRESS RESULTS, FOR THE FOUR 

DESIGNS THAT ARE OPTIMIZED FOR STIFFNESS AROUND 

THE X-AXIS. 

P R LR QR 

𝐾𝑜𝑥 – non-prismatic

element (kNm) 
20.8 38.2 44.9 44.7 

𝐾𝑜𝑥 – ANSYS (kNm) 20.6 38.5 45.2 45.3 

𝐾𝑜𝑥 – error (%) 0.80 0.70 0.69 1.3 

Stress ANSYS 647 639 715 708 

FIGURE 8: STRESS DISTRIBUTION OF THE OPTIMIZED 

SUPPORT STIFFNESS IN THE Y-DIRECTION FOR THE R-CASE 

(LEFT) AND THE QR-CASE (RIGHT) 

FIGURE 9: SUPPORT STIFFNESS IN Y-DIRECTION AND 

COMPUTATION TIME OF THE PRISMATIC DESIGN 

displacement by ANSYS was 209 seconds for the model with 15 

000 elements, and 32 seconds for a model with 4 000 elements 

(which gives an error of about 3% in the stress results). The 

model with the non-prismatic beam-elements is therefore 

significantly more efficient to evaluate. 

5. OPTIMIZATION OF A FOLDED LEAF SPRING
BASED SPHERICAL JOINT

Naves et all [28] proposed multiple configurations for a 

folded leaf spring based spherical flexure joint. In this section it 

is analyzed for two of these configurations to what extend non-

prismatic instead of prismatic leaf springs can improve the 

performance: 
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(FL) The single folded leaf spring based spherical joint, 

consisting of 3 folded leaf springs, this is the most simple 

design in [28] and is shown in Fig. 10. 

(SFL) The serial stacked folded leaf spring based spherical joint, 

consisting of two (FL)-joints. This was the best 

performing design in [28] and it is shown in Fig. 11. 

Naves et all [28] optimized the joints for the support 

stiffness in the z-direction, when considering a range of motion 

of 30∘ tip-tilt angle (any rotation angle perpendicular to the z-

axis). The maximum allowable stress in the material due to 

deformation is 600 MPa, the elasticity of the material is 200 GPa 

and the Poisson ratio is 0.3. The build space for the mechanism 

is limited to a cylinder aligned with the z-axis with a radius of 75 

mm. The algorithm presented in [29] was used to detect collision 

of the leaf springs. Five design parameters were used, which are 

shown in Fig. 10. In this paper, the effect of using non-prismatic 

leaf springs is considered, using the same conditions as Naves, 

by considering 4 different design for each of the two mentioned 

configurations: 

(P) Prismatic leaf springs (so exactly the same model as in 

[28]) 

(W) The thickness of the leaf springs is kept constant, while 

the width was varied quadratically. The width is 

determined by the width at the base (𝑤1), the width at the

center (𝑤2) and the width at the fold (𝑤3)

(T) A constant width and a quadratically varying thickness, 

which is determined by 𝑡1, 𝑡2 and 𝑡3, defined at the same

positions as in case (W). 

(WT)  The width and the thickness are both varied quadratically. 

Table 4 shows the optimized results, indicating that using 

non-prismatic instead of prismatic leaf springs increases the 

support stiffness up to a factor of 1.7. The support stiffness 

computed by the non-prismatic beam element is validated by 

ANSYS. Table 5 shows the support stiffness in the undeformed 

configuration for each of the four optimized designs of the SFL-

configuration. It shows good results for the P-design and the T-

design. However the stiffness computed with the non-prismatic 

beam element results in a small error if the width is varied, i.e. 

the W-design and the WT-design. This is understandable as the 

variation in the width is significant with respect to the length of 

the leaf-springs. 

FIGURE 10: PARAMETERIZATION OF THE (FL)-JOINT. “E” 

REPRESENTS THE CONNECTIONS WITH THE END-

EFFECTOR. 

FIGURE 11: (SFL)-JOINT. “E” REPRESENTS THE 

CONNECTIONS WITH THE END-EFFECTOR, “I” THE 

CONNECTIONS WITH A RIGID INTERMEDIATE STAGE. 

TABLE 4: OPTIMIZATION RESULTS OF THE FOLDED LEAF 

SPRING BASED SPHERICAL JOINT. 

Case 𝑲𝒐𝒑𝒕 
(1) Design parameters 

Con-
fig. 

De-
sign 

Abs. F.P. 𝑳 
(mm) 

𝒓 
(mm) 

𝝍 
(°) 

𝜽𝟏 
(°) 

𝒘 (2) 
(mm) 

𝒕 (2) 
(mm) 

FL 

P 182 71.0 28.5 85 43 27.5 0.64 

W 202 1.11 68.2 29.7 86 40 
33.6 

30.4 

28.7 
0.61 

T 205 1.13 68.6 31.8 87 42 30.9 
0.65 

0.61 

0.59 

WT 219 1.20 68.9 28.2 86 40 
31.7 

35.2 

26.4 

0.66 

0.59 

0.67 

SFL 

P 923 64.8 37.8 102 40 35.0 0.98 

W 1595 1.73 61.6 36.2 93 36 
49.3 

37.9 

33.2 
1.03 

T 1488 1.61 61.9 43.1 98 39 41.3 
1.25 

0.97 

0.88 

WT 1604 1.74 61.8 37.1 96 34 
49.0 

42.7 

33.9 

1.11 

0.97 

1.02 

1 The support stiffness is given as an absolute value in N/mm. The 

second value (F.P.) is the support stiffness as a factor of the 

support stiffness of the prismatic case. 
2 In the cases for a varying with or thickness, the values 𝑤1, 𝑤2,

𝑤3 or 𝑡1, 𝑡2, 𝑡3 are given respectively
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TABLE 5: STIFFNESS OF THE SFL-JOINT IN Z-DIRECTION IN 

UNDEFORMED CONFIGURATION 

P W T WT 

Non-prismatic 

element  (N/mm) 
1 844 3 973 3 577 4 824 

ANSYS  (N/mm) 1 838 4 191 3 563 5 013 

Error  (%) 0.3 5.2 0.4 3.8 

6. CONCLUSION

A non-prismatic beam element for the optimization of 

compliant mechanisms with non-prismatic leaf springs has been 

derived. The element allows for very efficient and relatively 

accurate analysis of compliant mechanisms. The element shows 

an error up to 10% for stress results and for stiffness in 

undeformed configurations, which is accurate enough for 

optimization purposes. The element is used in design 

optimizations to increase support stiffness. It is shown that the 

support stiffness of flexure joints can be increased, keeping the 

range of motion constant, by using non-prismatic instead of 

prismatic leaf springs. The support stiffness of a parallel flexure 

guidance increased up to a factor of 1.9 and that of a folded leaf-

spring based spherical joint up to a factor of 1.7. 
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