
Engineering Systems Integration, Testing,
and Validation

Ricardo Valerdi and Brendan P. Sullivan

Contents
Introduction . 2

Sociotechnical Systems Theory . 3
US National Academy of Engineering Grand Challenges . 5
The Role of Life Cycle Cost of Systems in Testing . 7

Engineering Systems Considerations and Interventions . 8
Complexity in Sociotechnical Systems . 9
System Boundaries . 10
Demystifying Integration through Coupling . 11
Example: International Space Station . 12

Testing Methodologies . 15
Challenges for Testing Engineering Systems . 15
Testing Approaches . 16
Design of Experiments . 17
The Curse of Dimensionality . 18

Developments in Testing . 20
Application Example of Testing Methodology to an Unmanned and Autonomous System . . . 20
Decision Support Systems for Test Planning . 21
Test Optimisation Using Decision Support Systems . 22
Test Planning Algorithms . 24

Conclusion . 27
References . 28

Abstract

Developing and implementing interventions in engineering systems must
undergo rigorous testing before being deployed into their operational

R. Valerdi (*)
Department of Systems & Industrial Engineering, University of Arizona, Tucson, AZ, USA
e-mail: rvalerdi@arizona.edu

B. P. Sullivan
Department of Design, Production and Management, University of Twente, Enschede, Netherlands
e-mail: b.p.sullivan@utwente.nl

© Springer Nature Switzerland AG 2022
A. Maier et al. (eds.), Handbook of Engineering Systems Design,
https://doi.org/10.1007/978-3-030-46054-9_20-1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-46054-9_20-1&domain=pdf
mailto:rvalerdi@arizona.edu
mailto:b.p.sullivan@utwente.nl
https://doi.org/10.1007/978-3-030-46054-9_20-1#DOI

environment. An engineering system’s complexity determines the sophistication
of the testing needed to demonstrate its ability to meet intended objectives. In this
chapter, we explore the various testing methodologies that shed light on the
behaviour of a system. This section introduces the reader to the general role of
life cycle cost of systems in testing, including reference engineering systems that
can leverage such a testing approach. Within section “Engineering Systems
Considerations and Interventions”, the implications of various types of system
complexity are presented along with the implications that tight and loose coupling
can have on systems. This section includes an example taken from the Interna-
tional Space Station that illustrates various considerations involved with testing
engineering systems. Section “Testing Methodologies” discusses the finer details
of systems testing by presenting current challenges for testing engineering sys-
tems, suitable testing approaches, and the roll of test planning (design of exper-
iments) in engineering systems development. Section “Developments in Testing”
of this chapter presents an example of a drone delivery system that leverages a
decision support system to help optimise test strategies in situations where the
system is too complex to test manually, and trade-offs must be made between test
coverage, cost, and delivery time. At the heart of the methodology presented in
this section is an algorithm that can help lead to smarter testing decisions through
the prioritisation and sequencing of tests. This is accomplished by integrating a
parametric cost model, knowledge gradient algorithm, and Bayesian updating
algorithm. The chapter aims to support systems engineers coordinate and plan
tests that help decision-makers learn as much about a system as quickly as
possible while gaining confidence that the system is ready for deployment.

Keywords

Complexity · Coupling · Engineering systems · Grand challenges · Life cycle ·
Testing · Validation · Verification

Introduction

Systems design is the organised and structured application of processes that result in
the development, production, deployment, training, operation and maintenance,
refinement, and retirement of a system (Rasmussen 2003). The end goal is to develop
systems that deliver value for stakeholders by fulfilling requirements, ensuring
effective interfaces, and validating specific system objects on time and cost. The
engineering of systems provides and allows for both creative design alternatives for
meeting system objectives on paper and technical competence to ensure these
objectives are also delivered in real life. This is achieved through the design of
components, configuration items and integration, across the entire life cycle of the
system. Systems can be described according to their purpose/objectives, complexity,
social dimension, and technical elements, namely:

2 R. Valerdi and B. P. Sullivan

• System: is a construct or collection of different elements (interacting
components) that together produce results not obtainable by the elements
alone (Blanchard 2004).

• System Task/Function: An action, a task, or an activity performed to
achieve a desired outcome (Hitchins 2007).

• Complex Sociotechnical Systems: are complex purpose-built systems
composed of numerous interconnections, interactions, or interdependencies
between social, managerial, and technical elements that are difficult to
describe, understand, predict, manage, design, and/or change (Cherns
1976).

When designing engineering systems, it is necessary to consider the technical and
social complexities brought upon by the needs being met and the critical functions
required to meet those needs. To support this, the chapter focuses on the role,
methods, and value of testing. We consider various testing approaches and tech-
niques that help bring engineering systems to life. Given the current challenges in
testing complex engineering systems, we highlight an approach that considers
uncertainty, value-based decision-making, and cost that jointly can help bring
increase our understanding of system behaviour in a short amount of time.

Sociotechnical Systems Theory

According to Cherns (1976), sociotechnical systems are systems in which both
human and non-human elements interact to deliver societal value in some way.
This is one of many possible ways to describe engineering systems. In order for any
engineering systems to be achieved, societal (people) and technical aspects must be
considered and effectively organised to improve how we interact, interconnect, and
collaborate.

Sociotechnical systems theory has many connotations and applications ranging
from engineering to management and education, the commonality between all
disciplines being the interaction between social and technical factors that character-
ise the successfulness of system development (Emery and Trist 1960; Trist 1981;
Baxter and Sommerville 2011). Introduced in Section “Sociotechnical Systems
Theory”, the grand challenges facing the world require an integrative holistic view
of large-scale, complex, technologically enabled systems designed with a socio-
technical perspective.

Examples of sociotechnical systems can range from energy distribution systems
that distribute mixed energy (solar, wind, hydro, and non-renewable) across a grid
network to an intermodal transportation system where rail, commercial vehicles,
maritime, or air transportation come together (see Fig. 1) to provide a valuable
service for society. In developing and considering such sociotechnical systems, it is

Engineering Systems Integration, Testing, and Validation 3

essential to realise that decisions should be made to set up the possibility for future
innovation and forward-thinking solutions, which can be done by carefully consid-
ering and evaluating the implications of different decision scenarios on the system
across multiple points of time.

Beyond Cherns, additional aspects of sociotechnical systems are proposed by
Clegg (2000):

1. The interaction between social and technical factors supports the successful
(or unsuccessful) performance of a system.

2. Purposeful and goal-directed functions that deliver value to society in some way.
3. Interrelated, with strong dependencies that allow each aspect to complement and

benefit the other enabling collective improvement and optimisation.

According to Cherns (1976) and Clegg (2000), sociotechnical systems utilise
multifunctional, multilevel, multidisciplinary teams to develop systems that
are capable of delivering societal value in an interconnected and collaborative
manner. By considering:

• Compatibility – Process/function is compatible with objectives.
• Minimal critical specification – Specify no more than what is necessary,

while always specifying what is essential.
• Variance within the system – Any unplanned/unprogrammed event, which

creates deviation in quality, responsiveness, and function.
• Multifunctional parts/components – Institution of choices that can perform

functions or meet the systems objectives by using combinations of
elements.

(continued)

Fig. 1 Intermodal system – improving infrastructure

4 R. Valerdi and B. P. Sullivan

• Boundaries – Multidimensional clusters that operate to support the distri-
bution of work rather than consolidated groupings.

• Information flow – Deliverance and generation of information/data where it
is needed, and in the format desired and according to the necessary and
specified context (correct information, for the correct person/system, at the
correct time).

• Support congruence – The system should support and reinforce social
principles.

• Design and human values – Provide quality system solutions without
limiting or suppressing the values of those the system was built to benefit.

• Inherent incompleteness of the system – Recognition that upon completion
and deployment of the system, its consequences will necessitate redesign.

The design of sociotechnical systems considers the aspects previously discussed
while also considering the objectives that the overall system is trying to achieve.
This requires that the social and technical elements provide for and support the
innovativeness of the people involved to identify and establish goals that can be
attained through interrelated optimisation. This includes, but is not limited to, how
machines and technical systems behave and how people interact with them to bring
external forces (political, ecological, and societal) into the design process. This
interaction between each of these forces impacts the inherent complexity of the
system by considering compatibility, minimal critical specification, variance within
the system, multifunctional parts/components, boundaries, information flow, support
congruence, design and human values, as well as the inherent incompleteness of the
system. For example, it may not be as simple as testing to make sure a system meets
the end user’s needs. The impact of the system on its owners, operators, government
regulators, taxpayers, and competitors may very well be as crucial as the agreed-
upon technical requirements between client and developer. Consider the social and
political implications of electric vehicles as an example of the broad and far-reaching
implications that extend beyond the manufacturer and driver relationship. This
highlights the complexities involved in testing and evaluating the performance of
engineering systems during their design phase, instead of simply observing (and
most likely criticising) it during its operational life.

US National Academy of Engineering Grand Challenges

There are many types of engineering systems developed to overcome challenges on a
global and individual level. In considering design, engineering systems are generally
forward-thinking solutions that solve problems related to humanity, ranging from the
exploration of space and planetary science, sustainability, health, security, and
general human need. The purpose for engineering systems in each of the facets of

Engineering Systems Integration, Testing, and Validation 5

life differ, though irrespective of their addressed facet, a deep understanding of the
problem being addressed improves deciding which functions are better and what the
is best way to test such functions. Table 1 provides an overview of systems and
explorative solutions that have been developed or are under development according
to the United State National Academy of Engineering Grand Challenges (2021).

For the systems and solutions introduced in Table 1 to be successfully developed,
accompanying testing strategies must be considered early in the life cycle. For
testing to inform decision-making, the testability of such systems has to be treated
with the same importance as other attributes like reliability, interoperability, sustain-
ability, and survivability. Testing considerations grow in importance as systems grow

Table 1 US National Academy of Engineering Grand Challenges (2021)

Challenge Explorative solutions and systems

Making solar energy more
economical

Development of future generation hybrid solar cells with organic
semiconductors and inorganic nanostructures
Solar-powered aircraft – Solar Impulse (2016), Airbus Zephyr S
HAPS (2018), Boeing Odysseus (2019)

Provide energy from fusion Joint European torus (JET) and the mega amp spherical tokamak
(MAST) in the United Kingdom
International Thermonuclear Experimental Reactor (ITER),
currently under construction in Cadarache, France (2020)

Carbon sequestration
methods

Sleipner A project
Climeworks direct carbon capture plant (Switzerland)

Manage the nitrogen cycle Solar glass
Smart fertilisers

Provide access to clean
water

Desalination
Water reclamation
Smart irrigation

Restore and improve urban
infrastructure

Intermodal transportation systems
Smart grids

Advance health informatics Remote patient monitoring
Electronic medical records
Master patient index

Engineer better medicines Rapid diagnostic systems
Personalised medicine (theranostics)

Reverse engineer the brain Artificial intelligence
Neural prostheses

Prevent nuclear terror Passive nuclear material monitoring
Nuclear screening systems (e.g. nuclear car wash)

Secure cyberspace Self-healing computer systems
Cyber-attack-resilient architecture for next-generation electricity
distribution systems

Enhance virtual reality Augmented and virtual cognitive systems

Advance personalised
learning

Evolutionary educational presentation systems
Educational recommender systems

Engineer the tools of
scientific discovery

NASA space launch system
OSIRIS-REx Mission

6 R. Valerdi and B. P. Sullivan

in complexity because the more uncertainty there is about a system’s performance,
the more we must invest in ensuring that it is ready for deployment (DoD 2004; Potts
et al. 2020). Test results are also crucial in the early-stage exploration of the problem
and solution space, giving decision-makers a chance to (re-)evaluate the feasibility
and associated costs of alternative solutions.

The Role of Life Cycle Cost of Systems in Testing

Every human-designed engineering system has a life cycle and cost. The life cycle
cost (LCC) of an engineering system is the total cost over its entire life span,
including development, verification, testing, validation, and disposal (Mooz et al.
2003). Despite every engineering system (product or solution) having a cost, there
historically has been an emphasis by engineers to focus on the performance of a
system with less regard for the downstream costs.

LCC is the total cost of all costs related to or associated with a system from
cradle to grave (development, verification, testing, validation, and disposal)
and explicitly accounts for the time value of money (the variation in the cost of
an expenditure relative to its timing).

LCC is used to quantify the costs associated with an engineering system through-
out each phase of its anticipated life. It supports the selection of economically viable
and innovative solutions while ensuring that all aspects of the system integrate and
function according to the requirements and needs of the stakeholders. Through this
economic approach, LCC supports decision-makers to identify and choose the cost-
effective approach from a series of alternatives to deliver the greatest value to the
stakeholder at the lowest long-term cost (Farr 2012).

LCC can be a valuable tool used for systems decision-making (passing between
decision gates). As shown below, the general system life cycle consists of five stages:
conceptualisation, design, development, production and testing, and operation and
retirement of the system (disposal). Each of the life cycle phases has costs and must
be carefully considered since the consequences of making early decisions without
accurate analysis can dramatically impact the percentage of system costs against
time required for development. Considering Fig. 2, we can infer that by the produc-
tion and testing phase of a new system, 50% of the total LCC has been spent, while
95% of the funds have been committed based upon decisions made by the developer
or client. The cost to extract defects represents the cost associated with fixing
unanticipated problems. The later the defect occurs, the more costly it becomes to
rectify it.

LCC estimates are built upon the projections of total cost to the funding organi-
sation for the system ownership and acquisition over its entire life span. This may
include the costs of the direct, indirect, recurring, non-recurring, and other related

Engineering Systems Integration, Testing, and Validation 7

costs incurred or estimated to be incurred during the design, such as research and
development, investment, operations, maintenance, support, disposal, and other
relevant costs. It is essential to consider the phases of LCC, because the upfront
acquisition phase is only a small part in relation to the total cost. Yet it plays a
significant role in the decisions made that will have downstream effects (DOD 1983;
Farr 2010; Kerzner 2017).

Testing therefore also has to include testing the validity of life cycle cost
estimates, as well as generate the necessary knowledge to improve the accuracy of
life cycle cost estimates.

Engineering Systems Considerations and Interventions

When designing engineering systems, it is necessary to consider the technical and
social complexities brought upon by the needs being met and the critical functions
required to meet those needs. When referring to large-scale, sociotechnical engi-
neering systems design, these systems are always partially designed and partially
evolved (de Weck et al. 2011). Practically, that means we will primarily look at
interventions in existing systems rather than a complete redesign. This presents an
even more complicated scenario because not all decisions can be made in the interest
of optimal systems design. Some decisions, large and small, are already hard-wired

Fig. 2 Committed life cycle cost against time (INCOSE 2015)

8 R. Valerdi and B. P. Sullivan

due to constraints that result from previously existing infrastructure, culture, or
processes.

A system is only as good as the tests imposed to it, and a test can be good only if
you can clearly understand the numerous interconnections, interactions, or interde-
pendencies that you will be analysing. To do this, we must consider the trade-offs
between requirements, functions, and alternate system resources that have/will take
place to achieve a valuable, cost-effective, life cycle balanced system that maximises
stakeholder desires (Blanchard et al. 1990). The following best practices synthesise
several considerations that support the eventual goal of delivering a successful
system (Bartolomei et al. 2011).

• Clearly articulated problem definition, stakeholders (and relationships), system
mission, and environment

• Definition of the problem including context and external systems, the system
must interact or interface with

• Balancing of needs between stakeholders and engineering, throughout develop-
ment (communication), including the articulation of system needs, and translation
of requirements

• Matching trade-offs, to make requirements more transparent and support the
identification of requirements that are not feasible

• Articulation of critical functions and relationships to the user (human-robot
interaction, cost, complexity, risk to human life, etc.)

• Testing plan to mitigate risk before deployment

Complexity in Sociotechnical Systems

All systems have some inherent level of complexity, but the formation and magni-
tude of their complexity differ. It is essential to understand how complexity impacts
design and by connection how it impacts its testing. It is therefore necessary to
consider both technical and human complexity when working with an engineering
system.

Contemporary technology-centric systems are diverse and contain higher degrees
of systems complexity than ever before, requiring more knowledge than ever before
to understand the operational functions and goals of the systems (Philbin 2008). Yet,
the dimension of complexity may be overlooked, not fully understood, and often
underestimated within systems design and development processes. Thus, as tech-
nologies advance and the magnitude of systems effort intensifies, systems complex-
ities and uncertainties increase simultaneously (NASA 2007).

To focus the conversation, it is helpful to determine the types of complexities
present in engineering systems and their influence on cost throughout the life cycle.
McShea (1996) suggests that understanding the nature and state of complexity is a
complex subject matter itself, regardless of the types or origins that a particular type
of complexity may reside within a system. Recognising this challenge, Sheard
(2013) identified four entities prevalent in complex engineering systems.

Engineering Systems Integration, Testing, and Validation 9

Complexity types (per Sheard 2013):

• Project-related complexity represents complexity types the organization
developing the system. This is considered since the organization
performing the work is generally already in existence and therefore has
people already in place who work with others and is responsible for
allocating responsibility for product realization tasks.

• System-related complexity refers to technological considerations and how
the system is composed. This is the most commonly thought of complexity.

• Environment-related complexity refers to the ‘Way Things Are’ and can
extend to include both external factors and stakeholders. Which identify/
determine other systems that the system being developed must interface
with as well as the technological environment.

• Cognition-related complexity emphasises the human aspect through the
consideration of individual limitations and the actions in place to reduce
risk and uncertainty.

Considering such complexity allows for the reduction and/or better management
of potentially detremental impacts that can effect test efficiency and system success.
As described in Section “Example: International Space Station” project complexi-
ties can have direct implications on the cost, overrun, and scheduling of develop-
ment, system type complexities that reflect the number of systems to be integrate and
the number of interfaces that can increase the complexity of tests required to be
performed (it is critical that test plans minimise redundancy and maximise test
efficiency). Moving beyond complexity, it is imperative to clearly define the bound-
aries of the system itself in order to determine how it will be tested.

System Boundaries

System boundaries are a fundamental part of engineering systems. The purpose of
boundaries is to develop conceptual separation between the important elements of
the system (relevant component) and its environment (external elements that can
affect or be affected by the system). Engineering systems are bounded by component
limits of control and are aligned with the system’s purpose. Drawing the boundary
correctly is crucial to systems design, development, and testing because to solve a
systems problem, you must first know what the system is.

Context is understood as everything beyond the system’s boundary. This includes
the environment and the source for inputs and the later destination for system
outputs. The context affects the general nature of the inputs and interpretation of
the systems outputs, and stakeholders need to be cognisant of contexts that can affect

10 R. Valerdi and B. P. Sullivan

the system. Since the context and, by extension, the environment are outside of the
system and cannot be controlled, it causes uncertainty for the developers.

In the case of an engineering system, the boundaries and internal interfaces can be
documented in multiple ways, including through either interface control document
or interface control specification. The importance of understanding interfaces
concerning system boundaries is that stakeholders must understand the assemblage
of the system, the functions, and capabilities for the development to be successful.
Through this understanding, combined interactions, including processes and data
flow, within and across the system facilitate the modelling and evaluation of system
behaviour and performance to better understand and plan testing.

Useful lexicon for understanding boundaries in engineering systems

• Boundary: separates the system’s internal elements and processes, from
external factors or elements.

• Context: defines the development and operational space outside of the
system boundary, illustrating the interaction between elements.

• Environment: exogenous factors or elements that affect or can be affected
by the engineering system (internal factors and elements).

• System: is a construct or collection of different elements (interacting
components) that together produce results not obtainable by the elements
alone. Can be understood as a group of components that interact together
and are necessary for fulfilling a purpose.

• Subsystem: is a system in its own right, except it normally will not provide
a useful function on its own, it must be integrated with other subsystems
(or systems) to make a system.

• Elements: are not restricted to hardware but can also include software and
can even include people, facilities, policies, documents, and databases.

• Component: are elements that make up a subsystem or system and are
dependent on other components (interact with each other) to create the
system’s behavior.

Demystifying Integration through Coupling

Another dimension that is important in understanding engineering systems com-
plexity and testing is coupling (Marais et al. 2004). That is, how connected an
engineering system’s parts are to each other. The degree of coupling within an
engineering system may be described across a range of tight coupling to loose
coupling. Tight coupling is when components are highly dependent on one another,
while loose coupling is when there is little or no dependency between components.
As shown in Fig. 3, the differences between tight and loose coupling can also be
described in terms of coordination and information flow.

Engineering Systems Integration, Testing, and Validation 11

The decision about the degree of coupling in an engineering system may be
driven by architectural attributes like quality, security, flexibility, interoperability,
reliability, performance, and many others (Elias and Jain 2017). For instance, to
maintain high levels of security, an engineering system might be loosely coupled to
create isolation between system components in the event one of them is breached. In
some cases, the degree of coupling may not be negotiable because of legacy
considerations. Many engineering systems have inherited traits that are unchange-
able and therefore decrease the number of solutions that can be implemented to meet
their objectives.

In either case, the degree of coupling significantly impacts the testing of engi-
neering systems. In loosely coupled cases, more tests may be required to ensure the
functionality is adequately working. In tightly coupled cases, however, higher
connectivity may be an advantage because it might require less tests to observe the
system’s behaviour.

As always, there are exceptions to these examples. For instance, tightly coupled
systems may require all of the components to be available and engaged in the test.
This may not be a simple or inexpensive task. Similarly, loosely coupled systems
may be simpler to test by undergoing testing at different times and locations,
facilitating coordination and data collection.

Example: International Space Station

The International Space Station (ISS) is one of the largest and most complex
engineering systems, developed out of a collaborative effort between the United
States and Russia to provide for an on-orbit habitable laboratory for scientific
and research activities (International-Space-Station-Program-Science-Forum

Fig. 3 Tight vs. Loose Coupling

12 R. Valerdi and B. P. Sullivan

2015). Stockman et al. (2010) provide a detailed case study of the ISS from the
systems engineering perspective. The complexity of the system can be seen through-
out the development process taking form in the system, the environment, cognition,
and more specifically in project (Section Complexity in Sociotechnical Systems).
The project complexity was related to many elements, but none so significant as the
inclusion six international partners that were tasked to collaborate in the building of
87 flight elements integrated over 44 assembly flights during a 5-year time frame.
Although both the National Aeronautics and Space Administration (NASA) and the
Roscosmos State Corporation for Space Activities had significant experience in
multi-national complex space system development, the partnership and integration
required to develop the ISS was overwhelming, leading to project delays, overruns,
and integration issues (Thomas 1996).

Complexities within the ISS:

• Project – multiple space agencies involved in building the technical sys-
tem; NASA (United States) and ROSCOSMOS (Russia)

• Technical System – Systems being designed; ISS Vehicle, ISS Flight
Elements, ISS Launch Package

• Environment – the technological environment of ISS stakeholders, and the
technological environment into which the system will be inserted when
built.

• Cognition – Varying approaches to system engineering, design, and devel-
opment (NASA and ROSCOSMOS)

As a sociotechnical system, the ISS can be further described through the multi-
functional, multilevel, multidisciplinary international teams used to develop the
engineering system and the critical societal value derived from the research and
experiments performed. According to the International Space Station Program
Science Forum (2015), the research performed on the ISS to benefit humanity
includes the following:

• Development of health technology
• Solutions to prevent bone loss
• Human immune system defences
• Medical treatments and therapies
• Food and the environment
• Heart health and biorhythms
• Improving balance and movement

Many boundaries existed in the development; however, two observable and
critical areas of emphasis delineating internal process from other system elements

Engineering Systems Integration, Testing, and Validation 13

(Section System Boundaries) were the (1) Vehicle Systems Engineering & Integra-
tion (SE&I), the SE&I of the of all the flight elements of ISS Vehicle with each other,
and (2) Launch Package SE&I, the SE&I of the individual ISS Vehicle flight
elements with the other constituents of an assembly mission, such as launch vehicle
integration. The ISS was designed as a network of distributed subsystems that were
interconnected among discrete elements (Section Demystifying Integration through
Coupling). Each subsystem and element introduced unique design and integration
challenges independently, though for the ISS to be physically interconnected and
functionally interoperable, the distributed systems and discrete elements also needed
to be integrated seamlessly into a unified space vehicle (Stockman et al. 2010). This
integration concept made the planning and execution of testing for the ISS both
difficult and complex since during building each flight element, the subsystem teams
would develop their subsystems to meet the respective performance requirements
during each stage of the ISS Vehicle assembly (see Fig. 4).

The integrated performance of all subsystems at each stage of the ISS Vehicle
assembly mutually determined mission success (Stockman et al. 2010).

Testing during the development of the ISS presented a major challenge to the
NASA and its partners Stockman et al. 2010. Despite the ISS Program verification
philosophy to “integrate and test on the ground what we fly before we fly”, new and
innovative methods to test and verify interfaces were required. Reasons for this were
attributed to many of the modules being developed in different countries and
delivered “just in time” for the launch, leaving minimal time for integration testing.
Therefore, before deployment, each module had to be tested for its own internal
operation. Then it had to interface with the launch vehicle, and finally, it had to work
in space while integrated with multiple modules and systems (Stockman et al. 2010).
Even if an individual module performed well by itself, the success of the ISS
depended on the ability of all modules to perform well as an integrated whole.

We now shift our attention from describing the complexities of engineering
systems to exploring specific methodologies that can aid in successful testing.

Fig. 4 International Space
Station (NASA – public
domain image)

14 R. Valerdi and B. P. Sullivan

Testing Methodologies

Before discussing specific methods and their application domain, it is beneficial to
begin by defining commonly used terminology in the testing context, particularly
when working in a multifunctional, multilevel, or multidisciplinary team. This
common vernacular ensures conformity throughout the testing process and should
be applied to all testing methods. It is likely impossible to test for every imaginable
scenario, due to complexity or cost (Barhorst et al. 2011). The objective of the test
should therefore be well defined and correspond to the capabilities of the selected
method. Vague or open-ended verification and validation plans lead to project over-
runs, system failure, and loss of confidence from the stakeholders (Wheatcraft 2012).

The terms validation and verification are sometimes confused and frequently
mentioned in the incorrect order (e.g. verification and validation) (Ryan and
Wheatcraft 2012). On the one hand, validation, which should be listed first, is the
process of evaluating the final product to check whether it meets the customer
expectations and requirements. In other words, it is the process of checking “Did I
build the right system?”

On the other hand, verification is the process of testing documents, design, and
functionality. It includes activities such as inspection (measurement to verify that the
item conforms to its specified requirements), analysis (the use of established tech-
nical or mathematical models or simulations, algorithms, or other scientific princi-
ples and procedures to provide evidence that the item meets its stated requirements),
and demonstration (actual operation of an item to provide evidence that it accom-
plishes the required functions under specific scenarios). In other words, it is the
process of checking “Did I build the system right?”. The order in which these are
done is important because verification might be successful, but for a system that is
the wrong thing for the client (it was not validated). That is why validation needs to
occur before verification.

Challenges for Testing Engineering Systems

Engineering systems offer a unique opportunity for optimising testing because of
their distributed nature, emergent properties, and dynamic topologies and bound-
aries. A key challenge is that additional capabilities can be gradually inserted in a
system or environment and each insertion requires extensive testing before being
deployed successfully in operational environments. This challenge can be addressed
through systematic planning that leverages techniques from the “science of testing”
that helps identify nearly optimal solutions that minimise cost while maximising test
coverage (Young 2011). However, such a task is nontrivial because of the unstruc-
tured and dynamic environment of engineering systems. To address this challenge,
we propose an innovative testing approach that blends techniques such as parametric
cost modelling, knowledge gradient algorithms, and Bayesian updating algorithms.

These analytical techniques can help manage the delicate balance between per-
formance, resiliency, and security level (Yang et al. 2012). The trade space

Engineering Systems Integration, Testing, and Validation 15

illustration in Fig. 5 involves the selection of feasible solutions (dots) that meet or
exceed the desired performance threshold (dashed line).

Even when feasible solutions are identified (dots), external considerations – such
as government policy or political opposition – may still eliminate them from
consideration. This is why the sociotechnical system approach may be helpful in
comparing solutions from a broader, more holistic perspective.

Testing Approaches

Together, validation and verification are part of the broader concept of testing. There
are many types of testing approaches, each with their advantages and disadvantages.
The most common testing types, in Table 2, are categorised as functional and
non-functional testing according to system performance type being verified.

Functional testing ignores the internal parts and focuses on the output to check
whether intended requirements are met. It is a black box-type testing geared to the

Fig. 5 Tradespace for
engineering systems

Table 2 Different types of
testing

Functional testing types Non-functional testing types

Unit testing
Integration testing
System testing
Sanity testing
Smoke testing
Interface testing
Regression testing
Beta/acceptance testing

Performance testing
Load testing
Stress testing
Volume testing
Security testing
Compatibility testing
Install testing
Recovery testing
Reliability testing
Usability testing
Compliance testing
Localisation testing

16 R. Valerdi and B. P. Sullivan

functional requirements of a system (Myers 2011; Meinke 2004). Non-functional
testing involves testing the “how” (non-functional requirements) a system will
accomplish something and can be accomplished by implementing unique tests
which are presented in Table 2, including load testing, stress testing, security,
volume, recovery testing, etc. (Hooda and Chhillar 2015). The objective is to ensure
whether the response time of a product is quick enough to meet the requirements.

Beyond the testing types described above, other broader approaches should be
noted. Alpha testing aims to identify all possible issues or defects before releasing it
into the market or to the user. Beta testing is a formal type of testing that the
developer or the customer may carry out. It is performed in the real environment
before releasing the product to the market for the actual end users.

Happy path testing aims to test an application successfully on a positive flow
(Cohen et al. 2005). It does not look for negative or error conditions. The focus is
only on the valid and positive inputs through which application generates the
expected output. Negative testing employs the mindset of “attitude to break”. It
involves using incorrect data or invalid data or input. It validates that if the system
provides an error or invalid input, it will behave as expected.

In risk-based testing, the functionalities or requirements are tested based on their
priority (Amland 2000; Felderer and Schieferdecker 2014). Risk-based testing
includes testing of highly critical functionality, which has the highest impact on
business and in which the probability of failure is very high.

Exploratory testing is informal testing performed by the testing team. The
objective is to explore the functionality and find existing defects (Itkonen and
Rautiainen 2005; Itkonen et al. 2009). Sometimes it may happen that during this
testing, a major defect is discovered that causes a system failure.

Acceptance testing is performed jointly between developer and client to verify
whether the end to end flow of the system is as per the business requirements or not,
and if it is as per the needs of the end user (Davis and Venkatesh 2004). This may
involve both functional and non-functional testing. The client accepts the product
only when all the features and functionalities work as expected.

Regardless of which test methodology is employed, there are a variety of mea-
sures of effectiveness to evaluate their usefulness. These include speed, fidelity,
knowledge obtained, coverage, accuracy, risk reduction, and cost savings. Ulti-
mately, testing should increase confidence that helps stakeholders decide whether a
system is ready to be deployed into its operational environment.

Design of Experiments

A recent trend in testing has emphasised statistical methods for more efficient use of
resources (Cohen et al. 1998). This is motivated by decreased testing budgets, more
complex systems, more software-intensive systems, more upgrades to existing
systems (i.e. evolutionary procurement), and greater interest in system reliability,
availability, and maintainability (McQueary et al. 2009). One particular approach
that has been favoured among the test community is design of experiments (Seglie

Engineering Systems Integration, Testing, and Validation 17

2010) which has a long tradition in product development (Coleman and Montgom-
ery 1993; Montgomery 2004) and dates back to the eighteenth century.

Design of experiments (DOE) is rooted in the ability to provide a cost-effective
way to perform more rigorous test planning.

The design of experiments (DOE) methodology is rooted in providing a cost-
effective way to perform more rigorous test planning. Its main benefit is identifying
the real operational envelope of a system and identifying an efficient test design that
covers that envelope. This is accomplished by using modern statistical software to
predict the performance of a system based on its design factors and their interactions.
The additional rigour provided by DOE results in higher confidence (low probability
of accepting a flawed system), higher statistical power (low probability of rejecting a
sound system), and breadth (knowledge across the operational spectrum).

Applying DOE to developmental testing – where testers can perform controlled
experiments – is adequate. However, operational testing – where emergent behav-
iours are more likely to occur – DOE has significant limitations. These include the
following:

1. The assumption that the entire trade space is known
2. The ability to automatically replan the test strategy as emergent behaviours

appear
3. The assumption that the value of each test and the feature it is designed to test are

constant
4. The assumption that the cost of each test is the same

Cohen, Rolph, and Steffey (1998, p. 3) state: “. . .effective use of statistical
methods is not limited to a determination of the appropriate sample size so that a
test yields interval estimates at the required level of statistical confidence. It would
often be preferable, given a fixed test budget, to design a test aimed at maximising
the amount of information from the resulting test data in order to reach supportable
statements about system performance”.

We propose an approach that addresses the limitations of DOE and provides an
answer to the need to maximise information for the least amount of cost. To illustrate
such an approach, we describe how it could apply to the case of an unmanned and
autonomous system.

The Curse of Dimensionality

The benefits of engineering systems, in particular when tight coupling exists,
introduce tremendous challenges for testing (Newman 2001). For instance,
Metcalfe’s law (Gilder 1993) states that the value of a telecommunications network

18 R. Valerdi and B. P. Sullivan

is proportional to the square of the number of connected users of the system (n2).
Following the same logic, more extensive networks are more expensive to test since
the number of connections grows exponentially. This is known as the “curse of
dimensionality” which describes the problem caused by the exponential increase in
volume associated with adding extra dimensions to a mathematical space.

The “curse of dimensionality” is the exponential increase in volume associated
with adding extra dimensions to a mathematical space.

Solving multidimensional problems requires statistical techniques like Markov
chains, Monte Carlo analysis, machine learning, Bayesian statistics, orthogonal
arrays, and optimisation (Powell 2010). Researchers have explored the need for
more testing of IT systems (Graves 2010) and advocated operational realism in
testing (Stephens et al. 2008). However, neither Graves nor Stephens provides
quantifiable recommendations for reducing the cost or schedule of testing. More
recent work by Gibson (2012) showed that virtual machines can reduce testing time
of engineering change orders by 11% by reducing setup and configuration time of
Windows and Linux machines. While useful, the Gibson study did not explicitly
address the curse of dimensionality problem associated with testing engineering
systems.

The most rigorous study to date focused on reducing the cost of testing was done
by Pfeiffer et al. (2011). Their results showed that test coverage of software systems
is dramatically affected by test section strategy. However, the objectives of the
Pfeiffer et al. study fall short in the following ways:

1. Their approach does not account for uncertainty in the information obtained by
each test. What is missing is the estimate of a standard deviation to the value
obtained from each test: the results of such tests are unknown during the planning
process.

2. Similar to design of experiments, their approach assumes that the entire trade
space is known in advance. What is missing is an approach that recognises that
emergent behaviours will influence how the test strategy needs to evolve
over time.

3. Similar to design of experiments, their approach assumes the cost of each test is
the same. What is missing is an approach that uses a cost model to identify the
approximate cost of each test independent of its perceived value.

With their increasing complexity, engineering systems fall into the class of
systems where the science of testing can provide a step function improvement in
the way they are tested. Accordingly, we propose an approach that addresses the
limitations of DOE and the Pfeiffer et al. (2011) approach with the eventual goal of
maximising information and minimising cost.

Engineering Systems Integration, Testing, and Validation 19

Developments in Testing

Extended life and increasing complexity dictates that testing methods and tools keep
up with technological (different maturity levels), social/regulatory, and environmen-
tal requirements imposed on systems and systems of systems (SoS). These planned
and potentially unplanned/undesired complications need to be considered when
planning and performing testing. In respect to testing complex systems, approaches
can address component-based technologies, design patterns, and resource allocation
techniques. As discussed in this section, solutions to improve how tests are
performed and planned through the utilisation of decision support systems (DSS),
which support organisational decision-making are presented along with
corresponding practical applications.

Application Example of Testing Methodology to an Unmanned
and Autonomous System

As an example of an engineering system, an unmanned and autonomous system
(UAS) like the DHL “Paketcopter” or Amazon’s Prime Air delivery drone (Fig. 6),
which provides package delivery, offers a unique opportunity for gradual technology
insertion of automation due to task repetitiveness, relatively moderate sensory
requirements, and the limited human exposure to safety risks. A key challenge is
that the functional and non-functional elements of the system require extensive
testing before they are deployed safely and effectively in operational environments.
This challenge can be addressed through systematic test planning of heterogeneous,
multi-agent autonomous systems. However, such a task is nontrivial because of the
unstructured and dynamic environment of UAS operations. To address this chal-
lenge, an example for a test planning tool could incorporate a supervisory controller
of the distributed agent-based platforms, a mission planner for human-robot tasking,
and a decision support system (DSS) for extensive test planning validation.

Fig. 6 Delivery drone
(Mollyrose89 – Own work,
CC BY-SA 4.0)

20 R. Valerdi and B. P. Sullivan

This section shows an example of an innovative approach for testing engineering
systems with emergent behaviour through the use of a decision support system and
associated local linear or backstepping control algorithms (Madani and Benallegue
2008). The objective is to test the UAS control algorithms iteratively by exposing
inner workings of heterogeneous agents, their interactions with the supervisory
control system, and finally, the highest level of decision-making, mission planning
system. To accomplish this, it is possible to integrate a parametric cost model,
knowledge gradient algorithm, and Bayesian updating algorithm embedded in
a DSS.

The integration of automated technology in UAS faces significant challenges.
UAS operations can be highly unstructured, dynamically changing, and heteroge-
neous. The execution of basic tasks requires the use of multiple pieces of equipment
in a coordinated manner. An additional difficulty emerges from the use of different
UAS platforms developed by a diverse number of companies. These UAS operation
features suggest the need for automation to enable the capability to work coopera-
tively and self-adapt to dynamic changes.

Novel ideas to systematically handle the challenges in the automation of UAS
emerge from the fields of robotics and automation, mainly due to recent efforts on
multi-agent robotics and control. Multi-agent systems consist of interconnected
dynamical systems capturing the behaviour of the individual entities intertwined
within each other. In multiple UAS operations, each UAS may be defined by an
agent, whereas cooperative algorithms within a communication infrastructure may
define the interactions within the multi-agent, networked, and heterogeneous system.

It is necessary to collect data and information from all agents, the supervisory
system, and the mission planning system to address this need. Using such data,
measure of effectiveness can be used to determine the maturity of the UAS and its
control algorithms. By integrating DSS to the UAS control system, we can identify
an efficient test strategy of a complex heterogeneous UAS. The benefits include the
following:

1. Reduction in testing time, effort, and cost
2. Reduction in uncertainty, unpredictability, and risk in testing
3. Rapid identification of new UAS capabilities

Decision Support Systems for Test Planning

The validation of local control algorithms is at the heart of autonomous functionality
and can be accelerated with the help of a dedicated DSS that provides optimal test
strategies to be executed (Ferreira et al. 2010). This iterative planning-replanning
cycle can help ensure that the most critical scenarios are tested first so that the limits
of the various control algorithms can be determined in the shortest amount of time.
The importance of tests can be determined based on multiple criteria such as
criticality to the user, human-robot interaction, cost, complexity, risk to human
life, etc. These criteria can be selected with the help of parametric cost models,

Engineering Systems Integration, Testing, and Validation 21

knowledge gradient algorithms, and Bayesian updating algorithms, which are
described below (Valerdi and Blackburn 2009). Furthermore, the DSS can incorpo-
rate the human-in-the-loop by considering the collaborative role of humans and
robots performing various tasks. The architecture of one such DSS, called the UAS
Test Guru (Valerdi 2017), includes a human decision support system interface, high-
level motion planner, and supervisory controller which allows for multiple criteria to
be evaluated, as shown in Fig. 7.

The objective of the decision support system is to help identify the most critical
tests that should be executed to obtain the highest amount of information in the
shortest amount of time. This will help transition the test planning activity from a
subjective and manual process into a more objective and automated process. We can
accomplish this by applying approximate dynamic programming (Bertsekas and
Tsitsiklis 1989; Powell 2011) and multi-criteria decision analysis (Keeney and Raiffa
1976; Howard and Matheson 1983) techniques.

Test Optimisation Using Decision Support Systems

Test planning can be extended to include automatic, adaptive, and multi-criteria
balancing to enhance the robustness of the method being applied (Valerdi and
Enhelder 2016). First, the DSS will accelerate test planning by automating
(or partially automating) tasks that are currently human-intensive and error-prone
(Valerdi 2017). The DSS will provide automated support for test planning tasks such
as test prioritisation, test resource scheduling, and test strategy adaptation, among

UAS Test Guru

Decision Support System (DSS)

Supervisory Control Systems

Local Control
System 1

Robotic Firmware & Hardware

Local Control
System n

...

Mission Planning

Human Operator/Interface

Fig. 7 UAS Test Guru
hierarchy (Valerdi 2017)

22 R. Valerdi and B. P. Sullivan

others (Valerdi 2017). The main goal is to offer a higher priority to test cases that
have better-quality attributes for execution. For example, the DSS will perform test
prioritisation by determining the relative value of candidate tests, considering both
(1) the predicted importance and utility of the data yielded by each candidate test and
(2) the cost of each candidate test, in terms of cost and schedule. Similarly, the DSS
will assist test strategy adaptation by proposing ways to improve a set of test plans as
more information about a system becomes known. For example, as the undesirable
emergent behaviour of an unmanned and autonomous system is uncovered, test
plans may need to be modified in order to mitigate the potential risks associated with
these undesirable emergent properties.

Second, the DSS can utilise an adaptive planning component algorithm to search
for the optimal path of knowledge acquisition (i.e. test sequence) (Valerdi 2017). The
algorithm is inspired by traveling salesman and multi-armed bandit problems in
operations research (Dayanik et al. 2008; Powell 2011), in which the player (in this
case, the tester) has limited knowledge of the system and strives to maximise
knowledge acquisition through the optimal sequencing of tests. This approach to
testing is fundamentally adaptive in that it aids in constant replanning based on new
information obtained from test results. Adaptive algorithms, also known as genetic
algorithms, have been applied to a range of system optimisation problems but have
not applied to test planning (Hess and Valerdi 2010).

The DSS can optimise test planning by addressing and balancing multiple criteria
within a framework based on predetermined preferences. Specifically, the DSS
applies formal decision-making techniques such as multi-attribute utility theory
(Keeney and Raiffa 1976) to balance various stakeholder preferences. The use of
quantitative methods allows the test process to deal more effectively than a human
with the inherent complexity of co-robot environments where the many variables
and unknowns do not allow “eyeballing” solutions to test planning challenges. In
this way, the DSS facilitates the transition from function-based testing of single
systems to mission-based testing of co-robot systems. Moreover, by assisting test
planners in balancing trade-offs among cost, risk, and schedule when making test
planning decisions, the DSS serves a particularly important role in the context of a
rapid deployment of systems. The reasoning engine contains the co-robot system
specific decision rules that can be adjusted based on user preferences. The outputs of
the DSS will be fed to the control supervisor so that replanning tasks can be
performed.

The DSS enables test planners to develop and refine a test strategy for co-robot
systems that operate in any environment. The test strategies recommended by the
DSS address multiple aspects of an overall test plan, including (Valerdi 2017):

• The level of human-robot interaction and the complexity of such tests
• The schedule and order in which to conduct different test events and activities
• The relative importance of various candidate tests, since some tests may need to

be omitted due to cost, schedule, or other resource constraints
• The level of effort expected to complete a test plan and its constituent activities

Engineering Systems Integration, Testing, and Validation 23

• The resources needed to complete a test plan and the allocation of resources to test
events and activities

• The risks associated with a test plan, such as a “domino effect” occurring if a test
event fails or a test activity is not completed by a deadline

• The identification of potential undesirable emergent properties
• The options for altering or adapting the test plan as more information (cost, risks,

schedule, etc.) is obtained or constraints or goals are changed

Thus, by using the DSS, test planners can create either the template for an initial
test plan or refine and improve an existing test plan by incorporating the elements of
the test strategy outlined by their stakeholders. For example, test planners might
decide to move certain test events earlier in the schedule, eschew some test events
due to unacceptable risks, request additional resources needed to gather important
data, or reconfigure the test architecture to improve performance (Valerdi 2017).

The test planner’s primary interaction with the DSS will be through a dashboard
that will provide a user interface through which test planners specify the location of
external data artefacts to use as inputs, invoke analysis components, and view test
strategy reports containing the outputs of analysis, such as identified risks,
recommended test sequences, etc. The dashboard will show what analyses are
ready to execute, based on the inputs provided so far, what analyses have already
been run, and the effects of any changes to the system configuration can influence
test execution. The dashboard can simplify and streamline the human-robot interface
of the test bed by enabling more efficient and effective use of resources to support
planning-level decisions (Valerdi 2017).

Test Planning Algorithms

Test plans are dynamic entities and allow for the organisation of tests into logical
groupings, to minimise redundancy and maximise test efficiency. Through the
application of planning algorithms, it is possible to better arrange and schedule
relevant system tests by evaluating fault detection as early as possible with mini-
malised cost and the associated time required for implementation (Oliver et al.
1997). By combining the proposed approaches for local/supervisory control design
with a DSS, the validation of such algorithms can be performed much more
efficiently and effectively. Smarter, more effective, and more efficient testing of
systems can be realised with the help of a test planning tool to facilitate the
prioritisation and sequencing of individual tests and composite test sets. These
objectives can be accomplished by integrating parametric cost models, knowledge
gradient algorithms, and Bayesian updating algorithms (Valerdi and Enhelder 2016).

To date, several adaptive algorithms for manual and automatic/semi-automatic
planning have been developed (Hess and Valerdi 2010). However, many fall short in
considering the organisational elements and have little respect for the collaborative
role of humans and robots performing various tasks. The basis for a test planning
algorithm can be described through the following steps (Valerdi and Enhelder 2016):

24 R. Valerdi and B. P. Sullivan

• Step 1: Prioritise system and/or mission requirements for the system under test.
This will be accomplished using a systems-specific implementation of the Stake-
holder Win-Win methodology, a multi-criteria preference analysis approach for
requirements negotiation.

• Step 2: Define and quantify the cost, c, of running each test. This will be
calculated using a parametric cost model that considers the complexities of the
system under test and the resources (in terms of people, equipment, and facilities)
needed to execute each test.

A parametric cost model is a group of cost estimating relationships used together
to estimate entire cost proposals or significant portions thereof (ISPA 2008). These
models include many interrelated cost estimation relationships, both cost-to-cost and
cost-to-non-cost. While cost models have not explicitly been applied to testing in the
past, they have been an essential part of product development for a long time. Our
own analysis of UAS test events indicates that the most influential cost drivers are
number of systems to be integrated, integration complexity, and complexity of tests as
shown in Fig. 8. These technical costs driver scores demonstrate that tests are
prioritised according to how complex the system or task is (Deonandan et al. 2010).

• Step 3: Determine θ
o

d , the initial estimate of the expected reward for making
decision d, where each decision involves selecting a specific test that should be
executed. In this case, a reward can be considered to be the generation of new
knowledge about the system under test.

• Step 4: Determine σod , the initial estimate for the standard deviation of θ
o

d . The
standard deviation is based on the fact that the expected rewards are normally
distributed. Higher values of σod indicate lower confidence in the decision under
consideration.

• Step 5: Execute knowledge gradient algorithm to calculate the knowledge gradi-
ent (KG) index for feasible decisions. Since the KG jointly optimises three
criteria, value, cost, and knowledge acquired, it can be used to develop a
prioritisation of the system tests to be performed. At this stage in the process,
the first phase of testing is performed and data is collected about the performance
of the systems.

• Step 6: Execute Bayesian updating algorithm to re-calculate KG index based on
new information (e.g. test results, shifting evolving mission requirements, test
costs, test facility availability, etc.) and provide an updated test strategy based on
the recommended prioritisation of a DSS similar to the UAS Test Guru.

Table 3 illustrates a set of simulated results for an example with five test options
(Valerdi 2017). In this case, θ represents the current estimate of the value of deciding
to execute each test, while σ is the current standard deviation of each θ. Tests 1, 2,
and 3 have the same value for σ, but with increasing values of θ. The table illustrates
that when variance is the same, the knowledge gradient prefers the decisions that
appear to be the most valuable (high θ), as indicated by higher KG index score for
Test 3. Tests 3 and 4 have the same value for θ , but decreasing values for σ ,

Engineering Systems Integration, Testing, and Validation 25

illustrating that the knowledge gradient prefers decisions with the highest variance,
as indicated by higher KG index score for Test 3. Finally, Test 5 appears to be the
most valuable of all the decisions (high θ) but has the lowest variance meaning that

Fig. 8 Relative impact of technical cost drivers for UAS testing. (Deonandan et al. 2010)

Table 3 Knowledge
gradient example

Test θ σ KG index

1 1.0 1.336 0.789

2 1.5 1.336 1.754

3 2.0 1.336 3.516

4 2.0 1.155 2.467

5 3.0 0.707 0.503

26 R. Valerdi and B. P. Sullivan

we have the highest confidence in this decision. Therefore, the best decision is to
pursue Test 3 since it has the highest KG index score (despite the fact that it is not the
most valuable in terms of θ).

The systems control algorithms (i.e. control and supervisory) and test planning
algorithms when discussed (i.e. cost, knowledge gradient, and Bayesian) together
form what is referred to as a human-in-the-loop DSS (reference UAS Test Guru). For
the test planner to make the best decision possible, the user interface serves as a DSS,
providing the highest amount of information in the shortest amount of time. The DSS
as a collection point provides various resources needed to make test planning
decisions such as the system(s) under test, cost/risk trade-offs, test progress, and
test coupling.

Conclusion

As the demand and development of increasingly complex systems and SoS’s
continues, testing approaches and DSS will continue to change to improve human
experiences and provide ultimately better systems (V&V). In reflecting on the
chapter, by better understanding organisational aspects for conducting tests, the
phase the test is being performed, the purpose for the test occurring, and the
complexity of the system or SoS being tested, a more comprehensive and applicable
strategy can be developed. This will help transition test planning activities from a
subjective and manual process into a more objective and automated process.

In moving to application and concluding this chapter, the efficacy of the test
planning algorithms described, or any of the test planning approaches for that matter,
must be evaluated by the following criteria:

• Reduction in test planning time compared to existing manual approaches
• Speed at which test replanning can be done
• Reduction in test schedule through optimised plan provided by the algorithm
• Improved test coverage over time

While, not all of the criteria are equally important or even necessary for all
circumstances, the organisational and complexity aspects previously discussed will
support more efficient and effective testing. Applications of similar test optimisation
methods applied to software testing have shown a 40% reduction in test effort in the
financial services industry (Phadke and Phadke 2011) and a 90% reduction in test
effort in the telecommunications industry (Cohen et al. 1997) representing millions
of dollars of savings. We anticipate equivalent savings in testing engineering systems
given similar technical characteristics and complexity.

Engineering Systems Integration, Testing, and Validation 27

References

Amland S (2000) Risk-based testing: risk analysis fundamentals and metrics for software testing
including a financial application case study. J Syst Softw

Barhorst JF, Paunicka JL, Stuart DA, Hoffman J (2011) Emerging directions in Aerospace Software
V&V. Proceedings of Infotech aerospace conference, pp 1507–1512

Bartolomei JE et al (2011) Engineering systems multiple-domain matrix: an organizing framework
for modeling large-scale complex systems. Syst Eng 14(3):305–326

Baxter G, Sommerville I (2011) Socio-technical systems: from design methods to systems engi-
neering. Interact Comput 23(1):4–17

Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: numerical methods.
Prentice-Hall, Englewood Cliffs

Blanchard B (2004) System engineering management. John Wiley, Hoboken, p 8
Blanchard BS, FabryckyWJ, FabryckyWJ (1990) Systems engineering and analysis, vol 4. Prentice

Hall, Englewood Cliffs
Cherns A (1976) The principles of socio-technical design. Hum Relat 29(8):783–792
Clegg CW (2000) Socio-technical principles for system design. Appl Ergon 31(5):463–477. https://

doi.org/10.1016/S0003-6870(00)00009-0
Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG system: an approach to testing

based on combinatorial design. IEEE Trans Softw Eng 23(7):437–444
Cohen ML, Rolph JE, Steffey DL (eds) (1998) Statistics, testing, and defense acquisition: new

approaches and methodological improvements panel on statistical methods for testing and
evaluating defense systems. Committee on National Statistics, National Research Council,
National Academies Press, Washington, DC

Cohen J, Plakosh D, Keeter K (2005) Robustness testing of software-intensive systems: explanation
and guide. Technical note CMU/SEI-2005-TN-015. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh

Coleman DE, Montgomery DC (1993) A systematic approach to planning for a designed industrial
experiment. Technometrics 35(1):1–12

Davis FD, Venkatesh V (2004) Toward preprototype user acceptance testing of new information
systems: implications for software project management. IEEE Trans Eng Manag 51(1):31–46

Dayanik S, Powell WB, Yamazaki K (2008) Index policies for discounted bandit problems with
availability constraints. Adv Appl Probab 40(2):377–400

DeWeck OL, Roos D, Magee LC (2011) Engineering systems –meeting human needs in a complex
technological world. The MIT Press

Deonandan I, Valerdi R, Lane JA, Macias F (2010, June) Cost and risk considerations for test and
evaluation of unmanned and autonomous systems of systems. In: 2010 5th international
conference on system of systems engineering, pp 1–6

Department of Defense (DOD) (1983) Life cycle cost in Navy acquisition, MIL-HDBK-259
(NAVY), Washington, DC. 20360

Department of Defense (DOD) (2004) Defense Acquisition Guidebook, Version 1.5,
Washington, DC

Elias GM, Jain R (2017) Assessing systems architecture: an exploratory framework. Int J Bus Inf
Syst 24(2):127–173

Emery FE, Trist EL (1960) Socio-technical systems. In: Churchman CW, Verhulst M (eds)
Management science models and techniques, vol 2. Pergamon, Oxford, UK, pp 83–97

Farr J (2010) Systems life cycle costing: economic analysis, estimation, and management, 1st edn.
CRC Press

Farr J (2012) Life cycle cost considerations for complex systems. Systems Engineering – Practice
and Theory

Felderer M, Schieferdecker I (2014) A taxonomy of risk-based testing. Int J Softw Tools Technol
Transfer 16:559–568

28 R. Valerdi and B. P. Sullivan

https://doi.org/10.1016/S0003-6870(00)00009-0
https://doi.org/10.1016/S0003-6870(00)00009-0

Ferreira S, Valerdi R, Medvidović N, Hess J, Deonandan I, Mikaelian T, Shull G (2010) Unmanned
and autonomous systems of systems test and evaluation: challenges and opportunities. IEEE
systems conference. 15 pp

Gibson SF (2012) Virtualization of system of systems test and evaluation, naval postgraduate
school, NPS-TE-12-003

Gilder G (1993) Metcalf’s law and legacy. Forbes ASAP 152(6):158–159
Graves KL (2010) Assessment on how much DoD information technology testing is enough. Naval

Postgraduate School
Hess J, Valerdi R (2010) Test and evaluation of a SoS using a prescriptive and adaptive testing

framework. 5th IEEE international conference on Systems of Systems Engineering,
Loughborough

Hitchins D (2007) Systems engineering: a 21st century systems methodology. Wiley, Hoboken
Hooda I, Chhillar RS (2015) Software test process, testing types and techniques. Int J Comput Appl

111:10–14
Howard RA, Matheson J (1983) The principles and applications of decision analysis (2 volumes).

Strategic Decisions Group, Palo Alto
INCOSE (2015) Systems engineering handbook: a guide for system life cycle processes and

activities, version 4.0. Wiley, Hoboken
International Society of Parametric Analysts (ISPA) (2008) Parametric estimating handbook, 4th

edn. International Society of Parametric Analysts
International-Space-Station-Program-Science-Forum (2015) International Space Station – Benefits

for Humanity. Available https://www.nasa.gov/sites/default/files/atoms/files/jsc_benefits_for_
humanity_tagged_6-30-15.pdf

Itkonen J, Rautiainen K (2005) Exploratory testing: a multiple case study. 2005 international
symposium on empirical software engineering. ISESE 2005

Itkonen J, Mntyl MV, Lassenius C, (2009) How do testers do it? An exploratory study on manual
testing practices, Proc. Third Int’l Symp. Empirical Software Eng. and Measurement, pp
494–497

Keeney R, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs.
Wiley, New York

Kerzner H (2017) Project management: a systems approach to planning, scheduling, and control-
ling. Wiley, Hoboken, New Jersey.

Madani T, Benallegue A (2008) Adaptive control via backstepping technique and neural networks
of a quadrotor helicopter. IFAC Proc 41(2):6513–6518

Marais K, Dulac N, Leveson NG (2004) Beyond Normal accidents and high reliability organiza-
tions: the need for an alternative approach to safety in complex systems

McQueary CE, Sargeant ST, Nadeau RA, Dunaway DA, Reeves DL, Stephens RC (2009) Using
Design of Experiments for operational test and evaluation. Memorandum of Agreement

McShea DW (1996) Complexity and homoplasy, homoplasy: the recurrence of similarity in
evolution. Academic, San Diego, pp 207–225

Meinke K (2004) Automated black-box testing of functional correctness using function approxi-
mation. Paper presented at the ISSTA 2004 – proceedings of the ACM SIGSOFT international
symposium on software testing and analysis, pp 143–153

Montgomery DC (2004) Design and analysis of experiments, 6th edn. Wiley, New York
Mooz H, Forsberg K, Cotterman H (2003) Communicating Project Management
Myers GJ (2011) The art of software testing, 3rd edn. Wiley, New York
NASA (2007) Systems engineering handbook, Revision 1. National Aeronautics and Space

Administration (NASA), Washington, DC. NASA/SP-2007-6105
Newman JS (2001) Failure-space: a systems engineering look at 50 space system failures. Acta

Astronautica Sci 48(5–12):517–527
Oliver DW, Kelliher TP, Keegan JG (1997) Engineering complex systems with models and objects

Engineering Systems Integration, Testing, and Validation 29

https://www.nasa.gov/sites/default/files/atoms/files/jsc_benefits_for_humanity_tagged_6-30-15.pdf
https://www.nasa.gov/sites/default/files/atoms/files/jsc_benefits_for_humanity_tagged_6-30-15.pdf

Pfeiffer KD, Kanevsky VA, Housel TJ (2011) Mathematical modeling to reduce the cost of complex
system testing: characterizing test coverage to assess and improve information return. Naval
Postgraduate School, NPS-TE-11-181

Phadke KM, Phadke MS (2011) Utilizing Design of Experiments to reduce IT system testing cost.
CrossTalk J Def Softw Eng 24(6):16–21

Philbin S (2008) Managing complex technology projects. Res Technol Manage March–April 51(2):
32–39

Potts M, Sartor P, Bullock S (2020) Assaying the importance of system complexity for the systems
engineering community. Syst Eng

Powell (2010) A review of stochastic algorithms with continuous value function approximation and
some new approximate policy iteration algorithms for multidimensional continuous applica-
tions. J Control Theory Appl 9(3):336–352. https://doi.org/10.1007/s11768-011-0313-y

Powell WB (2011) Approximate dynamic programming: solving the curses of dimensionality.
Wiley, New York

Rasmussen J (2003) System design, encyclopedia of information systems. Elsevier
Ryan M, Wheatcraft L (2012) On the use of the terms verification and validation. INCOSE

International Symposium
Seglie E (2010) Design of Experiments for test and evaluation. International Test and Evaluation

Association Live-Virtual-Constructive Conference
Sheard SA (2013) Systems engineering complexity in context. 23rd annual international sympo-

sium of the international council on systems engineering, INCOSE 2013, 2(C), pp 1230–1243
Stephens RC, Herrin RR, Mackenzie D, Knodle DW (2008) Operational Realism via net-centric test

& evaluation: from concept development to full-rate production and sustainment. Int Test Eval
Assoc (ITEA) J 29(2):147–155

Stockman B, Boyle J, Bacon J (2010) International space station systems engineering case study.
Air Force Center for Systems Engineering

Thomas LD (1996) System engineering the international space station. NASA Space Station
Program Office

Trist E (1981) The evolution of socio-technical systems: a conceptual framework and an action
research program. J Issues Qual Work Life Occas Paper, Issue 2

U.S. National Academy of Engineering Grand Challenges (2021). http://www.engineering
challenges.org/

Valerdi R (2017) Verification of emergent systems. Unpublished manuscript
Valerdi R, Blackburn C (2009) 6.3.1 the human element of decision making in systems engineers: a

focus on optimism. INCOSE International Symposium 19:986–1002
Valerdi R, Enhelder E (2016) Making big data, safe data: a test optimization approach. Defense

Technical Information Center, Acquisition Research Program Sponsored Report Series
Wheatcraft L (2012) Thinking ahead to verification and validation. Requirements Experts
Yang Y, He Z, Mao K, Li Q, Nguyen V, Valerdi R (2012) Analyzing and handling local bias for

calibrating parametric cost estimation models. Inf Softw Technol
Young RF (2011) Science of test at yuma proving ground. Presentation at Duke University. https://

ndiastorage.blob.core.usgovcloudapi.net/ndia/2012/TEST/13684_Johnson.pdf

30 R. Valerdi and B. P. Sullivan

https://doi.org/10.1007/s11768-011-0313-y
http://www.engineeringchallenges.org/
http://www.engineeringchallenges.org/
https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2012/TEST/13684_Johnson.pdf
https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2012/TEST/13684_Johnson.pdf

	Engineering Systems Integration, Testing, and Validation
	Introduction
	Sociotechnical Systems Theory
	US National Academy of Engineering Grand Challenges
	The Role of Life Cycle Cost of Systems in Testing

	Engineering Systems Considerations and Interventions
	Complexity in Sociotechnical Systems
	System Boundaries
	Demystifying Integration through Coupling
	Example: International Space Station

	Testing Methodologies
	Challenges for Testing Engineering Systems
	Testing Approaches
	Design of Experiments
	The Curse of Dimensionality

	Developments in Testing
	Application Example of Testing Methodology to an Unmanned and Autonomous System
	Decision Support Systems for Test Planning
	Test Optimisation Using Decision Support Systems
	Test Planning Algorithms

	Conclusion
	References

