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Abstract— Synthetic aperture radar (SAR) interferometry
(InSAR) has shown great potential in the monitoring of Earth’s
surface and detection of the possible slow temporal deformations.
Within the framework of multibaseline SAR interferometry,
the availability of multiple interferograms obtained from multi-
pass satellite observations can significantly improve the accuracy
of the estimated target parameters, i.e., the residual height
and the mean deformation velocity. The parameters can be
estimated in the maximum likelihood (ML) sense and through
the data covariance matrix. However, the presence of artifact and
outliers may impair the parameter estimation, specifically when
the candidate cells are subject to temporal decorrelation and
atmospheric phase noise effects. In this letter, the exploitation of
contextual spatial information is proposed to reduce the possible
ambiguity and improve the accuracy of ML-based parameter esti-
mation. The proposed approach adds a regularization term (or a
constraint) to the ML’s model in order to include the information
about the scene velocity variation. Hence, the resulted nonconvex
optimization is resolved using the graph-cut concept. The method
is evaluated using the simulated and two real data sets acquired
by Constellation of Small Satellites for Mediterranean basin
Observation (COSMO-SkyMed) and Sentinel-1A sensors over
Tehran, Iran; and the results are validated using the global
positioning system-based measurements.

Index Terms— Multibaseline (MB) SAR interferometry, regu-
larization term, synthetic aperture radar (SAR).

I. INTRODUCTION

THE differential synthetic aperture radar (SAR) interfer-
ometry is today well assessed and broadly exploited in

remote sensing of complex environments in order to mea-
sure Earth’s surface displacements [1]. The technique aims
to identify stable scatterers and exploit their interferometric
phase to measure the ground displacement. In the literature,
the main experimented and investigated multibaseline (MB)
techniques to improve the density of the network of scat-
terers, which is the necessity for accurate modeling of earth
surface displacement, rely on multilook framework [2]. These
techniques, such as SqueeSAR [1], commonly exploit spatial
multilooking to estimate the data covariance matrix, which is
subsequently used to characterize additionally extended (and
weaker) targets, termed as distributed scatterers. Other multi-
look techniques in maximum likelihood (ML) sense [3], [4]
take the benefits of both amplitude and phase of interferomet-
ric data and take into account the mutual correlation of all the
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acquired images to estimate the geophysical parameters (i.e.,
the residual height and mean deformation velocity).

Typically, these techniques require the scatterer to possess
some fundamental specifications: the target’s reflectivity is
constant over all acquisitions and its interferometric phase is
related to the nominal distance between sensor and target.
In reality, however, temporal decorrelation and unmodeled
phase error (e.g., from nonoptimal atmospheric compensa-
tion) can significantly compromise the performance of these
techniques.

In [5], the robust M-estimator in multipass interferome-
try was introduced to optimally treat the data with phase
error. However, in this letter, in order to enhance the capa-
bility of the ML-based approach, when dealing with both
the above-mentioned limitations, a regularization procedure
is proposed. The technique adapts a regularization term of
velocity variation over the spatial neighborhood pixels to the
ML’s model. The added term allows trading-off the solution of
ML and the velocity variation within the neighborhood pixels,
leading to the mitigation of possible interferometric artifacts
and noise perturbations. The interaction between ML and reg-
ularized term defines a nonconvex optimization problem that
is resolved using the concept of graph-cut minimization-based
strategy [6].

This letter is organized as follows. Section II describes the
methodology, including a brief review of ML estimation and
an explanation of the proposed framework. In Section III,
the experimental results from the simulated and real data sets
are shown by pointing out the improvements obtained by the
proposed method. Finally, the conclusions and discussion are
presented in Section IV.

II. METHODOLOGY

A. SAR Data Model

Let us refer to a stack of N complex single-look (SLC) SAR
data of the same area obtained in multitemporal MB configu-
ration using a sensor that operates at wavelength λ and range
distance ρ. The images are obtained along different trajectories
distinct by orthogonal spatial and temporal baselines bn and
tn from a reference master acquisition. Assume that the stack
data are coregistered with respect to a given master image, and
therefore, the resulting complex target vector x for a specific
pixel p can be represented by

x(p) = [x1(p) x1(p) . . . . . . xN (p)]T (1)
where xk(p) is the complex measurement of pixel p in
the kth image and T indicates the transpose operator. The
measured MB target vector x(p) has circular Gaussian random
distribution with the zero mean and its covariance matrix
is given by R = E[x(p)x(p)†], where E[.] and †are the
expectation and Hermitian operators, respectively.
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It should be noted that MB data sets are assumed to be
compensated for the flat-earth effect (f.i. using the orbital
information) and topographic phase effect [i.e., using low-
resolution external terrain model, e.g., Shuttle Radar Topog-
raphy Mission (SRTM)].

Additionally, we implicitly assumed that atmospheric phase
is spatially constant over the image, and the data were cali-
brated with respect to one pixel whose deformation is known
(typically a high coherent pixel located in a nondeforming
zone, which is characterized by a priori information about the
test site). Note that the assumption is valid and the calibration
is acceptable for a small/local area, such as the considered test
sites in this study.

B. Nonlocal Estimation of Data Covariance Matrix

The covariance matrix estimation is one of the impor-
tant processing steps of multilook interferometry. Generally,
the true covariance matrix is unknown and it is commonly
approximated using the sample covariance matrix (SCM).
In the InSAR literature, SCM is typically computed based
on the statistical distribution test [1]. However, in this study,
a nonlocal (NL) technique based on the generalized likeli-
hood ratio (GLR) test is employed. The technique is called
NLSAR [7], and it estimates SCM by weighted averaging over
all pixels (q) in a search window that is centralized around
the pixel of interest ( p), that is,

R̂NL(p) =
∑

q

w(p, q)x(q)x(q)†
/∑

q

w(p, q) (2)

where R̂NL indicates the NL-based SCM of pixel p, while w
represents the sample’s relative importance. For more details
on the implementation of NLSAR, the readers are referred
to [7].

C. ML Interferometric Framework

The key feature of the ML-based approach is related to the
assumption that the complex target vector x in (1) is distributed
according to the Goodman’s model and follows a zero-mean
circular complex Gaussian distribution as [8]:

f (x|R) = exp
(−x†R−1x

)/
π |R| (3)

where f represents the probability density function (pdf) of
vector x. Note that in (3), the dependence of x and R on the
pixel coordinate p has not explicitly indicated for the sake of
notation simplicity. Let us decompose the covariance matrix
as

R = �1/2 C �1/2 (4)
where � is a diagonal matrix constructed by the diagonal
elements of R, in which �(k, k) represents the intensity of
the kth channel, and C is the true coherence matrix where its
elements can be represented as

C(k, l) =
E

[
xk x†

l

]
√

E
[
xk x†

k

]
E

[
xl x

†
l

] = γkl exp(ϕkl). (5)

In (5), γkl and ϕkl are the real-valued reflectivity and inter-
ferometric phase between channels k and l, respectively.
Additionally, the interferometric phase can be written as

ϕkl = 4π(bl − bk)

λρ sin(θ)
z + 4π(tl − tk)

λ
v (6)

where θ indicates the incident angle, and the parameters z and
v represent the residual height and mean deformation velocity,
respectively.

Eventually, from the pdf of the observation vector in (3),
it readily can be shown that for each pixel p, the ML estimates
of the unknown parameters (z, v) are the corresponding values
that minimize the following cost function [3]:

(ẑ, v̂) = arg min
z,v

(
Trace

(
C−1ĈNL

))
(7)

where Trace(.) is the trace operator and ĈNL is the sample
coherence matrix obtained from decomposition (4) of NL
SCM R̂NL. From (5), the true coherence matrix C is the
function of z, v, and γkl , while it has to be understood that
the optimization in (7) is obtained under the assumption that
the reflectivity γkl is fixed to its counterpart estimation from
the NL approach, i.e., γkl = γ̂kl

NL where γ̂kl
NL is a real value

coherence between channels k and l obtained from the NL
coherence matrix ĈNL.

Finally, the minimization problem in (7) can be resolved
using numerical optimization through the joint estimation of ẑ
and v̂ . Particularly, for a pixel p, whose R̂NL and consequently
ĈNL are estimated using the NLSAR approach, the residual
height and velocity are estimated within the specified elevation
[zmin zmax] and velocity [vmin vmax] search space. For each
height and velocity level (zl , vl) in the search space, the matrix
C can be generated using (5), where its reflectivity is set to
the corresponding NL estimation, i.e., γkl = γ̂kl

NL or |C| =
|ĈNL|. Apparently, the height and velocity that lead to the
minimization of Trace(C−1ĈNL) are selected as the solution
of (7). To properly define the elevation and velocity search
space, the readers are referred to [9].

The ML approach is an optimal multilook framework for
interferometric analysis. However, the presence of artifacts and
perturbations of interferometric noise may impair the parame-
ter estimation. To cope with this possible issue and increase
the reliability of estimated parameters, the regularization of
the ML approach is proposed in Section II-D.

D. Proposed Regularization Approach

The spatial characteristics or context is an important source
of information. Following the idea presented in [4] and [10],
we proposed to regularize the typical ML optimization model
with deformation velocity variation in the neighborhood pixels.
Let us consider a window centralized around a pixel p in the
image. The window contains M − 1 neighborhood samples
(q) of the pixel p. The proposed framework is based on
the assumption that the mean deformation velocity smoothly
changes from pixel to pixel over the neighborhood samples.
Hence, a constraint or a priori that controls the velocity
variation between neighborhood samples is given by∑

p,q

|v(q) − v(p)| (8)

where v(q) and v(p) are the mean deformation velocities of
neighborhood and central pixels, respectively. Hence, to con-
trol the total variation in velocity over the neighborhood
samples in the considered window, the regularized ML can
be denoted as

(ẑ, v̂)=arg min
z,v

∑
p,q

[
Trace

(
C−1ĈNL

)
p,q

+ α|v(q) − v(p)|
]
.

(9)
Equation (9) is an optimization problem with respect to the
height and velocity of all M pixels in the considered window.
Differently from the standard ML in (7), optimization in (9)
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Implementation Algorithm of the Proposed Regularized ML
Approach

1. Estimate the sample covariance matrix for all pixels of
the images using the NLSAR approach.

2. For each central pixel p
3. Consider its local neighborhoods within a specified

window
4. For each zl and vl in the ranges of [zmin zmax ] and

[vmin vmax ]
5. Compute the data term using Trace(C−1ĈNL)

for all pixels in the window and add the related
nodes to the graph at levels zl and vl .

6. End
7. Perform minimization in (9) and derive the parameters

of interest (ẑ, v̂) for central pixel p.
8. End

has to be solved for several pixels at once. Note that ẑ and v̂
are two vectors collecting the estimated residual heights and
velocities of all pixels ( p and q) in the window. To solve this
optimization, the graph-cut minimization-based strategy [6]
is adapted. To simplify the explanation of the graph cut’s
concepts, Fig. 1 as a simple example of the constructed graph
is shown. We assume that the search space of elevation and
deformation velocity is discretized into L layers, such that
each layer is a particular combination of possible elevation and
the velocity (zl , vl) in the search space. Hence, a graph can be
constructed (see Fig. 1), where each node is linked to a specific
sample (horizontal axis) at a particular height zl and velocity
vl layer (vertical axis). In particular, the nodes of the graph are
related to the data terms Trace(C−1ĈNL) of a particular sample
at different (zl , vl) layers. Different graph cuts (such as blue
profiles in Fig. 1) can be considered, where the interaction of
each cut with the nodes can be seen as a nominated solution
of the optimization (9) for all M samples. The energy of
each cut can be estimated using the sum of the data term
in the interacted nodes and velocity variation in neighborhood
samples along the considered cut. Hence, among all possible
graph cuts, the solution of (9) is obtained by seeking the graph
cut whose energy (sum of the data term and velocity variation)
is the minimum between all other possible cuts. Consequently,
the unknown parameter (ẑ and v̂) of the M selected samples
can be discerned from the intersection of the optimal cut (red
profile in Fig. 1) with the nodes. Once, ẑ and v̂ are estimated,
the parameters of the pixel of interest, i.e., central pixel p,
can be reconstructed. The window moves over the image to
repeat this procedure for any other interested cell and compute
its unknown parameters. Moreover, it should be noted that the
parameter α in (9) indicates the relative importance of the two
employed terms. Finally, the reconstruction algorithm can be
summarized as:

III. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed
method using the simulated and two real data sets are
reported. For the sake of comparison, the proposed regular-
ized ML (9) is compared with the conventional ML process
in (7). To implement the regularized ML, a moving window
(19 × 19) around the pixel of interest is considered. More-
over, it is being understood that when α in (9) is zero,
the regularized optimization boils down to the conventional

Fig. 1. Graph-cut-based minimization. The red profile has the minimum sum
of data term and velocity variation between all possible graph cuts indicated
with blue profiles. Green and yellow nodes are related to the center and
neighborhood samples, respectively.

Fig. 2. Simulated data. (a) Simulated terrain height model [0–20] m, (b) true
simulated velocity of the scene [−3, 3] cm/year, and (c) mask image.

ML minimization in (7), while its higher values may lead to
the oversmoothing effect. In this letter, α is tuned by trial and
error and by assessing the results of estimated velocity and
residual height maps in different homogeneous and hetero-
geneous regions. Particularly, the considered criterion for the
tuning process is addressing the outliers and artifacts as much
as possible while avoiding oversmoothing effects. Moreover,
it should be noted that the optimal value of the α parameter can
vary with respect to the study area, noise levels, and number
of neighborhood samples in the considered window.

A. Simulated Data

The Monte Carlo simulations were proceeded in order to
simulate a stack of 19 images (with a size of 512 × 512),
where the spatial and temporal baselines and the system
parameters are set to the typical values of the Constella-
tion of Small Satellites for Mediterranean basin Observation
(COSMO-SkyMed) data set that is introduced in Section III-
B (see Table I). The data were simulated in a favorable
scenario over the given terrain height model and the true
imposed velocity map in Fig. 2. In order to evaluate the
efficiency of the proposed method, the simulated data are
corrupted with some artifacts, i.e., temporal decorrelation and
atmospheric noise effects in the highlighted white patches
in the mask image shown in Fig. 2(c). To impair the data
by temporal decorrelation, the coherences are affected by the
well-known decorrelation model as γkl = γkl exp(|tl − tk |/τ ),
where τ is the decorrelation rate, while the atmospheric phase
noise is simulated with the zero mean and standard deviation
of σπ from baseline to baseline. The decorrelation rate is
set to the particular β% of the total temporal baseline (T),
i.e., τ = βT. To the aim of extensive analyses, the corruptions
were proceeded by variation in both parameters in the range
of β ∈ [0.9 0.8 0.7 0.6] and σ ∈ [0.1 0.15 0.175 0.2]. For
each pair of (β, σ), both the conventional and regularized
MLs were implemented. The first row of Fig. 3 shows the
results from the case of β = 0.9 and σ = 0.1, while
the second row is related to most critical simulated scenario,
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Fig. 3. Estimated interferometric parameters form the corrupted data. The figures in the first row are related to the corrupted data with (β = 0.9, σ = 0.1),
while the second row is related to the pair of (β = 0.6, σ = 0.2). (a) and (f) Corrupted noisy interferograms [−ππ ]. (b) and (g) Estimated elevation [0
20] using the ML approach and (c) and (h) proposed method. (d) and (i) Estimated mean deformation velocity [−3 3] cm/year using the ML approach and
(e) and (j) proposed method.

TABLE I

BASELINE DISTRIBUTION OF THE CSK DATA SETS

Fig. 4. Evaluation of the employed approaches with respect to different
temporal decorrelation β and atmospheric σ effects. RMSE of (a) elevation
and (b) velocity.

i.e., β = 0.6 and σ = 0.2, where both decorrelation and
atmospheric effects were increased. For each pair of (β, σ),
the root-mean-square error (RMSE) between the estimated and
true values of the elevation and velocity maps is computed and
plotted in Fig. 4. As can be seen from Figs. 3 and 4, the results
by the conventional ML are affected by the imposed artifacts.
The spots due to high phase jumps and discontinuities on the
results of ML in Fig. 3(b), (d), (g), and (i) affirm that the
conventional ML failed to properly estimate the parameters.
However, from the visual inspection of the results obtained
by the proposed method in Fig. 3(c), (e), (h), and (j), it is
apparent that the good performances are achieved by the use
of regularization, confirming the robustness of the proposed
method to the artifact patches, characterized by high phase
jumps and discontinuities. The visual analysis is confirmed by
the quantitative evaluation present in Fig. 4 for all possible
pairs of β and σ . The RMSE for both elevation and velocity
affirms the performance of the proposed method.

B. Real Data Set: COSMO-SkyMed

The first real data were acquired by COSMO-SkyMed
(CSK) sensor over the Tehran metropolitan, and it consists

of 19 images in X-band acquired between June 2012 and
January 2014 with the system operating in the strip-map mode
and HH polarization. The image resolution is 1.47 m × 3
m in slant range and azimuth directions, and the baseline
information is provided in Table I. A subset of the image
(1000 × 600 pixels) was processed using both the employed
approaches and the related results are presented in Fig. 5. Note
that the processing is limited to the stable scatterers whose
ensemble coherence is above the specified threshold (see [1]).
However, we refer the readers to [2] for more effective
scatterer detection framework based on false alarm probability.
In analogy to the simulated experiments, the artifact effects are
evident in the results of the conventional ML method [Fig. 5(a)
and (c)]. This can be noticed by unexpected variation in the
target parameters from pixel to pixel. However, moving to the
results by the proposed method [Fig. 5(b) and (d)], the outliers
are significantly suppressed by the employment of information
from neighborhood samples. The improvements are obtained
in both urban (the zoomed area) and nonurban terrain regions
(the middle part of the image).

C. Real Data Set: Sentinel-1A

Further investigation on the proposed method was carried
out by the experiments using a stack of 15 C-band Sentinel-
1A SAR images in VV polarization over the north-west of
Tehran, Iran. The spatial (slant range-azimuth) resolution is
5 m × 20 m and subsequently, to utilize a (partially) square
window in meters, a rectangular window 19 × 7 was employed
within the regularization framework. The test site is a subset
of image (1150 × 355 pixels) and includes the Chitgar
lake, forest park, and urban area. The images were acquired
from February 18, 2017 to January 15, 2019 (See Table II).
Moreover, for the considered site, the measurements of a GPS
station (see the box in Fig. 6) are available and used to validate
the methods. The mean deformation velocity of the station
(−3.6 cm/year) is computed from GPS measurements and
based on the weighted parametric least square approach [see
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Fig. 5. Experimental results from the CSK data sets. The red box is zoomed in the upper right of the images. (a) and (b) Residual height [−40 40] m and
(c) and (d) mean velocity [−2.5 2.5] cm/year using the ML and regularized ML. (a) ML. (b) Regularized ML. (c) ML. (d) Regularized ML.

Fig. 6. Mean deformation velocity [−2.5 2.5] cm/year using the Sentinel-1A
data sets. The red box is related to the GPS station and zoomed in lower left
of the images. (a) ML. (b) Regularized ML. (c) Linear trend of deformation
using GPS observations (d = −3.6t + 0.59).

TABLE II

BASELINES DISTRIBUTION OF THE SENTINEL-1A DATA SETS

Fig. 6(c)]. For the sake of conciseness, only the estimated
velocity maps are reported in Fig. 6. The candidate pixels
inside the red box are around the GPS station (see the zoomed
area in the image) and RMSE of their estimated velocity
regarding the GPS measurement is 1.31 and 0.35 cm/year for
ML and regularized method, respectively. This is in agreement
with the qualitative comparison of the reported results in
the zoomed area, which confirms the performance of the
proposed method.

IV. CONCLUSION

In this letter, a new framework for the estimation of tar-
get parameters (the residual height and mean deformation
velocity) using MB interferometric data sets was introduced.
The proposed method adapts a regularization of the velocity
variation over neighborhood pixels into the ML model. The
derived nonconvex optimization was resolved using the graph-
cut strategy. The proposed method was evaluated on the simu-
lated and two real data sets and compared to the conventional
ML. The quantitative and qualitative analyses were carried
out to validate the effectiveness of the proposed method,
particularly the comparison and validation using GPS-based
measurements revealed the efficiency of the proposed tech-
nique. The proposed procedure is robust to the outliers and

artifacts. Particularly, the method employs the information of
neighborhood pixels to provide a reliable solution for the pixel
of interest (central pixel), which is impaired by disturbing
factors. Note that the improvement by the regularization is paid
at the cost of computational efforts. Finally, it should be noted
that the proposed method might be limited by the suppression
of true local variations of velocity in urban areas. This possible
issue can be addressed by setting a relatively lower importance
to the regularization term (i.e., velocity variation) in the
heterogeneous regions, such that the solution of the proposed
method approaches to the result by the conventional ML.
Hence, the benefits of adaptive estimation of α parameter
based on the homogeneity/heterogeneity information should
be assessed.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments, which have improved the quality
of this letter and the Italian Space Agency for providing CSK
data.

REFERENCES

[1] A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci,
“A new algorithm for processing interferometric data-stacks:
SqueeSAR,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 9,
pp. 3460–3470, Sep. 2011.

[2] A. Pauciullo, D. Reale, W. Franze, and G. Fornaro, “Multi-look in
GLRT-based detection of single and double persistent scatterers,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 9, pp. 5125–5137, Sep. 2018.

[3] F. Baselice, A. Budillon, G. Ferraioli, V. Pascazio, and G. Schirinzi,
“Multibaseline SAR interferometry from complex data,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 7, pp. 2911–2918,
Jul. 2014.

[4] G. Ferraioli, C.-A. Deledalle, L. Denis, and F. Tupin, “Parisar: Patch-
based estimation and regularized inversion for multibaseline SAR
interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3,
pp. 1626–1636, Mar. 2018.

[5] Y. Wang and X. X. Zhu, “Robust estimators for multipass SAR interfer-
ometry,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 2, pp. 968–980,
Feb. 2016.

[6] H. Ishikawa, “Exact optimization for Markov random fields with convex
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10,
pp. 1333–1336, Oct. 2003, doi: 10.1109/TPAMI.2003.1233908.

[7] C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jager,
“NL-SAR: A unified nonlocal framework for resolution-preserving
(Pol)(In)SAR denoising,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 4, pp. 2021–2038, Apr. 2015.

[8] J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc.
Amer., vol. 66, no. 11, pp. 1145–1150, Nov. 1976.

[9] G. Fornaro, D. Reale, and F. Serafino, “Four-dimensional SAR imaging
for height estimation and monitoring of single and double scatter-
ers,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 224–237,
Jan. 2009.

[10] H. Aghababaee, G. Ferraioli, G. Schirinzi, and V. Pascazio, “Regulariza-
tion of SAR tomography for 3-D height reconstruction in urban areas,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 2,
pp. 648–659, Feb. 2019.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 04,2022 at 14:35:00 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2003.1233908

