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Bus Holding of Electric Buses With
Scheduled Charging Times
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Abstract— In high-frequency electric bus services, bus opera-
tors strive to increase the service regularity by minimizing the
deviation between the planned and actual headways. In this
pursue, bus operators apply corrective control strategies, such
as bus holding(s) at control point stops. This study expands
the traditional headway-based, bus holding models to cater for
the planned arrival times of electric buses at the respective
charging points. To this end, this study models - for the first
time - the bus holding problem for electric buses considering the
scheduled charging times in the objective function. Additionally,
it introduces an analytic solution that can return an optimal
holding decision in real-time. Our approach is tested using
realistic data from bus line 15 in Amsterdam demonstrating a
significant reduction of charging delays with only a marginal
increase of the average passenger waiting times when compared
to existing holding strategies. Its closed-form expression is suit-
able for real-time holding control and can be applied to obtain
a reliable solution or perform stochastic optimization in the case
of travel time uncertainty.

Index Terms— Bus holding, service regularity, electric buses,
real-time control, electric charging.

I. INTRODUCTION

GLOBAL warming has accelerated the initiatives on the
reduction of greenhouse gas (GHG) emissions. By the

same token, several countries want to reduce their CO2 output
and limit their dependency on oil by shifting towards other
sources of energy. To achieve this goal, bus operations play
a major role. In their review of urban energy use and CO2
emissions patterns in 84 cities around the globe, [1] found that
the energy use per bus passenger is typically 2 to 3 times more
than the energy used per tram, light rail or metro passenger.

This issue has attracted attention in Europe where several
initiatives try to introduce a new generation of buses to
modernize the � 40,000 buses registered in the EU [2]. One
of the main reasons is that newer, “no-oi” propulsion tech-
nologies can significantly reduce the CO2 emissions [3], [4].
For instance, the policy consultation paper of [5] showed that
the CO2 emissions measured in g/passengers*100 km can be
reduced by up to 50 times when using electric buses. Besides,
the lifecycle analysis by [6] showed that plug-in hybrid electric
vehicles emit 50% less GHG compared to gasoline and diesel
vehicles.
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Conventional electric buses are charged through traditional
plug-in chargers [7] or wireless stationary charging [8]. Wire-
less charging is generally favorable in services with fixed
routes, such as bus systems that operate public transit ser-
vices [9]. The stationary point of charging can be a dedicated
bus stop (e.g., the terminal or a dedicated charging location).

Electric buses typically have an almost identical charging
capacity and fixed charging sites. Notwithstanding, planning
the overall electric bus system is challenging given that a pool
of electric buses might be in need of a limited number of
charging sites [10]. This requires meticulous planning of the
charging schedules of all operational buses which, oftentimes,
takes into consideration the urban power network structure
strength [11]. The latter is advisable because electric buses
require significantly more energy than private electric vehicles,
thus impacting the power grid [12]–[15].

Studies on planning the charging operations have demon-
strated the importance of meeting the planned schedules for
both the performance of the power grid and the efficiency
of the bus operations. For instance, [16] proposed an algo-
rithm for optimally managing a large number of plug-in
hybrid electric vehicles charged at a municipal parking station.
In addition, [17] proposed a mathematical model of controlled
charging, which includes the operational guidelines of the bus
company, the capacity, and the energy charges at the charging
station.

While there is an extensive body of works on planning
the charging at the charging station(s) and scheduling the
bus timetables accordingly, the optimal charging plans can
be disrupted during the actual operations due to the inherent
uncertainty of bus travel times [18], [19]. For instance, exoge-
nous factors such as traffic congestion and traffic light cycles
might increase the waiting times of passengers and delay the
arrival of the bus at the charging point [20]. The latter might
result in the disruption of the charging schedules with several
negative effects, such as: (i) charging with an increased energy
price; (ii) delay or refuse of charging because the charging
point is occupied by another bus; (iii) disruption of future bus
dispatches/crew schedules; and (iv) excess strain on the power
grid.

This motivates our work: we propose a bus holding control
method with the dual objective of (a) minimizing the deviation
between the actual and planned headways to improve the
regularity of the bus operations, and (b) adhering to the
pre-planned charging schedule by arriving at the charging
point(s) on time. We note here that a charging schedule is
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the schedule of the arrival times of all electric buses operating
in the course of one day at the respective charging point(s).

In this study, we will focus on bus holding which is the
most prominent control method and does not lead to the
refusal of passenger boardings [3], [21]. Bus holding has a
similar effect as the decrease of traveling speed between bus
stops and is implemented at particular control point stops
where a bus is held if it has come too close to its preceding
one [22]. Since we target urban environments with several
electric buses, we note that in such context buses operate under
high frequencies where the main objective is to adhere to the
planned headways [23], [24].

The remainder of this paper is structured as follows: in
section II, we provide a literature review on the corrective con-
trol method of bus holding. Section III provides our problem
definition and our mathematical program. It also introduces
an analytic bus holding solution that considers the service
regularity and the scheduled charging times of electric buses.
Section IV adjusts our analytic solution to obtain (i) a reliable
bus holding solution, or (ii) a solution via stochastic optimiza-
tion under the presence of travel time uncertainty. Section V
demonstrates the solution of our mathematical program in a
hypothetical scenario. In addition, it tests the performance
of our proposed holding method against the closed-form bus
holding method of [25] in a simulation environment of bus
line 15 in Amsterdam. Section VI discusses the results of our
work and its current limitations. Finally, section VII concludes
our work and draws the future research directions.

II. LITERATURE ON BUS HOLDING

Passengers expect to experience waiting times at stops
which are at most equal to the scheduled headways of the daily
timetable [26]. Nonetheless, the travel time variability during
the actual operations results in bus bunching and excessive
passenger waiting [27], [28].

Control methods for bus bunching have been studied since
the early 1970s [29]. Nevertheless, the bus bunching problem
remains a prominent research topic because of its inherent
complexity. References [29] and [30] introduced specific key
performance indicators to monitor the average passenger wait-
ing times at stops. To minimize the average waiting time of
passengers, [30] considered one control point at which buses
can be intentionally held.

Typical objectives of bus holding methods are head-
way adherence [31]–[33], headway regularity [28], [34],
and the minimization of passenger waiting and in-vehicle
times [35]–[37]. It should be noted here that, as a general
practice, buses are not held at every stop because this will
increase the passenger inconvenience. In contrast, bus holding
is typically allowed at a pre-determined sub-set of important
bus stops, known as control points [38]. Notwithstanding,
holding buses at all stops might also have its benefits because
this can result in reduced holding times given the increased
number of potential control locations.

In bus holding, two different directions of research have
emerged. One prominent direction models the bus holding
problem as a rolling horizon problem where decisions about

the holding times of a number of trips are made simulta-
neously [39], [40]. In this line of research, the bus holding
problem is typically modeled as a multivariate mathematical
program where collective decisions are made. The second
direction is based on closed-form functions of bus arrival times
that determine the holding times by considering the differences
between the actual and target headways [25], [34], [41]–[44].
Works in the second direction prevent bus bunching from the
onset and can return a globally optimal solution, unlike the
more detailed multivariate mathematical programs of rolling
horizon methods for which one should typically resort to
heuristics.

A. Rolling Horizon Methods

Examples of works on bus holding in rolling horizons are
the Ph.D. thesis of [45] and the works of [39], [46], [47].
Such works determine simultaneously the holding times of
all buses that are expected to operate within a rolling horizon.
The optimized holding times can be updated later in time when
subsequent buses arrive at the control point.

References [39], [48] assumed that interstation travel times
and passenger arrival rates are constant in rolling horizons
with short time durations. The holding problem of all running
buses in a rolling horizon was modeled as a quadratic program
aiming at minimizing the total passenger waiting times. Refer-
ence [47] formulated a mathematical model to produce a plan
of holding times that cater for expected changes in running
times and demand. Its effectiveness was evaluated within a
simulation environment.

Reference [35] developed a mathematical program that
incorporates vehicle capacity constraints. Their objective was
to minimize the total travel times experienced by all passengers
in the system resulting in a non-convex, quadratic objective
function which cannot be always solved to global optimality.
In a later work, [36] investigated two control policies applied
within a rolling horizon framework: (i) vehicle holding, which
can be applied at any stop, and (ii) holding combined with
boarding limits, in which the number of passenger boardings
at any stop can be restricted to increase operational speed. The
respective mathematical programs were solved using MINOS
on an Intel Core2 Duo @ 2.66 GHz with reported running
times in the range of 3.8 s - 5.2 s.

Reference [37] utilized a dynamic objective function and a
predictive model of the bus system to make decisions on bus
holding and stop-skipping (known also as expressing). The
uncertain passenger demand was included in the model as a
disturbance. The resulting optimization problem was NP-Hard
and was solved using an ad hoc implementation of a Genetic
Algorithm. Reference [40] used also an algorithm from the
area of evolutionary optimization to solve an NP-Hard pro-
gram which suggests holding times that minimize the waiting
times of passengers and account for regulatory constraints.

Reference [49] developed a mathematical control model
for holding using real-time information of the locations of
buses along a specified route. The model was solved with
the simulated annealing metaheuristic. Reference [50] used the
stochastic model developed by [51] to derive the trajectories
of buses on a single route. Using Marguier’s model, [50]
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developed a bus holding algorithm that is applied each time
a bus arrives at the control point stop. To this end, Mar-
guier’s model was used to approximate the trajectories of all
“upstream” buses. After that, the bus holding time was selected
using a line search method because obtaining an analytic
solution was not possible given the complexity of deriving
the first-order conditions of the optimization problem.

Most of the above-mentioned models resort to
(meta)heuristics to solve the respective multivariate
mathematical programs because of their inherent complexity.

B. Closed-Form (Threshold-Based) Models

Typically, closed-form expressions are used to determine
the holding times by considering the differences between the
actual and the target headways. Reference [25] tested two of
the most common closed-form expressions for bus holding:
(i) the one-headway-based control where a bus is held at a
control point stop if its time headway with its preceding bus is
lower than a pre-defined threshold; and (ii) the two-headway-
based control that considers the time headway of a bus with
both its preceding and following bus.

Similarly, [52] set the holding time of a bus to zero if its
predicted headway with its following bus is less than or equal
to the minimum headway. When the actual vehicle headway
is less than the prescribed minimum headway, the following
vehicle will be delayed until the minimum headway require-
ment is satisfied.

Reference [41] proposed an adaptive control scheme that
adjusts a bus cruising speed in real-time based on both its front
and rear spacings. In line with other closed-form approaches,
it had a simple and decentralized logic enabling to correct the
effect of traffic disruptions in real-time.

Reference [34] proposed an analytic bus holding solution
that changes the headway of each newly arrived bus at a
control point stop to the weighted average of its former
headway and the former headway of the trailing bus. This
approach tends to re-equalize the headways after a disturbance.
The major difference of [34] from the previously described
works is that it merely normalizes the headways and does not
adhere to a target headway value. Thus, it does not use a
headway threshold to trigger the bus holding.

Finally, [43], [44] proposed a method consisting of identi-
fying probabilistically the bus that will be the most delayed
upon its arrival at a control point stop. Then, they held
each preceding bus to prevent the lagging bus from departing
with a big gap. Reference [22] also tested schedule-based
and headway-based holding strategies where the solution was
expressed as a closed-form expression of arrival times and
scheduled headways. They tested the importance of setting a
maximum holding time and a reliability buffer time in tram
line 9 in The Hague.

C. Electric Bus Planning and Contribution

From the above studies, bus holding control methods focus
overwhelmingly on improving the bus operations (whether
this means maintaining the target headways, reducing the
passenger waiting times or limiting the in-vehicle travel times).

Therefore, we identify a main research gap: there is a lack
of bus holding studies that consider the improvement of the
service regularity and, at the same time, cater for the charging
requirements of electric buses.

To the best of our knowledge, there are no past studies
that develop bus holding models for electric buses. Past works
on electric buses focus overwhelmingly on the scheduling
of viable electric bus routes [53], [54], and the planning of
the daily operations considering the availability of vehicles,
the waiting times of passengers, and the charging costs [10],
[55]–[57]. For instance, [57] developed a multi-objective par-
ticle swarm optimization algorithm for the vehicle scheduling
problem of electric buses considering the smoothing of vehicle
departure intervals, the minimization of the number of vehi-
cles, and the reduction of total charging costs. In addition, [55]
developed column-generation-based algorithms for the vehicle
scheduling of electric buses considering both battery swapping
and fast charging at a battery station. Recent works have
also focused on planning decisions related to the selection
of charging station locations, the number of chargers to be
installed, and the recharging schedules (see [58]).

The aforementioned studies on route design, charging
scheduling, and vehicle scheduling of electric buses are con-
fined to the strategic and tactical planning levels. Thus, they
cannot address abnormalities that emerge during the opera-
tional stage due to traffic congestion or changes in passenger
demand. For this, real-time control measures – such as bus
holding – are required to react to the disruptions during the
actual operations and maintain the regularity of services.

This study tries to fill this research gap by integrating the
planned charging times of electric buses to the bus holding
decisions and incorporating both aspects in a mathematical
model that can be applied at the operational stage. That is,
our work uses as input the pre-defined bus routes, the daily
timetables, and charging schedules when applying bus holding
in real-time conditions.

The incremental contributions of this work to the state-of-
the-art are:

• the development - for the first time - of a bus holding con-
trol model applicable to electric buses that accounts for
the scheduled charging times and uncertain interstation
travel times;

• the introduction of an analytic solution that has an
intuitive interpretation and can return a bus holding
suggestion in real-time;

• the investigation of its potential gain compared to state-
of-the-art bus holding works that do not consider the
charging schedules in a simulated scenario of bus line
15 in Amsterdam.

III. PROBLEM DEFINITION AND

MATHEMATICAL PROGRAM

A. Problem Definition

The bus holding decision of a bus trip i at a control
point stop s is made when it has completed all its board-
ings/alightings and is ready to depart. In our problem, this
holding decision should take into consideration not only the
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TABLE I

NOTATION

regularity of the service, but also the planned charging time of
the bus. As in the majority of works in real-time bus holding
(see [28], [34], [41], [50]), we do not consider the effect
of overcrowding when holding a bus. This is a reasonable
assumption because the scheduling of the vehicle capacity is
already performed at the tactical planning stage and includes a
capacity buffer in case of increased passenger demand due to
holding [59]. Besides, the vehicle capacity problem cannot be
addressed in real-time control because it results in non-convex
mathematical programs that do not have a globally optimal
solution and are computationally intractable (see [36]).

Proceeding to a formal description of our model, we intro-
duce the nomenclature in Table I.

At time instance Ti,s , bus trip i is ready to depart from
the control point s. When we make a holding decision, our
objective is to hold the bus trip i at stop s to maintain the
target headway, H0, with its preceding bus trip, i − 1. At the
same time, our holding decision, di,s − Ti,s ≥ 0, should not
result in a delay that will postpone the scheduled charging
time, ρi , of bus trip i at the charging station. The bus holding
decision considers the optimal option for the trip that is ready
to depart from the control point stop (see [25]).

The time instance Ti,s when a bus trip i is ready to
depart from control point stop s is presented in Fig.1. In the
time-space diagram of Fig.1 we present the realized and
expected trajectories of bus trip i and its preceding trip, i − 1.

Bus trip i is held at stop s if it is closer to its preceding bus,
i−1, than the target headway, H0. That is, if Ti,s−di−1,s < H0.
If this is the case, we hold trip i for time (di−1,s + H0) − Ti,s

Fig. 1. Illustration of bus trajectories in a time-space diagram.

at the control point stop to eliminate the deviation between
the actual and the target headway. In the opposite case where
Ti,s − di−1,s > H0, bus trip i will depart as soon as possible
because its actual headway with the preceding bus trip i − 1
is greater than H0, indicating that it is left behind. This yields
the control logic:

di,s =
�

di−1,s + H0 if Ti,s < di−1,s + H0

Ti,s otherwise
(1)

where di,s is the determined departure time of trip i from the
control point s and di,s − Ti,s the resulting holding time. The
expected travel time of bus trip i from stop s to the charging
location is E[ti,s ]. If bus trip i needs to reach its charging
location before time ρi for charging as planned, then:

di,s + E[ti,s ] ≤ ρi (2)

In addition, trip i cannot depart prior to Ti,s which is the
time when trip i has completed the boardings/alighting at
stop s. This yields:

Ti,s ≤ di,s (3)

Note that from the above constraints, the constraint of Eq.(3)
is a physical, hard constraint and cannot be violated. Note also
that constraints (1),(2) cannot be satisfied in all cases given
the conflicting nature of constraints (1)-(3).

B. Mathematical Program

Since constraints Eq.(1),(2),(3) cannot be always satisfied,
a hierarchy between soft and hard constraints should be
established. Obviously, Eq.(3) is a hard constraint and should
receive the highest priority because a bus cannot depart if it
has not completed its boardings/alightings.

Lowest in the hierarchy is the equality constraint of Eq.(1)
which determines the optimal bus departure from the control
point and is more of an objective rather than a constraint.
Therefore, we relax it by reformulating it as a problem
objective. For this, we introduce the dummy variable:

μi,s =
�

1 if Ti,s < di−1,s + H0

0 otherwise
(4)
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In addition, we introduce the objective function:
f (di,s )=μi,s

�
di,s −(di−1,s +H0)

�2+(1−μi,s)
�
di,s −Ti,s

�2

(5)

which returns the optimal value of di,s when it is minimized.
This value is equivalent to the value of the equality constraint
of Eq.(1) if constraints Eq.(2) and (3) are satisfied. The proof
of this claim is provided in Theorem 2 in the Appendix.
Theorem 2 proves that the minimization of our objective
function f returns the values of Eq.(1) provided that all other
constraints are satisfied. Therefore, we can replace Eq.(1) with
f and solve the following mathematical program to obtain the
optimal holding solution of bus trip i at control point s:

(Qi,s ) : min
di,s

f (di,s)

s.t.: di,s ∈ F = {di,s | di,s satisfies Eq. (2), (3)}
(6)

Solving the mathematical program (Qi,s ) is equivalent
to enforcing the (in)equality constraints Eq.(1),(2),(3) when
constraints Eq.(2),(3) are satisfied for the optimal value of di,s .
The advantage of mathematical program (Qi,s ) is that it still
computes an optimal value for di,s even if such solution does
not result in meeting the target headway. That is, a trade-off
between meeting the planned charging time and adhering to
the target headway is established. Toward this end, the objec-
tive function f (di,s ) will seek solutions close to di−1,s + H0 if
μi,s = 1 and Ti,s if μi,s = 0 because any deviations from those
values are progressively penalized with a squared penalty.

Finally, as we previously stated, there exist cases where the
constraint of meeting the scheduled charging time, Eq.(2), and
the hard constraint of Eq.(3) are conflicting. Thus, they cannot
be satisfied simultaneously. Since Eq.(3) is a hard, physical
constraint, we relax Eq.(2) which becomes a soft constraint
and is allowed to be violated under certain circumstances.

Soft constraints are typically treated as penalty terms and
are added to the objective function [60]. In this way, program
(Qi,s ) that, under certain circumstances, has no feasible solu-
tion can be transformed to program (Q̂i,s ). This is achieved
by relaxing the inequality constraint of Eq.(2) and adding a
penalty for its violation to the objective function. To this end,
its relative importance is weighted by introducing a very large
number M ∈ R≥0 according to the Big-M theory (see [61]).
The scale of M depends on the problem at hand and is selected
in such a way to ensure that the satisfaction of the charging
constraint is prioritized over the reduction of the objective
function value:

(Q̂i,s ) : min
di,s

f (di,s ) + M max(di,s + E[ti,s ] − ρi , 0)

s.t.: di,s ∈ F = { di,s | Ti,s ≤ di,s } (7)

Note that the “max” term of M max(di,s + E[ti,s ] − ρi , 0)
makes the new objective function of program Q̂i,s non-smooth
and the program cannot be always solved to global optimality.
To rectify this, we implement the “max” penalty by introduc-
ing a new variable ν that, due to its bounds and the direction
of optimization, will take the value max(di,s + E[ti,s ] − ρi , 0)

at the solution. The reformulated program is:
(Q̃i,s ) : min

ν,di,s
f (di,s ) + Mν

s.t.: di,s ≥ Ti,s

ν ≥ 0

ν ≥ di,s + E[ti,s ] − ρi (8)

which can be solved to global optimality and has a unique
solution, as shown in Theorem 3 in the Appendix.

C. Analytic Solution

Theorem 3 proves that mathematical program (Q̃i,s ) has a
unique solution which is also a globally optimal one. Solving
program (Q̃i,s ) though with an off-the-shelf solver might
result in high computational costs that are not acceptable
when making a real-time holding decision. More importantly,
these computational costs rise even further if we consider the
uncertainty of interstation travel times that will require to solve
program (Q̃i,s ) for an infinite (or at least a very large) number
of possible interstation travel time realizations.

To address this issue, we introduce an analytic solution for
program (Q̃i,s ) that can return an optimal bus holding time in
real-time even when considering travel time uncertainty. This
analytic solution is detailed in Theorem 1.

Theorem 1: The analytic solution of program Q̃i,s is

di,s

=
�

max{Ti,s , min{ρi − E[ti,s ], di−1,s + H0}} for μi,s = 1

Ti,s for μi,s = 0

Proof: For μi,s = 1, program Q̃i,s becomes

min
ν,di,s

(di,s − (di−1,s + H0))
2 + Mν

s.t.: di,s ≥ Ti,s

ν ≥ 0

ν ≥ di,s + E[ti,s ] − ρi (9)

Due to constraint di,s ≥ Ti,s , di,s can only be greater or
equal to Ti,s . Let x ≡ di,s for simplifying the notation. Let also
g1(x, ν) = Ti,s − x ≤ 0, g2(x, ν) = −ν ≤ 0 and g3(x, ν) =
−ν + x + E[ti,s ] − ρi ≤ 0. Then, program Q̃i,s is equivalent
to

min
ν,x

(x − (di−1,s + H0))
2 + Mν

s.t.: x, ν ∈ F = { x, ν | g1(x, ν) ≤ 0, . . . , g3(x, ν) ≤ 0 }
(10)

which seeks to minimize a function θ(x, ν)
.= (x − (di−1,s +

H0))
2 + Mν in the feasible region F . From the Karush-Kuhn-

Tucker (KKT) conditions, (x∗, ν∗) minimize P̃i,s , if and only
if there exist dual variables (KKT multipliers λ1, λ2, λ3) such
that

(1) ∇L(x∗, ν∗, λ1, λ2, λ3) = 0
(2) λ j g j (x, ν) = 0, ∀ j ∈ {1, 2, 3} (complementary

slackness)
(3) λ j ≥ 0, ∀ j ∈ {1, 2, 3}
(4) (x∗, ν∗) ∈ F
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TABLE II

KKT MULTIPLIER VALUES AT EACH POTENTIAL CASE

where

L(x, ν, λ1, λ2, λ3)
.= (x −(di−1,s +H0))

2+Mν+λ1g1(x, ν)

+ λ2g2(x, ν) + λ3g3(x, ν) (11)

Interpreting the multipliers, each constraint g j (x, ν) is
active (binding) if λ j > 0, because in that case λ j g j (x, ν) =
0 ⇒ g j (x, ν) = 0. From the KKT conditions, we get the
following system of equations

∂L/∂x = 0 ⇒ 2(x∗ − (di−1,s + H0)) − λ1 + λ3 = 0
∂L/∂ν = 0 ⇒ M − λ2 − λ3 = 0
λ1(Ti,s − x∗) = 0
−λ2ν

∗ = 0
λ3(−ν∗ + x∗ + E[ti,s ] − ρi ) = 0
λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0
(x∗, ν∗) ∈ F

The above system of equations can be solved for 23 different
cases, given the potential combinations of KKT multiplier
values presented in Table II.

Let us consider case I (λ1 = λ2 = λ3 = 0). Then, the system
of equations of the KKT conditions has no feasible solution
because we get that M = 0 which does not hold.

In case II, solving the above system of equations
returns a unique solution (x∗; ν∗; λ1; λ2; λ3) = (di−1,s +
H0; 0; 0; M; 0). This means that x∗ = di−1,s + H0.

In case III, there is no feasible solution because we get that
λ3 = 2(di−1,s + H0 − x∗) and, at the same time, λ3 = M .

In case IV, solving the above system of equations returns a
unique solution (x∗; ν∗; λ1; λ2; λ3) = (ρi − E[ti,s ]; 0; 0; M +
2(ρi − E[ti,s ] − di−1,s − H0); −2(ρi − E[ti,s ] − di−1,s − H0)).
This means that x∗ = ρi − E[ti,s ] when λ3 > 0 ⇔ −2(ρi −
E[ti,s ] − di−1,s − H0) > 0 ⇔ ρi − E[ti,s ] < di−1,s + H0.

In case V, there is no feasible solution because we get
that M = 0. In case VI, solving the above system of
equations returns a unique solution (x∗; ν∗; λ1; λ2; λ3) =
(Ti,s ; 0; 2(Ti,s −(di−1 + H0); M; 0). This means that x∗ = Ti,s

when λ1 > 0 ⇔ 2(Ti,s − (di−1,s + H0)) > 0 ⇔ Ti,s >
di−1,s + H0.

In case VII, solving the above system of equations returns
a unique solution (x∗; ν∗; λ1; λ2; λ3) = (Ti,s; Ti,s − ρi +
E[ti,s ]; 2(Ti,s −di−1,s − H0)+ M; 0; M). This also means that
x∗ = Ti,s when λ1 > 0 ⇔ 2(Ti,s − (di−1,s + H0)) > 0 ⇔
Ti,s > di−1,s + H0. Finally, for case VIII there is no feasible
solution because we get that E[ti,s ] = ρi . Summarizing the
above, for given parameter values Ti,s , ρi , E[ti,s ], di−1,s , H0
we have the following tree of options (Fig.2).

The solutions from Fig.2 can be succinctly written as

x∗ = max{Ti,s , min{ρi − E[ti,s ], di−1,s + H0}} for μi,s = 1

and this completes the first part of our proof.

Fig. 2. Solutions of program Q̃i,s for μi,s = 1.

Let us now consider the case where μi,s = 0. Then, program
Q̃i,s becomes

min
ν,di,s

(di,s − Ti,s )
2 + Mν

s.t.: di,s ≥ Ti,s

ν ≥ 0

ν ≥ di,s + E[ti,s ] − ρi (12)

Note that this program is equivalent to the program of Eq.(9)
with the only difference that di−1,s + H0 is replaced by Ti,s .
Since the program of Eq.(9) attains solution

x∗ = max{Ti,s , min{ρi − E[ti,s ], di−1,s + H0}} for μi,s = 1,

the solution in the case where μi,s = 0 becomes:
x∗ = max{Ti,s , min{ρi − E[ti,s ], Ti,s }} for μi,s = 0

Evidently, max{Ti,s , min{ρi − E[ti,s ], Ti,s }} is always equal
to Ti,s regardless whether ρi − E[ti,s ] < Ti,s or not. Hence,
the second part of our proof is also complete.

�

IV. SOLUTIONS UNDER TRAVEL TIME UNCERTAINTY

A. Finding a Reliable Solution

Until now, our bus holding solution considers the expected
travel time, E[ti,s ], of bus trip i from the control point stop
s to the charging station. Nevertheless, due to the interstation
travel time uncertainty, our bus trip might arrive late at the
charging station. A common approach to account for the
inherent uncertainty of travel times is the computation of a
reliable solution. In our search for a reliable solution, we seek
a solution di,s for which we can be confident that bus trip
i will arrive at the charging point before time ρi . This can
be achieved by considering the y-th percentile, t y

s , of the
total travel time from stop s to the charging point. The y-
th percentile can be the 90th, 95th, 99th or another percentile
according to the needs of the bus operator. It is defined as:

t y
s : Pr(ti,s ≤ t y

s ) =
� t y

s

−∞
φ(ti,s ) dti,s = y% (13)
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where φ(ti,s ) is the probability density function of the random
variable ti,s . I.e., if y is the 95th percentile, then t y=95

s :
Pr(ti,s ≤ t y

s ) = � t y
s

−∞ φ(ti,s ) dti,s = 95%.
Consequently, the average travel time E[ti,s ] in program

Q̃i,s can be substituted by the y-th percentile since it will
only exceed that value at (100-y)% of the cases. With this
substitution, the reliable solution is found by solving the
following program:

(P̃i,s ) : min
ν,di,s

f (di,s) + Mν

s.t.: di,s ≥ Ti,s

ν ≥ 0

ν ≥ di,s + t y
s − ρi (14)

Note that program P̃i,s inherits the properties of Q̃i,s

because its only difference is the replacement of E[ti,s ] with
t y
s . Thus, the reliable bus holding solution of trip i at control

point s is:

di,s =
�

max{Ti,s , min{ρi − t y
s , di−1,s + H0}} for μi,s = 1

Ti,s for μi,s = 0

B. Stochastic Optimization

When searching for a reliable bus holding solution, we use
the y-th percentile of the random variable ti,s . This, however,
might lead to a conservative solution that does not fully exploit
the improvement potential of service regularity in cases that
are close to the average. A potential remedy is to consider the
stochastic nature of interstation travel times in the optimization
phase and solve the bus holding problem as a stochastic
optimization program.

To this end, let us assume that we can obtain the travel
time variation Var[ti,s ] from historical data. Then, the travel
time of trip i from stop s to the charging station is a random
variable ti,s that follows some probability distribution ti,s ∼
X (ȳ, σ ) where ȳ ≡ E[ti,s ] and σ 2 ≡ Var[ti,s ]. Note that the
probability distribution, X , can be derived from historical data.
Past works [42], [62], have proposed the use of the normal
distribution, ti,s ∼ N (ȳ, σ ), along with the constraint of ti,s ≥
tmin
i,s where tmin

i,s is the lowest possible travel time under free
flow conditions.

This introduces randomness to program Q̃i,s which is
transformed into a stochastic optimization program:

(Pi,s ) : min
ν,di,s

f (di,s ) + Mν

s.t.: di,s ≥ Ti,s

ν ≥ 0

nu ≥ di,s + ti,s − ρi

ti,s ∼ X (ȳ, σ )

ti,s ≥ tmin
i,s (15)

In general, the stochastic optimization program (Pi,s ) can
be solved with iterative approximation methods that try to
minimize the expected value E[ f (di,s)+ Mν]. An example is
the Sample Average Approximation (SAA) method [63] that

TABLE III

PARAMETER VALUES OF THE IDEALIZED SCENARIO

TABLE IV

HOLDING DECISIONS FOR DIFFERENT VALUES OF ρi

uses a combination of sampling and deterministic optimization
to solve Pi,s .

In more detail, SAA tries to approximate the value of
E[ f (di,s )+Mν] with the use of Monte Carlo sampling. In this
pursue, the problem is optimized for a very large number of
realizations (ti,s )r

1=1 and each time is solved deterministically
(as in Q̃i,s ). Evidently, solving this problem in real-time for a
very large number of realizations (ti,s )r

1=1 is not possible if one
uses an off-the-self solver. To rectify this, our analytic solution
can be used to solve the stochastic optimization problem in
real-time by merely evaluating the following solutions:

di,s =
�

max{Ti,s , min{ρi − ti,s , di−1,s + H0}} for μi,s = 1

Ti,s for μi,s = 0

for each (ti,s )r
1=1.

V. NUMERICAL EXPERIMENTS

A. Demonstration

To describe the mechanism behind our control logic, we per-
form a small demonstration. In our demonstration, we use an
idealized scenario to manifest the solution of our model and
its underlying control logic. In our idealized scenario, trip i
arrives at control stop s and completes its boardings/alightings
at time Ti,s = 1500s. The parameters of our scenario are
presented in Table III.

From Table III it is evident that Ti,s < di−1,s + H0, and
thus μi,s = 1.

Let us now display the decisions of our proposed control
logic for different values of planned charging times, ρi .
To perform this task, we report (i) the value of our analytic
solution, and (ii) the value of the solution of our mathematical
program Q̃i,s . Mathematical program Q̃i,s is solved in a
general-purpose computer with Intel Core i7-455 7700HQ
CPU @ 2.80GHz and 16 GB RAM using CPLEX 12.8. The
results are summarized in Table IV.
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Fig. 3. Performance of the objective function in the region
F = { ν = 0, di,s ≥ Ti,s } for ρi = 4800 s.

Fig. 4. Performance of the objective function in the region
F = { ν = 0, di,s ≥ Ti,s } for ρi = 4600 s.

For ρi = 4800 s, we plot the objective function of program
Q̃i,s in the region F = { di,s ≥ Ti,s } (see Fig.3). From Fig.3
it is evident that the optimal solution is di,s = 1600 s. Note
that for di,s > 1800 s, ν > 0 because di,s + t y

s − ρi > 0 and
the objective function is penalized by the product Mν.

For ρi = 4600 s, we also plot the objective function of
program Q̃i,s in the region F = { di,s ≥ Ti,s } (see Fig.4).
For di,s > 1600 s, the objective function cost exhibits a sharp
increase because the constraint ν ≥ di,s + E[ti,s ] − ρi is
activated and the objective function is penalized by the large
value of Mν.

For ρi = 4550 s, the constraint ν ≥ di,s + E[ti,s ] − ρi

is active (where active means that ν = di,s + E[ti,s ] − ρi

for di,s = 1550 s). Hence, di,s = 1550 s is the optimal
solution of program Q̃i,s instead of the solution di,s = 1600 s
that does not consider the adherence to the planned charging
time.

Now, for ρi = 4500 s, we have an active constraint
ν = di,s + E[ti,s ] − ρi when di,s = Ti,s = 1500 s.
Finally, for ρi = 4200 s, bus i is already delayed and
cannot meet its scheduled charging time because, even if
di,s admits its minimum possible value, Ti,s + E[ti,s ] > ρi .
Therefore, the solution of Q̃i,s is indeed di,s = 1500 s with
ν = 300 s.

The above analysis demonstrates that our analytic solution is
equivalent to the solution of program (Q̃i,s ) in every possible
scenario.

Fig. 5. Bus line 15 in Amsterdam.

B. Simulation-Based Evaluation of Our Control Logic

Holding a bus every time it arrives a control point stop is
a local-level decision that might have broader impacts on the
entire chain of running trips. For this reason, we investigate
the impact of such decisions.

To evaluate our control logic in a systematic manner,
we build a simulation of bus line 15 operating in Amsterdam.
The first stop of bus line 15 is Amsterdam Station Zuid and the
last stop is Amsterdam Station Sloterdijk. Bus line 15 serves
16 bus stops, as presented in Fig.5. The total trip duration for
this line is approximately 26 minutes and it is operated by
electric buses.

We consider a short time period of the day from 8 am to
9 am with 7 bus trips. We select this period because it is the
morning peak resulting in high frequencies. Trips start from
Amsterdam Station Zuid (stop 1) and complete their service
at Amsterdam Station Sloterdijk (stop 16). When in scheduled
service, the buses will be recharged with seven rapid chargers
at Sloterdijk station. During the night, the batteries are fully
recharged with slow chargers at another location. For the pur-
pose of our simulation-based evaluation, we assume that buses
can be held at any intermediate bus stop �1, 2, 3, . . . , 15�.

Bus trips i = {1, 2, . . . , 7} are dispatched every 8 minutes
and the target headway H0 is 8 min, or, equivalently, H0 = 480
s. In addition, our control logic computes a reliable holding
solution every time a bus trip is ready to depart from an
intermediate bus stop considering the 95th percentile of the
total travel time from stop s to the charging point, t y

s .
In the current implementation of our simulation system,

we do not explicitly model signal control and other traffic.
Instead, we consider the interstation bus travel times (speed)
as random variables that follow a probability distribution.
This simulation approach has been widely used for validation
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purposes in bus holding control studies because the selection
of an appropriate travel time distribution is able to capture the
effects of signal control and traffic congestion [34], [64].

In past literature, normal and lognormal distributions are
commonly used to model interstation travel times [25], [44],
[65]. In this study, we assume a normal distribution as in [25].
Therefore, the realization of each interstation travel time from
stop j to stop j +1 is ti, j ∼ N (E[ti, j ], Var[ti, j ]) where E[ti, j ]
is the expected interstation travel time and Var[ti, j ] its variance
for the respective j (see Table V). Given that a sampled travel
time from a normal distribution can assume a negative value,
we bound the lower value of the interstation travel time ti, j by
tmin
i, j ∈ R>0, where tmin

i, j is the minimum possible travel time
under free flow conditions. That is to say, in our simulation
scenario the interstation travel times, t̃i, j , are sampled from
the following probability distribution:

t̃i, j = max{tmin
i,s , ti, j ∼ N �

E(ti, j ), Var(ti, j )
�} (16)

Furthermore, our simulation tests assume that passenger
arrivals at each bus stop follow a Poisson process, as in [25],
[66]. This is a reasonable assumption because several studies
have shown that passengers do not coordinate their arrivals
at bus stops with the expected arrival times of buses in
high-frequency services [50], [67]. In addition, as in [59],
[67], the hourly passenger boarding and alighting rates in the
simulation tests are assumed to be constant.

In the simulation analysis, four performance measures are
used to evaluate the general effects of our control strategy that
seeks to minimize the deviation between the actual and the
target headways while meeting the charging schedules. These
are: (i) the average passenger waiting times, (ii) the average
bus travel time, (iii) the missed scheduled charging(s), and (iv)
the overall charging delay.

The average passenger waiting times are calculated accord-
ing to the well-known formula of [66]:

E[W ] .= E[H ]
2

+ Var[H ]
2E[H ] (17)

where E[W ] is the average passenger waiting time and Var[H ]
the headway variance at the control point stop. Table V
presents the expected travel times of trips from intermediate
bus stops �1, 2, 3, . . . , 15� to the charging location, E[ti,s ],
their variance, Var[ti,s ], and the 95th percentile, t y

s . Those
values are derived after analyzing two months of historical
automated vehicle location (AVL) data from [68].

In addition, the scheduled dispatching and charging times
with the rapid chargers at Sloterdijk station are presented
in Table VI.

Then, we perform a comparative analysis using as a bench-
mark the control logic of [25]. In the comparative analysis,
the control logic of [25] and the control logic proposed in
this study are applied in the same simulation scenario. Similar
to the vast majority of works in bus holding, the control
logic of [25] is deterministic and does not consider the
scheduled charging times of electric buses. The logic of [25]
is summarized as:

di,s =
�

di−1,s + H0 if Ti,s < di−1,s + cH0

Ti,s otherwise
(18)

TABLE V

TRAVEL TIMES FROM CONTROL POINT STOPS TO THE
CHARGING LOCATION IN MINUTES

TABLE VI

SCHEDULED DISPATCHING AND CHARGING TIMES

OF THE 7 SIMULATED TRIPS

where c ∈ R : 0 ≤ c ≤ 1 and is a holding control parameter
(for our evaluation, we set c = 1).

To reduce the comparison bias of the comparative analysis,
we run 1,000 Monte Carlo simulations with repeated random
sampling. For this reason, at each simulation we sample the
interstation travel times using Eq.(16) and apply the respective
control logic given the underlying status of the simulated
operations.

The average values of the four performance measures after
using the respective holding control measures at each simu-
lation are summarized in Table VII. The improvement (dete-
rioration) of the performance indicators when applying our
proposed control logic instead of the control logic of [25] is:
(i) 1.05% deterioration of the average passenger waiting times,
(ii) 4.54% improvement of the average trip travel times, and
(iii) 55.1% improvement of the overall charging delays.

VI. DISCUSSION

A. Evaluation Results

As shown in Table VII, the average passenger waiting
time is increased by 1.05% when applying our control logic.
Therefore, passengers will have to wait 2.7 seconds more (on
average). This is expected because, unlike past studies that
seek to minimize the average passenger waiting times [25],
[28], [43], our control logic prioritizes the adherence to the
charging schedule.

From our evaluation, one can observe that the deterioration
of average passenger waiting times is minimal compared
to the potential gains from arriving at the charging points
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TABLE VII

AVERAGE PERFORMANCE OF THE TWO CONTROL LOGICS
IN 1,000 SIMULATION SCENARIOS

on time (i.e., the improvement of charging delays stands at
55.1%). This is one of the main findings of our evaluation and
underlines the potential benefit of using our proposed control
logic instead of bus holding methods that do not account for
the scheduled charging times. To summarize, our bus holding
approach reduces significantly the charging delays of electric
buses without increasing the average passenger waiting times.

In addition, our control logic has the following indirect
positive effects:

• the total trip travel time is reduced by 4.54% (on average).
Hence, the in-vehicle travel times of passengers are also
reduced;

• bus trips are completed earlier; thus, the dispatches of
future trips operated by the same buses are not postponed.
This alleviates the negative effects of “schedule sliding”
which is a key issue of bus holding approaches [65].

The aforementioned indirect effects are crucial, and other
simulation studies, such as [69], have also made it explicit
that one should consider the trade-off between passenger wait
times and other factors.

B. Limitations

To facilitate the reproducibility of our work, we state the
main limitations of our control logic. Those limitations are:

• it can be only applied to high-frequency bus lines that
operate under regularity-based schemes;

• it is suitable for correcting the effects of mild disruptions
to the service regularity. In the case of severe disruptions,
bus operators should consider more radical measures such
as changes in the planned service provision and resource
allocation;

• as in the vast majority of bus holding works [25], [28],
[39], [50], our control logic is suitable in the context
where service supply (capacity) is sufficient to ensure that
there are no passengers who are unable to board due to
overcrowding.

VII. CONCLUSION

This work provided a control logic for bus holding of elec-
tric buses. The consideration of the scheduled charging times
of electric buses added another dimension to the traditional
bus holding problem and this resulted in a novel mathematical
program with a convex, quadratic objective function and linear
inequality constraints.

Our control logic is proved to have an analytic solution
(closed-form expression of departure times, the headway
threshold and the scheduled charging time). After carrying out
a systematic simulation-based analysis, the following conclu-
sions have been drawn from our case study of bus line 15 in
Amsterdam:

• the charging time delay(s) can be reduced by up to
55% with a minimal trade-off of an 1.05% increase in
passenger waiting times;

• restraining the holding times due to the charging con-
straints can improve the total trip travel times by 4.5%
and limit schedule sliding effects.

In future research, our approach can be expanded in
a wide range of problems involving electric vehicles. For
instance, with the proper modifications, future research can
expand our method to railway operations that operate under
regularity-based schemes.

Other advances could be the expansion towards using a
two-headway-based logic to consider the headway with the
preceding and the following bus when making a holding
decision, and the incorporation of time-varying charging costs
in the objective function.

APPENDIX

Theorem 2: Provided that constraints Eq.(2) and (3) are
satisfied, the minimizer of f (di,s) is equal to di−1,s + H0 if
Ti,s < di−1,s + H0 and Ti,s if Ti,s ≥ di−1,s + H0.

Proof: Assuming that Eq.(2) and (3) are satisfied,
the global optimum of function f over its domain [0,+∞)
is di,s such that f (di,s) ≤ f (x), ∀x ∈ [0,+∞). Given that
the devised function f is a smooth quadratic function with
continuous first and second-order derivatives for all feasible
x ∈ [0,+∞), it has a stationary point when ∂ f

∂x = 0 ⇒
2μi,s (x − (di−1,s + H0)) + 2(1 − μi,s )(x − Ti,s ) = 0. The
stationary point when Ti,s < di−1,s + H0 is 2 · 1(x − (di−1,s +
H0)) + 2 · 0(x − Ti,s ) = 0 ⇒ x = (di−1,s + H0). When
Ti,s ≥ di−1,s + H0, we have μi,s = 0 and the stationary
point becomes x = Ti,s . The second-order derivative of f is
∂2 f
∂x2 = 2μi,s +2(1−μi,s ) = 2 > 0; thus the stationary point is

the minimizer of f in [0,+∞). Hence, the minimizer of f is
di−1,s + H0 if Ti,s < di−1,s + H0 and Ti,s if Ti,s ≥ di−1,s + H0.

�
Theorem 3: A local minimizer of (Q̃i,s ) is also its unique

global minimizer.
Proof: A local minimizer of (Q̃i,s ) is the unique global

minimizer of (Q̃i,s ) if the objective function is strictly convex
and the feasible region is a convex set. The feasible region is
defined by linear inequalities and is a polyhedron (thus, it is
also a convex set). Further, we prove that the objective function
f (di,s ) + Mν is strictly convex with respect to di,s , ν. Let
f̃ (di,s , ν)

.= f (di,s ) + Mν. Let also x ≡ di,s for simplifying
the notation. Then, the Hessian matrix of f̃ reads:

H =

⎡
⎢⎢⎢⎢⎣

∂2 f̃ (x,ν)
∂x2

∂2 f̃ (x, ν)

∂x∂ν

∂2 f̃ (x, ν)

∂ν∂x
∂2 f̃ (x,ν)

∂ν2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣2 0

0 0

⎤
⎦
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To prove the strict convexity of f̃ , we should prove that the
Hessian matrix is positive definite. That is, zᵀHz is positive
for every column vector z ∈ R

2 \ {0, 0}. This yields

zᵀHz = 

z1 z2

�
H

�
z1
z2

�

= 

(2z1)

� �
z1
z2

�
= 2z2

1

which is positive for any possible values of z1, z2 ∈ R \ {0}.
Thus, f̃ is strictly convex and this completes our proof. �
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