
Ecological Informatics 27 (2015) 26–38

Contents lists available at ScienceDirect

Ecological Informatics

j ourna l homepage: www.e lsev ie r .com/ locate /eco l in f
Domain-specific languages for ecological modelling
Niels Holst a,⁎, Getachew F. Belete b

a Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
b Department of Geo-information Processing, Twente University, Veenstraat 40, 7511 AS Enschede, Netherlands
⁎ Corresponding author. Tel.: +45 22 28 33 40.
E-mail address: niels.holst@agrsci.dk (N. Holst).

http://dx.doi.org/10.1016/j.ecoinf.2015.02.005
1574-9541/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 16 February 2015
Accepted 24 February 2015
Available online 28 February 2015

Keywords:
Object-oriented
Component-based
Framework
Software design
The primary concern of an ecologicalmodeller is to construct amodel that ismathematically correct and that cor-
rectly represents the essence of a natural system. When models are published as software, it is moreover in the
hope of capturing an audiencewhowill use and appreciate themodel. For that purpose, themodel softwaremust
be provided with an intuitive, flexible and expressive user interface. A graphical user interface (GUI) is the com-
monly accepted norm but in this reviewwe suggest, that a domain-specific language (DSL) inmany cases would
provide as good an interface as a GUI, or even better.We identified only 13DSLs that have been used in ecological
modelling, revealing a general ignorance of DSLs in the ecologicalmodelling community.Moreover,most of these
DSLs were not formulated for the ecological modelling domain but for the broader, generic modelling domain.
We discuss how DSLs could possibly fill out a vacant niche in the dominant paradigm for ecological modelling,
which is modular, object-oriented and often component-based. We conclude that ecological modelling would
benefit from a wider appreciation of DSL methodology. Especially, there is a scope for new DSLs operating in
the rich concepts of ecology, rather than in the bland concepts of modelling generics.

© 2015 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 26
2. Earlier reviews . 27
3. Model building blocks . 27
4. The DSL niche. 28
5. DSL applications in ecological modelling . 29
6. Discussion . 30
Acknowledgements . 32
Appendix. 32
References. 37

1. Introduction of its sharp focus, a DSL does not provide the numerous capabilities of a
Ecological modellers have applied a variety of tools for model
construction: general programming languages, e.g., Fortran, C++ and
Java; mathematical software, e.g. Matlab (MathWorks, Natick, MA,
USA) and R (R Development Core Team, 2014); and dedicated model-
ling software, e.g. STELLA (ISEE Systems, Lebanon, NH, USA) and Simile
(Muetzelfeldt and Massheder, 2003). However, none of these tools
constitute a domain-specific language (DSL). A DSL is a computer pro-
gramming language of limited expressiveness focused at a particular
problem domain (Fowler, 2011; Harvey, 2005). Thus an ecological
model programmed in a DSL makes an effectively communicated state-
ment about the ecological rationale and function of the model. Because
general-purpose programming language. It just supports the minimum
of features needed to support its domain. An appropriate DSL will facil-
itate quick and effective software development, yielding programs that
are easy to understand and maintain. DSLs enable solutions to be
expressed in the dialect and at the level of abstraction of the problem
domain. Some DSLs might even be used by non-programmers
(van Deursen et al., 2000).

New programming techniques are often taken up rather slowly,
both by ecological modellers and by natural scientists in general
(Derry, 1998; Merali, 2010). It is our hypothesis that ecological
modellers, so far, have largely been unaware of DSL methodology. As
an example, many readers proficient in R have already used DSLs un-
knowingly: the R packages ggplot2 and plyr are both DSLs (Wickham,
2015); however, neither is for ecological modelling. In this review we
explore the use of DSLs in ecological modelling and discuss how
modellers could benefit from a wider application of DSLs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2015.02.005&domain=pdf
http://dx.doi.org/10.1016/j.ecoinf.2015.02.005
mailto:niels.holst@agrsci.dk
Journal logo
http://dx.doi.org/10.1016/j.ecoinf.2015.02.005
http://www.sciencedirect.com/science/journal/15749541
www.elsevier.com/locate/ecolinf

27N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
The choice of a modelling tool is naturally determined by habit. If a
modeller has earlier experience with software for data analysis, it is
convenient to use the same tool for rapid prototyping or even for the
full implementation of a model. This may be the background for models
developed in, for example, Matlab, R or spread sheets. A modeller who
is also a teacher of modelling will likely be acquainted with graphic
modelling tools, which give students a gentle entry to modelling. This re-
sults in models implemented in general modelling tools, such as STELLA.
It is a matter of debate whether such graphical modelling tools are better
suited for prototyping (Villa, 2001) than for seriousmodelling (Constanza
and Voinov, 2003). Some modelling languages appear as general pro-
gramming languages with simulation-specific features added. We find
these languages too unconstrained to qualify as DSLs, admitting that the
distinction is not clear-cut (cf. Fowler, 2011). Thus we have excluded
DEVS (Zeigler, 1987), a successful, object-oriented language for discrete-
event simulationmodels, and NetLogo (Tisue andWilensky, 2004), a suc-
cessful tool for individual-based modelling, from the review.

2. Earlier reviews

It is a long-standing goal to produce code that is flexible, modular
and open for re-use, both in software engineering in general (Martin,
2009) and in ecological modelling in particular (Silvert, 1993). How to
achieve this goal in ecological modelling has been the topic of several
earlier reviews. Thus, Liu and Ashton (1995) and Peng (2000) reviewed
the history of forestmodelling, notinghow the general evolution of soft-
ware from the 1960s to the 1990swas expressed in the implementation
and design of forest models. At first, models were programmed in pro-
cedural languages (e.g., Fortran, C) and were not designed for sharing
or re-use. Then object-oriented languages (e.g., C++, Java) took over,
and code re-usability, modularity and other aspects of ‘clean code’
(summarised by Martin, 2009) gained priority. Models also became
increasingly user-friendly, as it became easier to develop dedicated
graphical user interfaces (GUIs).

The ambition of developing a model, composed of re-usable building
blocks, easily grows into the ambition of creating, not just anothermodel,
but a whole modelling tool for the domain in question, for example, for-
estry or hydrology. Argent (2004) lists the desired features of such a
modelling tool; it should include a library of ready-to-use components,
a development platform to construct new components from provided
templates, a canvas on which to construct models from components,
and a model execution environment. The canvas was envisaged as a
GUI with drag-and-drop of model components. Argent (2004) did not
mention DSLs as an alternative to the graphical canvas. Patrick Smith
et al. (2005) displayed a similar bias towards graphical modelling tools;
they consideredmodelling styles on a gradient fromcode-based to visual,
ranging them from ‘flexible and efficient’ to ‘user-friendly’. A DSL, possi-
bly both code-based and user-friendly, was not considered.

To assess the user-friendliness of a modelling tool, or to develop a
modelling tool with the aim of user-friendliness, the nature of the user
group must be taken into account. The tool may be purely generic,
targeting the modelling domain as such, or it may be focused on the
domain forwhichmodelswill be created. The distinction is important be-
cause the concepts of the tool shouldmatch the expertise of the users, ei-
ther in the modelling domain or the applied domain (Harvey, 2005). An
advantage of tools, focused at the applied domain, is that they make it
easier and safer to construct models, because the components operate
in the terms of the domain.When themeaning of components is obvious
to theuser, the components aremore likely to be combined in ameaning-
ful way (Adam et al., 2012; van Evert et al., 2005). Harvey (2005) saw
benefits in using DSLs both in the modelling and applied domains, as
long as they are not conflated. A well-designed DSL will by definition ad-
dress a certain domain and serve a certain user group well.

In a practical comparison of modelling tools, Argent et al. (2006) set
out to construct a spatially-explicit model of soil degradation using
three different tools. Interestingly, they did not succeed in producing
equivalent models. From this we conclude, that the choice of modelling
tool is important for the resultingmodel, not only in formbut in essence.
There will be a limit to what a tool can conveniently express. The
expressiveness of a modelling tool, DSL-based or not, depends on the
nature of the building blocks that it supports. Thiswewill consider next.

3. Model building blocks

Object-oriented design (OOD) design has been the dominant
paradigm in ecological modelling since the 1990s, when Silvert's
(1993) introductory paper set the milestone. Both Silvert (1993) and
Reynolds and Acock (1997) argued that models should be constructed
from modular, generic building blocks facilitating re-use. In OOD the
building blocks are objects. To enable free combination of objects, they
must match at the seams (have a common interface) and their binding
must be loose, i.e. the Lego (tm) principle (Patrick Smith et al., 2005).
Modern OOD offers techniques that allow both ‘early’ and ‘late’ binding
of objects (through ‘dependency injection’, see Seemann, 2012). Thus,
in a modelling context, one can imagine building blocks that only a
modeller proficient in programming could compose to a working
model (composition by coding, ‘early binding’), or building blocks that
a modeller could compose in a less demanding fashion, maybe with a
visual tool or a DSL (composition by configuration, ‘late binding’).

Any OOD of some complexity will usually be arranged in a frame-
work: ‘A framework is a set of cooperating classes that makes up a reus-
able design for a specific class of software’ (Gamma et al., 1995). In OOD
any object belongs to a certain class which defines its functionality. A
framework is organised as a hierarchy of classes with the most generic
base class at the root. Modellers following the advice of Reynolds and
Acock (1997) will have a root base class named BuildingBlock or some-
thing similar. In literature we found, for example, BasicObject (Larkin
et al., 1988), Population (Silvert, 1993), ModelComponent (Baveco and
Smeulders, 1994), SimulationObject (Sequeira et al., 1997), Model
(Rahman et al., 2003), ILinkableComponent (Gijsbers and Gregersen,
2005) and Component (Holst, 2013; Moore et al., 2007).

Some differences in name-giving reflect the implementation
language. Thus ILinkableComponent is an ‘interface class’, a type which
is available in C# but not in C++, in which the same design is imple-
mented as an ‘abstract class’ (e.g., Component). These base class names
all reveal an intention of a highly generic modelling framework, except
for Populationwhich limits the scope to population dynamics.

A base class calledModel indicates that anyModel object is capable of
running a simulation on its own, which indeed is the case for the Model
objects of Rahman et al. (2003). Objects that can run as independent
pieces of code have been called ‘modules’ (Jones et al., 2001) or
‘components’ (Papajorgji et al., 2004). We will use the term ‘module’.
Technically, a module can be an executable file or a dynamic link library,
which in the right operating environment can be executed. Inter-module
communication (maybe through ‘services’, see Papajorgji et al., 2004)
then allows the composition of more complex models. Jones et al.
(2001) and He et al. (2002) both advocated the use of modules, as they
can communicate with each other through predefined interfaces to en-
able the joint action ofmodels residing on different computing platforms.
The Common Component Architecture (CCA, 2014) forms the basis for
many model integration tools (see Peckham et al., 2013), in which the
building blocks consist of whole, working models of various origin.

Whethermodel building blocks are supplied as a framework of classes
or as a library of modules, a specific model is constructed by combining
and configuring chosen blocks. Commonly, the design allows super-
blocks to be combined from other blocks. The new super-block again
can function as a block (a ‘composite pattern’, see Gamma et al., 1995).
As an example, a framework providing the classes Rotation, Crop and
Organ can be used to construct a model with an object wheat of class
Crop, which has inside the objects root, stem, leaf and ear all of class
Organ. With a similar objectmaize of the Crop class, a conventional object
of class Rotation could hold the objectswheat andmaize. In the context of

Fig. 1. Elements of a modelling system. L1–L3 denote formal languages (explicit or implied).
After Robertson et al., 1989.

28 N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
modules, one can imagine aWeather module and a Crop module, devel-
oped by separate teams, maybe even using different frameworks. The
modules themselves consist of objects but they are encapsulated by the
module, and we are relieved from dealing with this detail at the module
level. The modules can run independently, the Crop module defaulting
to a standard climate. Or they can run together, theWeathermodule pro-
viding input to the Cropmodule. One can imagine a library holding differ-
ent versions ofWeather and Cropmodules, together with other modules.
This library could serve as a palette of modelling building blocks, just like
the framework of classes above, although the level of abstraction and the
underlying software implementation would differ.

Model building blocks commonly have an interface consisting of ports
for inputs and outputs (e.g. Maxwell and Costanza, 1997). Inputs may be
divided further into parameters (providing fixed values) and input vari-
ables (providing dynamic values). Duringmodel configuration, themod-
eller sets parameter values and connects outputs to inputs as needed.
This may lead to complex routes of information exchange between
model building blocks, but just like a programmer, who works on a
source code base counting millions of lines, does not need to understand
thewhole system in detail, likewise amodeller only need to contemplate
the local interactions between building blocks. What makes this possible
is ‘clean code’ (Martin, 2009)which divide concerns between objects and
between modules equipped with well-defined interfaces. Peckham et al.
(2013) advocated auto-connecting building blocks to assist the user.

The foremost characteristic of a model building block is its behav-
iour. It maintains an internal state which it keeps updated according
to its inputs. The internal state is inaccessible, except through defined
output ports. The behaviour of a building block is defined by the algo-
rithm that updates its internal state. The algorithm is implemented in
building block ‘functions’, also called ‘methods’. These are defined strict-
ly in many modelling frameworks by ‘abstract methods’ of the frame-
work base class. Common abstract methods are reset or init, to
initialise the object state before the simulation begins, and update or
run to update the state according to current inputs (e.g., Holst, 2013;
Kralisch and Krause, 2006; Peckham et al., 2013). In other designs,
often called ‘component-based’ or ‘service-oriented’, methods can be
more loosely defined and made available through OOD techniques
known as ‘introspection’ or ‘reflection’ (Argent, 2007; Rahman et al.,
2004). Somemodellers prefer the freedom of component-basedmodel-
ling (e.g., Moore et al., 2007), while others (e.g., Chabrier et al., 2007)
prefer the stricter formalism imposed by a framework. Frameworks,
that are well-defined for a domain, provide the modeller with the
exact degree of flexibility needed to support the domain and protects
him from irrelevant design decisions but, then again, such frameworks
are exceedingly difficult to design (Gamma et al., 1995; Harvey, 2005).
Fig. 2. The development and use of building blocks in a modelling system. ‘Buil
4. The DSL niche

Before we consider how a DSL could help the modeller, we must
consider where it would fit into the modelling process. If we think
about how, in general, information can enter and be interpreted by a
modelling system (Robertson et al., 1989) then, in a first step, the user
provides ‘input events’ to an ‘interface system’ (Fig. 1). Common input
events are clicked menu items, filled-in dialogue boxes, user-drawn
model diagrams and typed-in scripts. These inputs are turned into a for-
mal ‘problem description’ by the interface system. The ‘translation
mechanism’ reads the problem description and creates the ‘solution de-
scription’ which is taken as an input by the ‘execution system’ to carry
out the actual simulation.

To Robertson et al. (1989), the ideal input should take the form of
purely ecological statements, which would be stored as a formal prob-
lem description, that an intelligent translation mechanism would turn
into a solution description, digestible by the execution system. Harvey
(2005) points out, that ‘every modelling system implements one or
more formal, computer-based languages’. Often these languages can
be implicit as in the elements of a graphical user interface (GUI). In
Fig. 1 we recognise up to three languages: for the input events (L1),
for the problem description (L2) and for the solution description (L3).
For instance, the modelling system could capture user gestures (L1),
store them in an XML file (L2) and translate this into Java code (L3)
entering the execution system. Or, the user could use a text editor to
enter DSL code (L1), which would be stored directly as the problem de-
scription (L2), whichwould again be equivalent to the solution descrip-
tion (L3), which would enter the execution system directly. The second
example demonstrates the simplicity of a pure DSL approach; only one
language is needed to formulate and execute themodel (L1= L2= L3).

The model build blocks, which the user is manipulating by input
events, are not evident in Fig. 1 but, obviously, some parts of the soft-
ware that implements the modelling system (interface system, transla-
tion mechanism and execution system) must be operating in terms of
these building blocks, at least the user's interface system. To assistmod-
eller creativity, L1 should use building blocks conceptualised in the ap-
plication domain, but the modelling system must at some level be
coded in a general programming language. Domain concepts may not
necessarily spill through to all coding levels, but certainly it makes the
coding more transparent if, for example, building blocks called Plant
and Organ can be recognised in the coding as the classes Plant and
Organ (Chabrier et al., 2007).

Modelling software often has a segregated user interface (Fig. 2): a
development environment, inwhich newmodel building blocks are con-
structed, and amodelling canvas, onwhich building blocks can be placed
ding blocks’ are a joint term for objects, classes, modules and components.

Image of Fig. 2

29N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
to compose multi-block models (Argent, 2004). When new building
blocks are ready for use, they are committed to a building block library.
This library defines the palette of building blocks available for themodel-
ling canvas and also provides the building block code needed by the exe-
cution system to carry out model simulations (Fig. 2). The execution
system may need a translation mechanism as in Fig. 1 depending on
the nature of the building block library and the model repository.

The designer of amodelling system (Fig. 2) will have to choosewhich
features can be fulfilled by standard software, and which would have to
be implemented as dedicated software. For instance, the development
environment could be provided by a general programming environment,
and the modelling canvas could be a standard text editor to compose
models in aDSL. Only the execution systemwould then need to be imple-
mented as dedicated software— to accept models and building blocks as
inputs, carry out the execution and return the requested output.
5. DSL applications in ecological modelling

Our literature survey of DSLs applied in ecological modelling was not
straightforward; only fewmodellers have been aware of the DSL concept.
Therefore the use of DSLs has been mostly implicit. A common hiding
place for unacknowledged DSLs was in the so-called ‘configuration files’,
which provide information on model configuration, parameter values
and options. These de facto DSLs have been noticed before both in ecolog-
ical modelling (Harvey, 2005) and in software in general (Fowler, 2011).
The following exposition gives a chronological overview of the roles
played by DSLs in ecological modelling (Table 1). Code examples to give
the flavour of each DSL are provided in the Appendix, Listings 1 to 13.

MOSES (Listing 1) was developed byWenzel (1992) as a formal lan-
guage which allowed ‘a hierarchical structuring of models out of auton-
omous partial models residing in a model bank’. The basic building
blocks were ecological processes of 20 different kinds. MOSES scripts
were read by an execution system written in Fortran. Even though the
building blocks were referred to as ‘generic objects’, MOSES was not
fully object-oriented. The author seems to have realised that the terse
syntax of MOSES was challenging (Listing 1), as he planned to supple-
mentMOSESwith aGUI to help the user constructmodels. In retrospect,
as a DSL,MOSES does seem rather inconvenient. The same can be said of
Object-Z, the mathematically oriented language used by Durnota
(1994) to specify ecological interactions with the prospect of later
(but never realised) implementation in an object-oriented language; a
domain-specific user interface was suggested.

The OOMP framework for population dynamics modelling (Holst
et al., 1997) reads a script (Listing 2) defining which objects to create;
parameter values are supplied in a separate file. Considered as a DSL,
the script has a simple, yet unpolished design. Objects present popula-
tions (of the Model base class) and trophic interactions (of the Link
Table 1
Domain-specific languages (DSLs) in ecological modelling. No.: Listing in Appendix. DSL: Name of
tem. Abbreviations: Y = Yes and N= No. O = object-oriented and M=module-based. Agro-en

No DSL Authors Year Application

Topic Spatial

1 MOSES Wenzel 1992 Ecology N
2 OOMP Holst et al. 1997 Pop.dyn. N
3 SML Maxwell and Costanza 1997 Landscape Y
4 MickL Reed et al. 1999 Hydrology Y
5 IMT Villa 2001 Ecology Y
6 SELES Fall and Fall 2001 Landscape Y
7 FarmSim Good 2005 Agronomy N
8 JAMS Kralisch and Krause 2006 Hydrology Y
9 CMP Moore et al. 2007 Agro-env. N
10 Ocelet Degenne et al. 2009 Landscape Y
11 OMS3 David et al. 2012 Hydrology Y
12 FlexSem Larsen et al. 2013 Estuaries Y
13 UniSim Holst 2013 Ecology N
base class). Keywords ‘consumes’ and ‘infects’ (Listing 2) declare
which kind of Link objects to create.

SML (Maxwell and Costanza, 1997) is a full-featured DSL for spatial
ecological–economical modelling. The authors did not call it a DSL,
most likely because the concept was not widely used at the time. An
SML model consists of modules which are interfaced through inputs
and outputs. The modules can be nested to form a hierarchy, which
sets scope rules for which input–output connections are possible. An
SML script (Listing 3) consists of a module declaration, which contains
equations for variables and definitions of outputs. Variables may serve
different purposes set by modifiers, such as ‘state’, ‘flux’ or ‘input’. The
latter allows input from other modules. To aid users, the accompanying
software allows the import of models written in STELLA, which has a
friendly GUI, which are then translated into SML. SML scripts are con-
verted by the Spatial Model Engine (SME) into C++ code, which in a
final step is compiled and executed.

MickL is an object-oriented C-like language used to code models for
OME, the OpenModelling Engine (Reed et al., 1999). Byway of the OME
GUI, models are written in MickL, as equations that take inputs and pa-
rameters, to produce outputs. Variable names beginningwith an upper-
case letter can be read and used as inputs by other models, while other
variables are local to the model (Listing 4). Both models and equations
are loosely bound, so that a simulation can be composed as a hierarchy
of both models and equations. The first version of OME read and
interpreted MickL code but later versions (Rahman et al., 2004)
contained a compiler which produced machine code enabling much
faster execution of MickL code. The difficulties of maintaining such a
low-level, compiled language are revealed by the later observation of
Argent (2007), that MickL is a ‘largely un-documented language’.

IMT, the Integrated Modelling Tookit (Villa, 2001), is a software
designed to integrate landscape models from modules which may be
of diverse origin. Similar to SML, models in IMT are composed as a hier-
archy of modules. Scripts are written in XML code which in some case
shares similarities with SML; for example when modules are defined
in terms of ‘stocks’ (i.e., state variables) with input and output fluxes,
to specify a differential equationmodel (Listing 5). The author describes
how other types of modules can be defined to allow integration of
existing models; an XML script for each module provides meta-data
allowing modules to cooperate.

SELES (Fall and Fall, 2001) seems to be the first ecological modelling
tool, in which the authors were aware of the DSL methodology and
strived to meet all criteria of a proper DSL. SELES defines a language for
landscape modelling, which comes with a discrete-event simulation en-
gine and a GUI to guide model development and display model output.
SELES targets the same domain as SML. What sets SELES apart is its ad-
vancedmodelling of events spreading in the landscape. The coding exam-
ple (Listing 6), however, has been chosen for brevity and has a simple
event structure. Like SML, the SELES language combines declarative
DSL ormodelling tool. Code: Implementation language for building blocks or modelling sys-
v. = Agro-environment. Pop.dyn = Population dynamics. UniSim= Universal Simulator.

XML-based Building blocks System

Type Nested Code GUI Code

N O Y Fortran N Fortran
N O N C++ N C++
N M Y any STELLA C++
N O Y MickL Canvas C++
Y M Y any N ?
N O Y SELES Canvas ?
Y O Y C# End-user C#
Y O Y Java N Java
Y M Y any N ?
N M N Ocelet Eclipse Java
N M N Java N Groovy
Y O N XML N C++
Y O Y C++ N C++

30 N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
with procedural code (Listings 3 and 6). This means that the DSL is used
not simply to declare, how the model is composed, but also to define
some of its behaviour. Only common functionality, such as differential
equations integration, is implicit and taken care of by the execution
engine.

Ginot et al. (2002) defined 25 ‘primitives’ for agent-based models
and created a GUI to combine these primitives into ‘tasks’ to let the
user define a model. They envisioned that the primitives could form
the basis of a general ‘platform-independent language’ for agent-based
modelling. Thus they laid out a basis for a DSL but did not implement it.

FarmSim (Good, 2005) is an object-oriented farmmodelwhich takes
XML files as input for model configuration, and which also produces
XML output as a simulation result. The hierarchical structure of XML,
with the obligatory root node farm (Listing 7), is translated directly
into a hierarchy of model objects by the FarmSim execution system.
The authors note how the separation of input/output logic from model
logic made the software development process more manageable. Thus
the end-user GUI to handle XML input/output could be developed inde-
pendently of model development.

L1 (Gaucherel et al., 2006) promises to be a DSL for modelling rural
landscapes with a special focus onmodelling the effects of farmer activ-
ities on landscape structure. However, the paper does not succeed to
present a DSL, hence the status of L1 remains uncertain.

The development of the JAMS framework was targeted at hydrolog-
ical modelling (Kralisch and Krause, 2006) but its design is of more ge-
neric nature. JAMS building blocks are ‘components’ configured via an
XML script, which also provides concepts for ‘spatial context’ and ‘tem-
poral context’ which defines the scheduling of component updates.
Both components and contexts can be nested. Components are pro-
grammed in Java and have a simple interface of three virtual methods,
init, run and cleanup, that can be specialised for each kind of model.
The run method updates the component according to its context.
Listing 8 shows how a component is set up in JAMS XML. The input
tmean is fetched from the TmeanDataReader component and similarly
for the rhum input. The component has one output called vpd. This
shows the Java code which computes the output from the two inputs:

public void run() {

double esT = 0.6108 ∗ Math.exp((17.27 ∗ tmean.getValue())/

(237.3 + tmean.getValue()));
double ea = esT ∗ rhum.getValue() / 100.0;
vpd.setValue(esT − ea);

}

Notice the clean uncoupling of code (cf. Martin, 2009); the Java code
is ignorant of where the tmean and rhum values come from.

The Common Modeling Protocol (CMP) for agro-ecological model-
ling was claimed to be ‘distinguished from existing simulation frame-
works by taking an explicitly hierarchical view’ (Moore et al., 2007).
However, in light of themodels reviewed above, the hierarchical stance
was far from particular to CMP. In CMP (Listing 9) the user configures
the model building blocks in an XML file, just like in IMT (Listing 5)
and FarmSim (Listing 7). The domain of CMP is the composition of
models from existing modules. Each module is referenced by the
name of the executable file and provided with the initial values of its
state variables (Listing 9). The simulation is carried out steered by
events, and the modules communicate throughmessages. The modules
themselves can be programmed in any language, as long as they obey
the CMP message interface. The authors note that CMP is best suited
for applications with a low frequency of inter-module messaging, be-
cause the messaging slows down model execution.

Ocelet (Degenne et al., 2009, 2010) is a DSL aimed at spatially-explicit
ecological modelling. Ocelet models are composed of building blocks
called ‘entities’which provide an interface of services, and which can be
hierarchically nested. Entities are connected through ‘relations’, which
are not mere data wires but specific, information-bearing actions. Thus
Grazing could define a relation between any two entities providing the
grass and herbivore interface (Listing 10). The ‘scenario’ concept of Ocelet
provides space and time context for the simulation to be carried out, sim-
ilar to the ‘contexts’ of the JAMS framework. A translation mechanism
turns Ocelet code into Java code, which is subsequently taken up by the
Ocelet execution system. Ocelet code is entered byway of the Eclipse en-
vironment (Eclipse, 2014) tailored with an Ocelet plug-in.

David et al. (2012) created a family of DSLs for Object Modeling Sys-
tem 3 (OMS3). OMS3works as an execution systemwhich is able to in-
terpret models configured with one of the OMS3 DSL dialects. OMS3
was implemented in the Groovy language — with extensions to ease
the use of DSLs (Dearle, 2010). A DSL script tells OMS3 which compo-
nents take part in a model, and which links exist between component
output and input ‘fields’ (as in JAMS, Listing 8). In addition, parameter
values and other input data can be set (Listing 11). In the component
source code, variables can be declared as inputs or outputs using @In
and @Out annotations, which allows them to be linked in the DSL
code. In the examples provided (David et al., 2012), components are
simple, i.e. not arranged in a composite structure as in the majority of
DSLs (Table 1). This most likely reflects that composite components
were not needed in these applications.

Larsen et al. (2013) presented Flexsem, a generic 3-D spatial model
applied to estuarine modelling. A Flexsem model is specified by an
XML configuration file. The XML is not purely declarative, as it contains
procedural code in the form of equations (as in IMT, Listing 5), in addi-
tion to model composition and parameter values (Listing 12). The XML
script is interpreted and executed by an application written in C++ in
an environment that offers parallel, multi-processor execution.

Universal Simulator (Holst, 2013) and its precursorWeedML (Holst,
2010) use XML files to configure building blocks (‘models’) which can
be nested (Listing 13). Universal Simulator comes with an execution
systemwritten in C++which interprets and executes the XML scripts.
Models arewritten in C++ and compiled to libraries (‘plug-ins’) which
define the vocabulary of model classes available in the XML scripts.
Models are defined by seven virtual functions, three of them (initialize,
update, cleanup) play the same role as those of JAMS (init, run, cleanup)
(Kralisch and Krause, 2006). Models have ‘parameters’ given default
values in the C++source code,which in theXML file can be overridden
with fixed values (‘value’ attribute) or with values referenced from the
output of other models (‘ref’ attribute) (Listing 13).

It is interesting to compare how data wires, from a source model's
output to a target model's input are set up. In Universal Simulator
(Listing 13), the reference to the source follows the path syntax
known from file systems: ‘..’ means one level up, ‘.’ means this level.
The path from onemodel to another is followed by the name of the out-
put variable in brackets. In JAMS (Listing 8), the ‘provider’ attribute re-
fers to the source (without a path so it must be unique) and the ‘value’
attribute specifies the output variable. In OMS3 (Listing 11), the data
wires are not declared in each target component, as in Universal Simu-
lator and JAMS, but are all declared in the ‘connect’ element in source-
target pairs. Like in JAMS, references are simple (i.e., not paths), so it
seems that component names must be unique. These differences in
the DSLs likely reflect differences between the application domains.

6. Discussion

We identified 13DSLs (Table 1) developed for the ecological domain;
however, most of them are of much more generic nature. In their core
concepts, they address the modelling domain as such, rather than any
specific application. Within the modelling domain, most of the DSLs fol-
low the stocks and fluxes paradigm, in which model building blocks ac-
cept inputs, update their internal state and produce outputs. However,
what delineates the actual domain is the library of pre-fabricated build-
ing blocks that comes together with the DSL. A framework-based DSL
with a base class called Model could in principle model anything, but if
all the available models address hydrology, this becomes the de facto

31N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
domain of the language — until maybe someday somebody develops
building blocks for another domain with that DSL. This process, of a
DSL growing into its domain with time, was acknowledged by Degenne
et al. (2009) (calling building blocks ‘primitives’): ‘We expect that a set
of most useful types of primitives will emerge, from which modellers
would pick and adapt to their case studies. This also implies that primi-
tives building would always be part of the modelling exercise’. As a safe-
guard, DSLmodellerswill therefore opt tomake theDSL itself extendible,
so that unforeseen needs can bemet as they emerge. How extensible the
DSL is, will depend on howeasy it is to extend the execution systemwith
new functionalities that can be invoked by theDSL, e.g., through ‘plugins’
(Holst, 2013), a design well-known from R which can be extended with
‘packages’ (R Development Core Team, 2014).

Half of the DSLs are based on XML, the syntax of which is used to
composemodels from available building blocks. XML does seem a natu-
ral choice because it offers a direct syntax to form building block hierar-
chies. This feature is utilised by all the XML-based DSLs, except FlexSem.
FlexSem also diverge, by defining building block behaviour (in the form
of equations) in XML, whereas the others used XML only to declare
model composition. Parameter values and connections between build-
ing block outputs and inputs were often included in the XML as well.
Yet, in spite of the popularity of XML as a medium for DSLs, it is far
from the DSL ideal. XML was invented as a data exchange file format,
not as a format for theman-machine interface. Its proper usage is exem-
plified by SBML, an XML dialect for systems biology: ‘Note that biolo-
gists and other software users are not intended to write their models
in SBML by hand—it is the software tools that read andwrite the format’
(Hucka et al., 2003). Likewise, Fowler (2011) acknowledges that XML
can be used to construct DSLs but also argues heavily against it. XML
syntax is burdened by details that carry no domain-specific meaning
and thus works against the clarity that a DSL should offer.Withmodern
tools available to construct parsers and interpreters (Parr, 2009), there
is really no excuse for DSL developers not to construct their own, simple
and clearDSL syntax. A simple, first solution could be to develop a better
DSL for each XML-based DSL. For the implementation, one would only
need to write software to translate the new DSL into XML; the rest of
the modelling system (Fig. 2) could remain intact.

For most DSLs, the application domain was applied ecology rather
than basic ecology, often in a spatial context and with an interface to
GIS (Table 1). There we no DSLs for individual-based or agent-based
modelling but Ginot et al. (2002) did outline how such a DSL could be
constructed. The DSLs that we found were all external DSLs, i.e. ones
that need an interpreter programmed for that DSL. Embedded or inter-
nal DSLs, which rely only on an existing programming language (see
Fowler, 2011), thus represents a completely untested technique for eco-
logical modelling. None of the DSLs used a functional language, like
Scala (Subramaniam, 2008). Functional languages, whether in the con-
text of DSLs or not, seem to represent yet another delayed take-up of
computer science in ecological modelling.

The debate, whether DSLs are better than dedicatedGUI development
platforms, has its proponents and opponents, e.g. David et al. (2012) vs.
Muetzelfeldt and Massheder (2003). It cannot be settled by argument
but maybe with time. The two approaches might reflect trade-offs that
depend on application domain (big vs. small models, teaching vs. re-
search), in which case typical use patterns would emerge. But if is more
a matter of personal preference then the debate will be never-ending.
The dichotomy was evident from the beginning, when Robertson et al.
(1989) argued that ecologists should have DSLs available formulated
strictly in ecological semantics, and Durnota (1994) on the other hand
envisaged that ‘domain-specific user interfaces, which are built on top
of a formal specification engine, can be constructed which would allow
formally-naive, but domain knowledgeable users to specify their sys-
tems’. Fowler (2011)mentions the upcoming technology of a ‘DSLwork-
bench’ which could maybe reconcile these opposing methodologies.
Rahman et al. (2003) contrast DSLs with general programming
languages, noting that ‘it is much easier to achieve good runtime
performance using commercially available compilers than by developing
a domain specific language. Custom modelling languages often lack the
flexibility of a commercial development tool that may limit their applica-
bility to larger modelling applications’. However, this argument is faulty,
as there is nothing preventing aDSL fromrelying on an efficient program-
ming language or compiler. Furthermore, DSLs are limited inflexibility by
purpose; they are highly flexible and expressive only in the domain that
they address. Already,Wenzel (1992) argued that his focus on ecosystem
modelling would limit the structural patterns in a fertile way only.

There has been several suggestions, but none implemented, that a
DSL could be used not only to compose models, but also to validate
the behaviour and relationships between model build blocks, in other
words to expand the semantic expressiveness of the DSL. There have
been attempts at defining wide-stretched semantic models and on-
tologies but these have not yet been consolidated in tools for com-
mon use. The ambition was expressed by Robertson et al. (1989),
‘it is desirable that the range of permitted input expressions should
be as wide as possible’, and later by Villa and Costanza (2000), ‘it is
thus very important that tools do not constrain the researcher's
thinking space within a specific view of natural complexity, but rath-
er allow free space for thought by endorsing knowledge models
which allow flexibility and reorganization’. However, while freedom
of expression seems to set the researchers free, it also becomes a bur-
den if taken too far, because an unconstrained modelling vocabulary
also offers very little guidance. Compare with the observation of Fall
and Fall (2001) that for models implemented in a general-purpose
programming language (exemplifying an unconstrained medium),
the underlying model becomes hidden in the details of the computer
code, making it difficult to compare the conceptual and implemented
models, and to modify the model.

The nature of model building blocks has also been a topic of debate.
Somemodellers are against object-oriented frameworks as a basis to con-
struct model building blocks, but this opposition in many cases is based
on a misconception of object-oriented design (OOD). Thus Bian (2000)
stressed the difference between object-oriented and component-based
design (CBD), emphasising the benefits of CBD due to its reliance on in-
terfaces; however, the importance of interfaces is inherent to OOD
(Gamma et al., 1995; Seemann, 2012). What does set Bian's (2000)
model apart is, that it follows the COM and OpenGIS standards, allowing
models to be composed of components distributed on Internet. The au-
thors of Simile (Muetzelfeldt andMassheder, 2003) demonstrated a rath-
er idiosyncratic viewpoint on OOD, when they stipulated that Simile
building blocks are ‘object-based’ not ‘object-oriented’ . However, their
objects are fully compliant with standard OOD.

The major divide in building blocks is between those that are inde-
pendent modules, which can be executed in standard operating systems
following standard communication protocols, and those that are objects,
which depend on a dedicated execution system. Some modellers argue
for the module-based approach (e.g., Rahman et al., 2004; Rizzoli et al.,
2005), butwhich approach is better really depends on the application do-
main. For the integration of big models of diverse origin, the module-
based approach is the better choice, evenmore so, if the models to be in-
tegrated span several application domains (for example, hydrology,
agronomy and landscape planning; see Peckham et al., 2013). However,
one must take in heed the warning of Gijsbers and Gregersen (2005):
‘the most difficult task is assuring similar semantics of the data exchange
between components’. For new models, simpler models and models ad-
dressing a limited domain, the stringency offered by a framework will
aidmodelling development. However, it is an art tomakemodel building
blocks generic in the relevant dimensions, while also keeping them sim-
ple enough to grasp easily by the user. In the words of Holzworth et al.
(2010): ‘How dowe develop something that is reusable in different con-
texts and yet not over-engineer the solution?’

A major objective of DSLs is ease-of-use. This is reflected in the DSL's
usage of concepts and an abstraction level alignedwith the user's specific
domain knowledge. It is an important design question, whether the DSL

32 N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
should only give access to composition of models from existing building
blocks, or whether it should provide facilities to create all new building
blocks. To take the two latest DSLs as examples, the XML for FlexSem al-
lows the user to write equations (Listing 12), which gives much freedom,
even to change basic building block behaviour. In contrast, the XML for
Universal Simulator only allows model composition (Listing 13); all be-
haviour is defined in the C++-programming of the building blocks. It
seems that most DSLs were created with two usage scenarios in mind
(Fig. 2): (i) model development, in which building blocks are created
and the building block library is maintained, and (ii) model composition,
in which existing building blocks are combined and configured for a spe-
cific application. As aDSL developer, one should think carefully about how
the user would apply the DSL in both scenarios.

When it comes to the design of the DSL, how tomake it complete for
the domain, yet simple, Robertson et al. (1989) pointed out the trade-
offs: ‘Extending the range of input expressions [i.e., of DSL syntax] pro-
vides a basis for improving [the] dimensions but requires the complexity
of other dimensions to be correspondingly increased’. To strike this bal-
ance we must know our users well; how much complexity is needed,
and with which mind-set do the users manage this complexity. Ecolog-
ical modelling is inherently complex, yet the DSL must be simple. The
DSL purposefully defines a constrainedmedium for model construction.
Again, in thewords of Robertson et al. (1989): ‘Thus […] expressiveflex-
ibility is available only to the designers of the base models [i.e., of the
Listing 1. A sample of MOSES code mo
After Wenzel, 1992.

Appendix
building blocks], not to the users of the system — whose only means of
controlling model structure is by creating data flows between models
[using the DSL]’ . With such strong opposing forces, complexity vs. sim-
plicity, an agile development process (Martin, 2006) seems necessary to
develop a useful DSL for ecological modelling.

The popularity of DSLs in software engineering is only slowly spread-
ing to the ecological modelling community. Modellers who have applied
DSL methodology unknowingly will benefit from adjusting their home-
brewed DSLs to the firm theoretical background and experience that al-
ready exists (see Fowler, 2011). XML-based DSLs in particular would be
improved by a more domain-specific syntax. Modellers should embrace
the simplicity that DSL-based models offer. Most of the few DSLs that
we found for ecological modelling were at their base not constrained to
ecology at all; they were generic modelling DSLs applied to ecological
modelling. The futurewill showuswhat DSLs, developedmore specifical-
ly for the ecological modelling domain, will look like.
Acknowledgements

NH received funding from EU Seventh Framework Programme under
the grant agreement no. 265865-PURE. GFB was supported by a grant
from the Graduate School of Science and Technology at Aarhus University
(AUFF-F2012-FLS-3-14).
delling competitive algal growth.

Image of Listing 1

Listing 2. Part of a script specifying a tri-trophic system for the OOMP framework.
After Holst et al., 1997.

Listing 3. Part of an SML script defining predator-prey dynamics.
After Maxwell and Costanza, 1997.

33N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38

Listing 4. A MickL programme for a run-off model which can be read by the Open Modelling Engine (OME).
From Rahman et al., 2004.

Listing 5. Part of an IMT script for Lotka–Volterra dynamics.
After Villa, 2001.

Listing 6. A SELES script for Conway's Game of Life.
From SELES, 2014.

34 N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38

Listing 7. A simplified XML script for the FarmSim model.
From Good, 2005.

Listing 8. An XML script declaring a component for the JAMS framework.
From Kralisch and Krause, 2006.

Listing 9. An XML configuration file for CMP. Left-out code denoted by ‘:’.
From Moore et al., 2007.

35N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38

Listing 11. An example of one of the OMS3 dialects.
From David et al., 2012.

Listing 10. A ‘grazing’ relation between entities, defined in Ocelet.
From Degenne et al., 2009.

36 N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38

Listing 13. Part of an XML script for Universal Simulator. Left-out code denoted by ‘:’.
After Holst, 2014.

Listing 12. Part of an XML script file for Flexsem.
After Larsen et al., 2013.

37N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
References

Adam, M., Corbeels, M., Leffelaar, P.A., van Keulen, H., Wery, J., Ewert, F., 2012. Building
crop models within different crop modelling frameworks. Agric. Syst. 113, 57–63.

Argent, R.M., 2004. An overview of model integration for environmental applications —
components, frameworks and semantics. Environ. Model Softw. 19, 219–234.

Argent, R.M., 2007. E2 — past, present and future. In: Oxley, L., Kulasiri, D. (Eds.), Modsim
2007: International Congress on Modelling and, Simulation, pp. 860–866.

Argent, R.M., Voinov, A., Maxwell, T., Cuddy, S.M., Rahman, J.M., Seaton, S., Vertessy, R.A.,
Braddock, R.D., 2006. Comparing modelling frameworks— a workshop approach. En-
viron. Model Softw. 21, 895–910.

Baveco, J.M., Smeulders, A.M.W., 1994. Objects for simulation — smalltalk and ecology.
Simulation 62, 42–56.

Bian, L., 2000. Component modeling for the spatial representation of wildlife movements.
J. Environ. Manag. 59, 235–245.

CCA, 2014. Common Component Architecture. www.cca-forum.org.
Chabrier, P., Garcia, F., Martin-Clouaire, R., Quesnel, G., Raynal, H., 2007. Toward a simula-

tion modeling platform fro studying cropping systems management: the record pro-
ject. In: Oxley, L., Kulasiri, D. (Eds.), Modsim 2007: International Congress on
Modelling and Simulation, pp. 839–845.

Constanza, R., Voinov, A., 2003. Modeling ecological and economic systems with STELLA:
part III. Ecol. Model. 143, 1–7.
David, O., Lloyd, W., Ascough II, J.C., Green, T.R., Olson, K., Leavesley, G.H., Carlson, J., 2012.
Domain specific languages for modeling and simulation: use case OMS3. In: Seppelt,
R., Voinov, A.A., Lange, S., Bankamp, D. (Eds.), International Congress on Environmen-
tal Modelling and Software, 1–5 July 2012 (Leipzig, Germany).

Dearle, F., 2010. Groovy for domain-specific languages. Packt Publishing, Birmingham, UK.
Degenne, P., Lo Seen, D., Parigot, D., Forax, R., Tran, A., Lahcen, A.A., Cure, O., Jeansoulin, R.,

2009. Design of a domain specific language for modelling processes in landscapes.
Ecol. Model. 220, 3527–3535.

Degenne, P., Ait Lahcen, A., Curé, O., Forax, R., Parigot, D., Lo Seen, D., 2010. Modelling the
environment using graphs with behaviour: do you speak Ocelet? In: Swayne, D.A.,
Yang, W., Voinov, A.A., Filatova, T. (Eds.), International Congress on Environmental
Modelling and Software, 5–8 July 2010, Ottawa, Canada (8 pp)

Derry, J.F., 1998. Modelling ecological interaction despite object-oriented modularity.
Ecol. Model. 107, 145–158.

Durnota, B., 1994. Defining relationships in ecology using object-oriented formal specifi-
cations. Math. Comput. Model. 20, 83–96.

Eclipse, 2014. www.eclipse.org.
Fall, A., Fall, J., 2001. A domain-specific language for models of landscape dynamics. Ecol.

Model. 141, 1–18.
Fowler, M., 2011. Domain-specific Languages. Addison-Wesley, Upper Saddle River, NJ.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns. Elements of Reusable

Object-oriented Software. Addison-Wesley Publishing Company, Reading,
Massachusetts.

http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0005
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0005
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0010
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0010
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0290
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0290
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0015
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0015
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0020
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0020
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0025
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0025
http://www.cca-forum.org
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0300
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0300
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0300
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0300
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0030
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0030
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0035
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0035
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0035
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0040
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0045
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0045
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0305
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0305
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0305
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0305
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0050
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0050
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0055
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0055
http://www.eclipse.org
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0060
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0060
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0065
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0070
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0070
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0070

38 N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38
Gaucherel, C., Giboire, N., Viaud, V., Houet, T., Baudry, J., Burel, F., 2006. A domain-specific
language for patchy landscape modelling: the Brittany agricultural mosaic as a case
study. Ecol. Model. 194, 233–243.

Gijsbers, P.J.A., Gregersen, J.B., 2005. OpenMI: a glue for model integration. In: Zerger, A.,
Argent, R.M. (Eds.), Modsim 2005. International Congress on Modelling and Simula-
tion, 12–15 December 2005, Nedlands, Australia, pp. 648–654.

Ginot, V., Le Page, C., Souissi, S., 2002. Amulti-agents architecture to enhance end-user in-
dividual based modelling. Ecol. Model. 157, 23–41.

Good, J., 2005. The benefits and practicalities of using extensible markup language (XML)
for the interfacing and control of object-oriented simulations. In: Zerger, A., Argent,
R.M. (Eds.), Modsim 2005. International Congress on Modelling and Simulation,
12–15 December 2005, Nedlands, Australia, pp. 655–661.

Harvey, H., 2005. Languages and metamodels for modelling frameworks. In: Zerger, A.,
Argent, R.M. (Eds.), Modsim 2005. International Congress on Modelling and Simula-
tion, 12–15 December 2005, Nedlands, Australia, pp. 669–675.

He, H.S., Larsen, D.R., Mladenoff, D.J., 2002. Exploring component-based approaches in
forest landscape modeling. Environ. Model Softw. 17, 519–529.

Holst, N., 2010. WeedML: a tool for collaborative weed demographic modeling. Weed Sci.
58, 497–502.

Holst, N., 2013. A universal simulator for ecological models. Ecol. Inform. 13, 70–76.
Holst, N., 2014. Universal Simulater Explained. www.ecolmod.org.
Holst, N., Axelsen, J.A., Olesen, J.E., Ruggle, P., 1997. Object-oriented implementation of the

metabolic pool model. Ecol. Model. 104, 175–187.
Holzworth, D.P., Huth, N.I., de Voil, P.G., 2010. Simplifying environmental model reuse.

Environ. Model Softw. 25, 269–275.
Hucka,M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., and the rest of the, S.F.,

Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles,
E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H.,
Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novere, N., Loew,
L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Niel-
sen, P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J., Wang, J., 2003. The systems biologymarkup lan-
guage (SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics 19, 524-531.

Jones, J.W., Keating, B.A., Porter, C.H., 2001. Approaches to modular model development.
Agric. Syst. 70, 421–443.

Kralisch, S., Krause, P., 2006. JAMS — a framework for natural resource model develop-
ment and application, iEMSs Third Biannual Meeting, 9–13 July 2006. Burlington,
Vermont, USA (6 pp).

Larkin, T.S., Carruthers, R.I., Soper, R.S., 1988. Simulation and object-oriented program-
ming: the development of SERB. SIMULATION 51, 93–100.

Larsen, J., Mohn, C., Timmermann, K., 2013. A novel model approach to bridge the gap be-
tween box models and classic 3D models in estuarine systems. Ecol. Model. 266,
19–29.

Liu, J.G., Ashton, P.S., 1995. Individual-based simulation-models for forest succession and
management. For. Ecol. Manag. 73, 157–175.

Martin, R.C., 2006. Agile software developmen. Principles, Patterns and Practices. Prentice
Hall, Upper Saddle River, New Jersey.

Martin, R.C., 2009. Clean code. A Handbook of Agile Software Craftsmanship. Prentice-
Hall, Upper Saddle River, New Jersey.

Maxwell, T., Costanza, R., 1997. A language for modular spatio-temporal simulation. Ecol.
Model. 103, 105–113.

Merali, Z., 2010. Why scientific programming does not compute. Nature 467, 775–777.
Moore, A.D., Holzworth, D.P., Herrmann, N.I., Huth, N.I., Robertson, M.J., 2007. The com-

mon modelling protocol: a hierarchical framework for simulation of agricultural
and environmental systems. Agric. Syst. 95, 37–48.

Muetzelfeldt, R., Massheder, J., 2003. The Simile visual modelling environment. Eur.
J. Agron. 18, 345–358.
Papajorgji, P., Beck, H.W., Braga, J.L., 2004. An architecture for developing service-oriented
and component-based environmental models. Ecol. Model. 179, 61–76.

Parr, T., 2009. Language implementation patterns. Create Your Own Domain-Specific and
General Programming Languages. The Pragmatic Bookshelf, Dallas, Texas.

Patrick Smith, F., Holzworth, D., Robertson, M.J., 2005. Linking icon-basedmodels to code-
based models: a case study with the agricultural production systems simulator. Agric.
Syst. 83, 135–151.

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to integrat-
ed modeling in the geosciences: the design of CSDMS. Comput. Geosci. 53, 3–12.

Peng, C.H., 2000. Growth and yield models for uneven-aged stands: past, present and fu-
ture. For. Ecol. Manag. 132, 259–279.

R Development Core Team, 2014. R: a language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org.

Rahman, J.M., Seaton, S.P., Perraud, J.M., Hotham, H., Verrelli, D.I., Coleman, J.R., Mssanzi,
2003. It's TIME for a new environmental modelling framework. MODSIM 2004. Interna-
tional Congress on Modelling and Simulation. Townsville, Australia, pp. 1727–1732.

Rahman, J.M., Seaton, S.P., Coddy, S.M., 2004. Making frameworks more useable: using
model introspection and metadata to develop model processing tools. Environ.
Model Softw. 19, 275-184.

Reed, M., Cuddy, S.M., Rizzoli, A., 1999. A framework for modelling multiple resource
management issues—an open modelling approach. Environ. Model Softw. 14,
503–509.

Reynolds, J.F., Acock, B., 1997.Modularity and genericness in plant and ecosystemmodels.
Ecol. Model. 94, 7–16.

Rizzoli, A., Donatelli, M., Athanasiadis, I., Villa, F., Muetzelfeldt, R., Huber, D., 2005. Seman-
tic links in integrated modelling frameworks. In: Zerger, A., Argent, R.M. (Eds.),
MODSIM 2005. International Congress on Modelling and Simulation, 12–15 Decem-
ber 2005, Nedlands, Australia, pp. 704–710.

Robertson, D., Bundy, A., Uschold, M., Muetzelfeldt, R., 1989. The ECO program construc-
tion system: ways of increasing its representational power and their effects on the
user interface. Int. J. Man Mach. Stud. 31, 1–26.

Seemann, M., 2012. Dependency Injection in.NET. Manning Publ. Co, Shelter Island, NY,
USA.

SELES, 2014. www.seles.info/index.php/Game_of_Life.
Sequeira, R.A., Olson, R.L., McKinion, J.M., 1997. Implementing generic, object-oriented

models in biology. Ecol. Model. 94, 17–31.
Silvert, W., 1993. Object-oriented ecosystem modeling. Ecol. Model. 68, 91–118.
Subramaniam, V., 2008. Programming Scala. The Pragmatic Bookshelf, Dallas, Texas.
Tisue, S., Wilensky, U., 2004. NetLogo: design and implementation of a multi-agent

modeling environment. Proceedings of Agent 2004, Chicago, October 2004 (17 pp).
van Deursen, A., Klint, P., Visser, J., 2000. Domain-specific languages: an annotated

bibliography. ACM SIGPLAN Not. 35, 26–36.
van Evert, F., Holzworth, D., Muetzelfeldt, R., Rizzoli, A., Villa, F., 2005. Convergence in

integratedmodeling frameworks. In: Zerger, A., Argent, R.M. (Eds.), Modsim 2005. In-
ternational Congress onModelling and Simulation, 12–15 December 2005, Nedlands,
Australia, pp. 745–750.

Villa, F., 2001. Integrating modelling architecture: a declarative framework for multi-
paradigm, multi-scale ecological modelling. Ecol. Model. 137, 23–43.

Villa, F., Costanza, R., 2000. Design of multi-paradigm integrating modelling tools for
ecological research. Environ. Model Softw. 15, 169–177.

Wenzel, F., 1992. Semantics and syntax elements and a unique calculus for modelling of
complex ecological systems. Ecol. Model. 63, 113–131.

Wickham, H., 2015. Advanced R. CRC Press, Boca Raton, Florida (URL:adv-r.had.co.nz/
dsl.html.).

Zeigler, B.P., 1987. Hierarchical, modular discrete-event modelling in an object-oriented
environment. Simulation 49, 219–230.

http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0075
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0075
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0075
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0315
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0315
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0315
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0085
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0085
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0320
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0320
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0320
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0320
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0325
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0325
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0325
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0100
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0100
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0105
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0105
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0110
http://www.ecolmod.org
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0115
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0115
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0120
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0120
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0130
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0130
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0135
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0135
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0135
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0140
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0140
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0145
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0145
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0145
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0150
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0150
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0335
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0335
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0340
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0340
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0165
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0165
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0170
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0175
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0175
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0175
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0180
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0180
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0185
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0185
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0345
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0345
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0195
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0195
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0195
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0200
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0200
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0205
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0205
http://www.r-project.org
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0355
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0355
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0210
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0210
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0210
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0225
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0225
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0225
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0230
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0230
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0360
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0360
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0360
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0360
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0240
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0240
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0240
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0365
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0365
http://www.seles.info/index.php/Game_of_Life
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0245
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0245
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0250
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0255
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0375
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0375
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0260
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0260
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0380
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0380
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0380
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0380
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0270
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0270
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0275
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0275
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0280
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0280
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0385
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0385
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0285
http://refhub.elsevier.com/S1574-9541(15)00020-5/rf0285

	Domain-�specific languages for ecological modelling
	1. Introduction
	2. Earlier reviews
	3. Model building blocks
	4. The DSL niche
	5. DSL applications in ecological modelling
	6. Discussion
	Acknowledgements
	References

