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ABSTRACT: 
 
The classification of Mobile Laser Scanner (MLS) data is challenging due to the combination of high variation in point density with a 
high variation of object appearances. The way how objects appear in the MLS data highly depends on the speed and orientation of the 
mobile mapping platform and the occlusion by other vehicles. There have been many approaches dealing with the geometric and 
contextual appearance of MLS points, voxels and segments to classify the MLS data. We present a completely different strategy by 
fusing the MLS data with a large scale topographic map. Underlying assumption is that the map delivers a clear hint on what to expect 
in the MLS data, at its approximate location. The approach presented here first fuses polygon objects, such as road, water, terrain and 
buildings, with ground and non-ground MLS points. Non-ground MLS points above roads and terrain are further classified by 
segmenting and matching the laser points to corresponding map point objects. The segmentation parameters depend on the class of the 
map points. We show that the fusion process is capable of classifying MLS data and detecting changes between the map and MLS 
data. The segmentation algorithm is not perfect, at some occasions not all the MLS points are correctly assigned to the corresponding 
map object. However, it is without doubt that the proposed map fusion delivers a very rich labelled point cloud automatically, which 
in future work can be used as training data in deep learning approaches.  
 
 

3. INTRODUCTION 
 
Mobile laser scanner (MLS) data consists of a huge collection of 
points captured from a streetwise perspective. Points are reflected 
on various types of objects such as roads, building facades, trees, 
street furniture but also cars, cyclists and pedestrians. Filtering, 
data reduction and classification are important tasks when 
dealing with MLS data. The main challenge in both science and 
practice is to rapidly get useful information out of the point cloud. 
Che et al. (2019) presented a comprehensive overview on 
existing object recognition and classification algorithms. Object 
recognition mainly deals with road surfaces and boundaries, plus 
the wide range of approaches dealing with pole like objects 
(Guan et al., 2016; Li et al., 2018; Yan et al., 2017; Wang et al., 
2017; Fukado and Masuda, 2015). Che et al. (2019) divide the 
classification literature into three categories: point based, 
segment based and object based classification, where the object 
based classification is considered as an extended segmentation 
approach. Point based methods calculate features and relations 
from point neighborhoods (Weinmann et al., 2015), and use 
descriptors in supervised classification algorithms, like in Luo et 
al. 2018. Benchmark datasets such as Paris-Lille-3D (Roynard et 
al., 2017) are available to test the performances of classification 
algorithms. One of the common problems in processing MLS 
data is the high variation in point density and the high variability 
of object appearances due to the dynamic environment during the 
data acquisition. Hackel et al. (2016) dealt with varying point 
densities by presenting a down sampling and pyramid building 
strategy, which eased the neighborhood selection and the time 
efficiency. Wang et al. (2018) voxelised the MLS points before 
feeding into a deep learning multiscale network. Typical 
accuracies for object recognition and classification are around 
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90% classification accuracy (Yang et al., 2017). Main reasons for 
erroneous results are object occlusions and having objects too 
close to each other (Rodrígues-Cuenca et al., 2015). 
 
Often, large scale topographic map information is already 
available which can be used in classifying the point cloud. After 
all, a topographic map contains locations of objects and their 
corresponding class label.  
 

  
 
Figure 1. Large scale topographic map (left) and Mobile Laser 
Scanner data (right) of the same urban scene. 
 
In this research MLS data is fused with a 2D large scale 
topographic map to support the labelling process. Main research 
challenge described here is the correct fusion of 2D map data 
with 3D point clouds, i.e. to correctly assign laser points to map 
objects. Next to potential registration problems, challenges may 
occur at situations where objects in the point cloud are not 
represented by the map, e.g. cars and pedestrians. The main aim 
is to automatically label the MLS points following the map 
classes for corresponding situations and label them as unknown 
if there is not a logical correspondence between map class and 
the nearby MLS points. Next to a labelled MLS point cloud, this 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-251-2020 | © Authors 2020. CC BY 4.0 License.

 
251

mailto:s.j.oudeelberink@utwente.nl


 

procedure results in discrepancies between map and MLS data, 
which can directly be used for map updating. Additional benefit 
of such a map based labelling is the automatic generation of 
detailed training samples which can be used as input in a deep 
learning classification network. After all, in cases where the map 
data is not available or out of date, a supervised classification 
algorithm is needed to classify the MLS points. 
 
In this paper the focus is on the design of a method that smartly 
fuses laser points with their corresponding map objects, by 
looking at semantic characteristics of the objects. 
 
 
4. SMART FUSION BETWEEN MLS AND MAP DATA 

 
4.1 What is meant by smart fusion 
 
The term smart can be interpreted in various ways, so in the 
section it is explained what is meant by smart fusion. The basic 
fusion principle is based on spatial fusion two datasets in the 
same coordinate system. Based on the x- and y- location of the 
laser points, a point is assigned to a corresponding map object. 
For most of the points and polygon features, this can be done by 
a point-in-polygon operation. This works well if the registration 
between two datasets is perfect, and if there is no difference in 
the type, amount and appearance of objects in both datasets.  
 
However, in reality there are several causes why a basic fusion 
will not work properly: 
- The registration between both datasets is not perfect; errors in 

the position of MLS data can easily reach 1.0 m caused by 
inaccuracies of the platform. Next to that, the map accuracy is 
in the order of 0.1-0.2 m. 

- Objects in the map have another appearance in the point cloud, 
e.g. a traffic light is a point feature in the map but a cluster of 
points in the point cloud. 

- Objects may have been recorded in the point cloud which do 
not exist in the map, like cars and pedestrians. 

- Objects may have been changed between the acquisition of the 
map and the point cloud. 

 
We consider our algorithm smart if it deals with registration 
errors up to 1 meter, differences in type, appearance and amount 
of objects in both datasets. Underlying assumption is that the map 
delivers a clear hint on what to expect in the MLS data, at its 
approximate location. In order to achieve this, we make use of 
logical relations between map objects and the corresponding 
appearance in the point clouds. The relations depend on the class 
and type of the map objects. Basically there are three object types 
present in the map: polygonal, linear and point features. 
Polygonal features include land cover classes such as buildings, 
roads, terrain. Examples of linear features are power lines and rail 
way tracks. Point features include pole like objects, single trees 
and utility service assets such as mail boxes. In this paper the 
focus is on polygon and point features, as line features as power 
lines were not present in the area of data acquisition. 
 
For objects which are represented by a point in the map, e.g. a 
lamp post, single trees, the fusion cannot be achieved by a point-
in-polygon procedure but is mainly based on vicinity criteria. The 
research problems there are the segmentation of corresponding 
MLS points to a single map points and if multiple point objects 
are close to each other, one has to carefully assign laser points to 
the correct corresponding map object. Figure 2 shows the 
workflow of our fusion algorithm for map polygons and map 
points at one side with MLS points at the other side. 

 
 
Figure 2. Workflow to combine map polygons and points with 
ground and non-ground MLS data. 
 
4.2 Filtering MLS data 
 
Before starting the fusion process MLS data is processed to 
remove the largest outliers and to distinguish between ground and 
non-ground points. 
 
4.2.1 Outlier removal: for various reasons several laser points 
are recorded below or above the surface without actually 
representing a point at an object or surface. Typical property of 
these points is that the local point density is very low compared 
to other locations. Determining the number of neighbouring 
points within a small sphere, e.g. with radius 10 cm, gives enough 
evidence to decide whether a point can be considered as outlier 
or not. Some points at the outer crown of trees may be incorrectly 
considered as outliers in this step; this can easily be repaired later 
when it is known which components do belong to trees. Any 
nearby filtered point are added to the tree component. 
 
4.2.2 Ground and non-ground filtering: filtering points into 
ground and non-ground has been an active research topic for 
Airborne Laser Scanner (ALS) data. For filtering MLS data many 
researchers use existing algorithms, originally built for ALS data. 
Our filtering algorithm is based on a constrained region growing 
algorithm. The constraints come from the point attribute “height 
above local minimum”. Segments that are larger than 1 m2 with 
points within 5 cm of its local minimum are considered to be 
ground. Typically the segments with points within 5 or 10 cm 
above local minimum represent the curb stones, and edges of 
traffic islands. If there are no nearby other points higher than 10 
cm above the local minimum, these points are added to the 
ground dataset. Otherwise these points likely belong to 
vegetation or other non-ground objects. 
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4.3 Fusion of polygonal map objects with MLS data 
 
First, the polygon objects are fused with the MLS data. Map 
polygon features represent a surface area, such as part of a road, 
sidewalks and buildings. For the majority of these polygons it is 
clear whether the surface area belongs the ground or corresponds 
to above ground objects, and therefore it is clear to fuse the 
polygon with either ground or non-ground MLS data. Also, basic 
assumptions on the appearance of the MLS data can be applied 
per class to guide the fusion process. For example, for road 
polygons the algorithm is searching for ground points on smooth 
surfaces within or close to the polygon. For building polygons, 
the corresponding mobile laser points are likely to be on the 
façade, just in or outside the polygon. For classes such as 
playgrounds, forests and agricultural fields it is expected that 
corresponding MLS points come from both ground and non-
ground data.  
 
Due to the unknown registration errors between the two datasets, 
points near the polygon boundary may belong to objects at either 
side of the boundary. In cases where the boundary represents a 
difference between ground and non-ground objects, it is 
straightforward to assign the corresponding points to the 
polygons by adding a search buffer to the polygon, based on the 
knowledge that nearby points should be selected from either the 
ground or non-ground dataset. For building polygons a buffer of 
1m was generated which result in the addition of any non-ground 
MLS point within 1 m of the building. Additionally, these points 
are further refined by keeping only points on large or very planar 
surfaces. 
 
4.4 Object segmentation of MLS data 
 
Non-ground MLS points which are not assigned to polygon 
objects are considered to be potentially belonging to map point 
objects. 
 
The goal of this object segmentation step is to group MLS points 
which belong to a single map object. Segmentation is crucial for 
a proper fusion between MLS data and map point objects, e.g. 
single trees and traffic signs. The reason is that in the map it is 
represented by a single 2D point, where the corresponding MLS 
points are a collection of 3D points. Initially, both ground and 
non-ground datasets were segmented by a constrained connected 
component algorithm as described in section 2.2, resulting in 
segments that either belong to ground surfaces, or objects on top 
of the surface. For the objects on top of the surface as refinement 
step is needed to aim for a segmentation into individual objects.  
 
A proper object segmentation depends on how well the object is 
represented by the data in relation to the segmentation strategy. 
Often, the problem is that the best segmentation strategy depends 
on the type of the object, in other words, segmenting a tree may 
need another algorithm than segmenting a building façade or road 
surface.  The advantage of working with a large scale topographic 
map is the ability to incorporate knowledge on what objects to 
expect in the laser data and therefore to adapt the segmentation 
strategy to the situation Though we do not expect that the map 
data is perfect, it is taken as approximate and initial knowledge 
on the type of objects. This is achieved by the following 
procedures: 

1. Map analysis phase for map point objects. Each map 
point object is analysed on the proximity of other map 
points. What is the distance to the nearest point object 
and what is the class of that nearest object? This step is 
necessary to gain information on how many other 
objects to expect in the direct neighbourhood. This 

information is used locally when setting the growing 
distance and maximum size of a segment. 

2. If map point objects are close together, we can expect 
that the objects are also captured close together in the 
MLS data. Map points within 1.5 meter from each 
other are taken as a group for which the task is to 
correctly assign the map point to the corresponding 
MLS object. That means that attention should be given 
to a proper separation of the segments, and a careful 
matching is necessary as the closest correspondence 
may not be the correct one.  

3. Near the location of point objects, seeds are sought that 
fulfil the basic assumptions of that object. If a seed is 
found, it is grown into segments using the parameter 
settings set in the map analysis step. This step is further 
explained in section 2.5. 

4. If no seed is found, the map object may not exist at that 
place, it may not be captured in the MLS data or the 
basic assumptions were not valid. In all cases the map 
point is flagged as not found in MLS data.  

5. MLS points which are still not yet assigned to map 
objects, are analysed further. Many of the points are 
non-ground points above road polygons. Typically, 
these points are reflected on cars, pedestrians and 
cyclists and other components which are located on or 
next to the roads. The latter ones are potentially new 
objects which did not yet exist in the map. 
 

4.5 Fusion of map point objects with MLS data 
 
In this section the focus is particularly on the assignment of MLS 
points to nearby map points. From the map point analysis phase 
it is known what is the distance to the closest map point. This 
distance is stored per map point and is used to select the correct 
segment procedure and to select nearby MLS points.  
 

 
Figure 3. Seed selection based on location and semantics of map 
points, left three poles are considered as a group. Tick distance is 
1 m. 
 
In the example shown in figure 3, a situation is given which 
shows that several map point objects are within 1.5 meter from 
each other, and other map points are further apart. The group of 
points closer than 1.5 meter to each other are treated as group, 
meaning that the corresponding MLS data should be carefully 
segmented and assigned to the correct map point.  
 
For the pole like objects such as traffic signs, street lights and 
trees, the seed is sought on the lower part of the object which 
mostly contains most of the points on the pole structure. First,  
MLS points are selected a bit above the ground near the map 
point. This is accomplished by first selecting points between 0.5 
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and 1.5 meter above the lowest point in the neighbourhood. The 
reason to ignore the lowest 50 cm at this stage is that it often 
contains noisy objects and low vegetation, leading to false seed 
selections. For the selected nearby points the distances in X,Y 
between map points and each of these MLS points are calculated 
and stored as point attributes. These point attributes are used as 
input in a constrained connected component algorithm where the 
point attributes ensure that only points with similar dX and dY 
values are grouped together, thus grouping points on vertical 
poles. These corresponds to the seeds on pole like objects. The 
largest component is selected as seed segment. In case of 
analysing n multiple objects as a group, the largest n components 
are selected. The relative orientation between the map points is 
used to assign the corresponding MLS segments, as the nearest 
segment may not be the correct one. 
 
For segmenting MLS points nearby map points representing 
volumetric objects such as electricity boxes, fixed garbage bins, 
the seeds are sought just above the ground without the constraint 
of a pole like shape. 
 
After the seed selection stage, it is known whether a seed is found 
for a map point or not. Map points without a seed, e.g. the most 
right pole object in figure 3, are labelled as ‘not matched’ with 
MLS data. These points are either outside the MLS dataset or 
these objects have changed.  

 

 
 
Figure 4. Growing phase after seed selection, first vertically for 
poles and trees, then horizontally. 
 
After the seed selection and assignment the task is to grow the 
seeds by adding points that belong to the same object. The 
growing parameters also depend on the map class to ensure a 
class dependent segmentation. In figure 4 the growing phases are 
explained for poles and trees: first the segment is grown in 
vertical direction using only points within 1 meter radius of the 
map point. Secondly, points which are further away are 
considered to be added in a iterative growing stage. Points are 
added if they are within growing radius distance. This distance is 
iteratively increased to first add points which are tightly 
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connected to the segment. This enables the growth of segments 
into the space between two objects, ensuring the assignment of 
points to the segment which has the lower point spacing between 
the points. To avoid segments grow too large, e.g. when points 
on fences join the segment, the maximum range of the segment 
is limited to the distance to the nearest map point object. Trees 
are grown following the individual tree segmentation approach 
as mentioned in Gorte et al. (2015). 
 
 

5. SMART FUSION RESULTS 
 
5.1 Datasets used in our study 
 
5.1.1 Mobile laser data: The mobile laser scanned data was 
captured by a TopCon IP-S3 scanner, collecting data with a rate 
of 700k pulses per second. Data was recorded in Rotterdam, The 
Netherlands. Point density can be considered rather coarse for 
MLS data with 300 points per square meter below the sensor to 
10 points per square meter on the ground surface at 30 meter 
distance from the sensor. From this dataset two subsets are 
cropped into datasets of 4 and 10 Million points. In these datasets 
the planimetric accuracy of the MLS has been checked on GPS 
reference points. RMSE results between GPS measurements and 
corresponding MLS points were between 5 and 120 cm. For the 
selected datasets, the planimetric differences between MLS and 
map data is estimated to be around 50 cm. 
 
5.1.2 Large scale topographic map: The large scale 
topographic map with a scale of 1:1000, was retrieved from a 
national Spatial Data Infrastructure, called PDOK2. According to 
the national standards, the geometric accuracy of the map is 
required to be better than 20 cm standard deviation in planarity. 
Various types of road classes, such as bicycle lanes, highways 
and secondary roads are grouped into a single road class. Several 
infrastructural objects like lamp posts, traffic signs and traffic 
lights are grouped into infrastructural poles. The following 
classes have been selected: buildings, terrain, road, water, bridges 
for the polygon classes and trees, poles and boxes such as utility 
boxes for the object classes. 
 
5.2 Polygon based classification results 
 
Polygons are fused with the MLS data in a workbench 
implemented in FME from Safe Software. The workbench is 
setup once in such a way that the polygons representing the 
terrain are fused with the ground MLS points, and the building 
polygons are fused with the non-ground MLS points. The 
building polygons have been buffered by setting a single 
parameter on 1 m. The output of this procedure are two point 
clouds: one with points assigned to polygons, and one with the 
remaining points.  
 
The first contains the polygon based results where both ground 
and non-ground MLS have been fused with the corresponding 
map objects; the file contains 3D point coordinates plus object_id 
and class_id. The fusion process takes about 2 minutes for the 
fusion of a stretch of about 300 meter MLS data. This step can be 
enhanced further as the map data is read in tiles of 1k x 1k meter, 
meaning that many of the polygons do not contain any MLS 
point.  
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Figure 5 MLS points of dataset 1 classified by polygon based 
fusion, colored by object_id (top) and class_id (bottom): 
buildings [white], road [cyan], terrain [red], bridge [green] and 
water [blue]. 
 

 
 
Figure 6 MLS points of dataset 2 classified by polygon based 
fusion, colored by object_id (top) and class_id (bottom): 
buildings [white], road [cyan], terrain [red], and water [blue, 
hardly visible]. 
 

Dataset # MLS points 
(ground/ 

nonground) 

# polygons 
in MLS area 

# map points 
in MLS area 
(tree/ pole/ 

other) 
1 3.5 M (1.9M / 

1.6M) 
241 (fused 
with 2.1M 

points) 

440 (130, 288, 
22) (fused 
with 0.4M 

points) 
2 7.8 M (5.3M / 

2.5M) 
162 (fused 
with 5.8M 

points) 

245: 51 trees, 
191 poles, 3 
other, (fused 

with 1M 
points) 

 
Table 1. Overview on two MLS datasets and their corresponding 
map polygons and points. 

The second output file contains non-ground MLS points which 
do not correspond to polygon objects, representing points on 
single trees, street furniture and points reflected on cars, 
pedestrians etcetera. This file will be input for the object based 
classification process. 
  
5.3 Object classification by map point induced segmentation 
 
The object classification consist of the seed selection and 
growing of matches between map points and MLS data. Results 
are shown for the seed selection, and the following growing 
stages of segmentation and classification in figures 7, 8 and 9. 
  

 
 
Figure 7. Seeds grown in MLS dataset 1, after phase 1 (top), and 
their complete segments after growing phase 2 (bottom).  
 

 
 
Figure 8. Object segmentation of dataset 1 after the fusion with 
map points: segmentation (top left), classification (top right), 
overlaid on the original MLS data (bottom). 
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Figure 9. Object segmentation of dataset 2 after the fusion with 
map points: segmentation (top left), classification (top right), 
overlaid on the non-ground MLS data (bottom). 
 
5.4 Detected map changes 
 
One of the major advantages of the smart fusions between map 
and MLS data is the automatic detection of map points that do 
not correspond to a MLS seed. Our algorithm produces a side 
product indicating whether a map point is matched to a MLS 
segment or not. The changes between map data and the MLS data 
are analysed to highlight the potential impact of the approach for 
map updating. First the map point objects which did not produce 
a corresponding segment in the MLS data are shown as purple 
dots (emphasized by the red arrows) in figure  10. Green dots are 
the map point objects which successfully generated a segment. 
Table 2 shows that for many of the map point points without MLS 
segment, there was no overlap in the data due to occlusions and 
distance to the mobile mapping sensor. For other missing objects 
in the overlapping area, it seems that the actual object has been 
moved by a few decimetre or even several meters, but is still 
stored twice in the map data with a slightly different location. It 
is of high interest for map owners to directly see which objects 
may have moved and/or stored twice. 
 

Dataset Total 
matched/ 

not 
matched 

map 
points 

Reason 1: too 
far from 

MLS 
data/occluded 

Reason 
2: object 
changed 

Reason 
3: 

method 
failed 

1 177/263 218 39 4 
2 183/64 43 20 1 

 
Table 2. Analyses of map points without a corresponding MLS 
segment. 

 
Figure 10. Detected mismatches between MLS data and map 
points in purple (highlighted by the red arrows. Green dots are 
the successful matches between map point and MLS segment. 
 

 
 
Figure 11. Several detected changes between map and MLS 
data in dataset 2, of which 1 (cyan box) missed the match 
because of having too few points in the seed. 
 
Figure 11 shows a case in the cyan box where there is no match 
found between an box type of object and MLS points. Though it 
is not clearly a box in the MLS points, it looks like a pole like 
object which was not matched to the map point. Feedback is 
needed from the map owner to check whether the map is incorrect 
or whether the MLS data was just too sparse to find a seed. 
 
Next, MLS points are analysed which are not assigned to map 
points. Note that these points also were not assigned to polygon 
objects in the earlier stage. Typically these points belong to cars, 
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pedestrians but also trees which were not represented in the map. 
In addition, points on extrusions of buildings are present in this 
remaining points, as the building polygons represented the 
footprint of the building at the location where the wall touches 
the ground. Our algorithm now uses the information from the 
polygon based classification to further classify the remaining 
points. So, in this step the remaining points near MLS points 
classified as buildings are assigned to buildings, remaining points 
directly (less than 2.5 meter) above the road are assigned to 
potential cars and pedestrian class. In figure 12 it can be seen that 
points on extruded buildings are assigned to buildings, cars and 
other objects above the road are grouped into a separate class 
(blue in figure 12). Note that new objects which should be 
updated in the map are also in this class.  
 

 
 
Figure 12. Remaining points near buildings are automatically 
assigned to buildings (red), objects above the road including cars, 
pedestrians (blue), points above terrain polygons (yellow). 
 
The MLS points in the remaining class just above the road belong 
to either objects which were not present in the map, or these 
points did not comply to the assumptions that were made on seed 
selection and growing. These points are further analysed in 
section 3.5 and 4. 
 
5.5 Analysis of segment growing results 
  
For groups of nearby map points the results are not satisfactory 
in situations as shown on the left in figure 13. In our current 
implementation, we restricted the growing range if two pole like 
objects are within 1.5 meter distance. Part of the horizontal pole 
with traffic lights are not grown into the segment. This could 
easily be solved afterwards by assigning the remaining 
unsegmented points to the nearest segment. On the other hand, 
one should be careful in just assigning points to the nearest 
segment, see the example on the right. A situation is shown where 
two tree map points resulted in two segments (blue and green). 
The two trees on the right were not in the map, so it was good 
that the green segment did not grow too far. Still, we see that 
some points which should belong to the blue segment were not 
assigned correctly. 
 

 
 
Figure 13. Points not segmented due to limiting growing 
constraints which is in some occasions not correct (red circles), 
and in some correct (green circle). 
 
Towards the outer side of the MLS datasets, the point density gets 
lower and the occlusions per object are getting more severe. In 
those areas, our region growing algorithm assigns the MLS points 
within the maximum range assigned to each map point, but it 
lacks the interpretation skills to understand which point belong to 
which object. Therefore it is advised to add a post processing step 
to check whether the shape of the segment complies with the 
expected shape, which until now we did not want to enforce. It is 
in our opinion that the expected shape should not be built from 
heuristic rules, but should be learned from a huge collection of 
training samples. So our next aim is to classify the MLS data 
using a supervised classification approach and check whether that 
class corresponds to the map based classification. This is part of 
future work of the authors. 
 
 

6. OUTLOOK 
 
The main contribution of this research is not so much the 
classification of the MLS data but to perform a rapid change 
detection to an existing topographic map at the areas where the 
MLS data has been captured. After all, it directly becomes clear 
where there is not a logical match between MLS data and the map 
data. Another application is the possibility to use geometric 
differences between both datasets to enhance the quality of the 
MLS dataset: differences at pole locations can potentially be used 
to adjust locally the trajectory of the MMS platform similar to 
using differences between aerial images and MLS data as shown 
in (Hussnain et al, 2018).  
 
However, to the authors opinion the largest potential of this 
approach is to generate a huge amount of training data for deep 
learning algorithms, especially when a selection step is added 
which filters out the erroneous training samples. Even more 
details can be transferred from map to MLS data, such as 
functional use and age of objects. Also relations between objects 
can directly learned from the map instead of contextually derived 
from MLS data. The automatic transfer of knowledge from a 
semantically rich data source as the map to a MLS dataset is 
crucial in an era where algorithms are supposed to learn to 
understand the scene. 
 
 

7. CONCLUSIONS AND FUTURE WORK 
 
In this paper a method is presented that automatically transfers 
detailed map information to mobile laser scanner data. We have 
shown that it is possible to segment and classify the MLS data 
based on what to expect from the map. Fusing MLS data with 
topographic map information makes it possible to locally process 
the laser data depending on the class type. The segmentation is 
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necessary to group all MLS points belonging to a certain object. 
We considered this to be a smart fusion as the segmentation 
parameters depend on the corresponding map class. Changes 
between objects in the map and MLS data can be found if there 
is no evidence for the existence of the map object in the MLS 
data. In over 90% of the missing matches, the reason is that the 
object has changed, in about 10% it did not became clear whether 
the object was still there or not. The potential of the map fusion 
is enormous as it does not only transfer the map class, but also at 
an object instance level. 
 
In future research training samples are generated by the fusion 
with a large scale topographic map. A classifier is trained using 
these samples. As our current approach is automatically 
generating these samples for every location with coverage of both 
map and MLS data, it potentially collects a large amount of 
training data. This enables the training of a deep learning network 
for classification of MLS data. The classification is then 
performed on data without topographic map. The challenge is 
find a procedure to select on optimal set of training samples to 
correctly classify a MLS dataset. 
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