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ABSTRACT

Nondeterminism occurs naturally in Petri nets whenever multiple
events are enabled at the same time. Traditionally, it is resolved
at specification time using probability weights and priorities. In
this paper, we focus on model checking for hybrid Petri nets with
an arbitrary but finite number of stochastic firings (HPnGs) while
preserving the inherent nondeterminism as a first-class modelling
and analysis feature. We present two algorithms to compute op-
timal non-prophetic and prophetic schedulers. The former can be
applied to all HPnG models while the latter is only applicable if
information on the firing times of general transitions is specifically
encoded in the model. Both algorithms make use of recent work on
the parametric location tree, which symbolically unfolds the state
space of an HPnG. A running example illustrates the approach and
confirms the feasibility of the presented algorithm.
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1 INTRODUCTION

Petri nets offer a graphical notation for process models with a pre-
cise mathematical semantics. In the original definition [26], the
order in which multiple concurrently enabled transitions fire is
nondeterministic, i.e. any possible order must be considered in the
analysis. Petri nets are thus well-suited for modelling the concurrent
behaviour of distributed systems. Over time, variants have been in-
troduced that cover quantitative aspects. In this paper, we focus on
systems that exhibit stochastic behaviour, and that intermix discrete
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control with complex continuous dynamics (i.e. hybrid systems).
Existing Petri net formalisms in this area, like generalised stochas-
tic Petri nets (GSPN [1]), fluid stochastic Petri nets (FSPN [19]),
and hybrid Petri nets [2], resolve their inherent nondeterminism
either probabilistically by assigning weights to transitions, via a
fixed execution order prescribed by transition priorities, or using
a combination of both. However, any prescribed deterministic or
probabilistic ordering between two transition firings is inappropri-
ate to model concurrency (i.e. systems composed of independent
computational or physical components), unknown (controllable or
adversarial) environments and inputs, and (intentional) underspec-
ification.

With this paper, we make nondeterminism a first-class feature in
the modelling and analysis of concurrent stochastic hybrid systems
with Petri nets: we allow hybrid Petri nets with general transitions
(HPnGs [15]) to make nondeterministic choices between transition
firings that are possible at the same point in time. In a nondeter-
ministic system, reachability probabilities depend on how such
choices are resolved, i.e. on schedulers. Probabilistic model checkers
compute the maximum or minimum probability over all possible
schedulers, the results being referred to as optimal probabilities.
Specific scheduler classes of interest are, for example, partial-infor-
mation, history-dependent, or randomised schedulers.

Stochasticity in HPnGs stems from general transitions which fire
after a delay sampled from some specified general (usually continu-
ous) probability distribution. HPnGs thus allow for non-memoryless
distributions, and a crucial question is what information should be
available to “all possible” schedulers in the first place. In particular,
can they observe the time at which a stochastically-timed event
will happen in the future? Complete-information schedulers for sto-
chastic automata (SA [6], akin to HPnG without continuous places)
can do so [4]. We call such schedulers prophetic [17]. They may
be considered unrealistic, but constitute the most general class of
schedulers for model checking. Non-prophetic schedulers, however,
are more desirable in applications because making decisions based
on the timing of future random events is, in most cases, impossible
in reality. However, from a theoretical perspective, they are less
general than prophetic schedulers.

In this paper, we present two algorithms to compute optimal
reachability probabilities in HPnGs, one for prophetic and one
for non-prophetic schedulers. Both extend recent results on the
symbolic representation of the state space [20] of, and on the corre-
sponding model checking algorithms [21] for, purely probabilistic
HPnGs. The key idea of the existing work is to separate the analysis
into computing a parametric location tree (PLT) to identify reach-
able goal states in the hybrid dynamics followed by an integration
over the general probability distributions to compute reachability
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probabilities. The existing algorithms support an arbitrary but fi-
nite number of general transition firings. They thus work well to
compute time-bounded reachability probabilities in HPnGs.

Our new algorithm for the non-prophetic case compares all
nondeterministic choices in the PLT and picks the optimum in
terms of the reachability probability. It thus finds optimal history-
dependent deterministic schedulers. Our algorithm for prophetic
schedulers, however, requires information on stochastic events to be
explicitly encoded in the model: the delay until a general transition
fires must be made explicit by adding a continuous place that stores
an amount of fluid corresponding to the random variable modelling
that delay. This is referred to as pre-computation. The prophetic
algorithm then uses the distributions of the random variables to find
the optimal decision boundaries over time, which might depend
on the values and the firing order of the pre-computed random
variables. This poses an optimisation problem over the support of
the random variables that, to be solved in full generality, would
require the availability of efficient optimisation solvers.

Overall, our algorithms complement a graphical formal mod-
elling framework for a challenging yet highly practical [12, 13, 23]
combination of quantitative aspects by an exhaustive analysis that
delivers results with guaranteed coverage and accuracy. We have
implemented the non-prophetic algorithm in full generality, and
provide a proof of concept of the prophetic variant that supports
at most one decision point per pair of concurrently enabled transi-
tions. We use an electric vehicle decision-making case study as a
running example to confirm the effectiveness of the non-prophetic
algorithm and to illustrate the prophetic approach.

Related work. Like we add nondeterminism to (the analysis of)
HPnGs, it has been reintroduced to GSPN via a transformation [7]
to the nondeterministic Markovian formalism of Markov automata
(MA) [8]. Due to the absence of hybrid dynamics plus the mem-
oryless nature of GSPN, standard probabilistic model checking
techniques for classic schedulers apply. No class of schedulers with
limited information is equivalent to prophetic schedulers for SA [5];
this is in contrast to MA where e.g. untimed schedulers suffice for
unbounded expected-time properties. Yet, even in settings where
model checking for classic schedulers is tractable, scheduler classes
with partial information are of interest as evidenced by work on dis-
tributed schedulers [14] for Markov decision processes (MDP) and
the model of partially-observable MDP [3]. The verification of un-
bounded properties becomes undecidable in such settings [14, 25];
we in contrast rely on limited-information schedulers to make
checking time-bounded properties practical. For HPnGs, the anal-
ysis of non-prophetic schedulers is conceptually and practically
easier than that for prophetic schedulers, due to the characteristics
of the PLT-based approach. Related Petri net formalisms like hybrid
Petri nets [2], FSPN [19], and colored Petri nets [22], as well as their
extension [10], do not allow nondeterminism as a model feature.

2 HYBRID PETRI NETS

HPnGs extend the formalism of hybrid Petri nets [2] with stochas-

tic behaviour. We give a simplified definition of their syntax and

semantics and illustrate them through our running example.
Definition 2.1. An HPnG is a 5-tuple (P, 7T, A, My, @) where

@ is a tuple (07 @Z—, @Z) of parameter functions. The finite set
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P = Pd w PC contains the discrete places (drawn as circles) and
the continuous places (double-outline circles). Any discrete place
P; € P4 holds m; € Ny tokens. A continuous place P;j € P¢ holds
an amount of fluid x; € R} The initial number of tokens and the
initial fluid levels are given by the initial marking My = (my, Xo)
with mgy = {ml,...,mlpdl} and x¢ = {x1, ...,X|Pc‘}.

A transition connects zero or more input and output places of the
same type. The finite set 7 = 71w 70 & 76 w 7€ of transitions
holds immediate (drawn as solid black bars), deterministic (grey
filled), general (single-outline) and continuous (double-outline) tran-
sitions. Immediate transitions in 71 fire as soon as they are enabled;
deterministic transitions in 7P fire after being enabled for a prede-
fined time given by CDZI—: 7D — R*. The time to fire for a general
transition follows a continuous probability distribution given by
@Z: 76 — (f: R* — [0,1]). A continuous transition in 7€ has
a continuous inflow and outflow of fluid and fires continuously if
enabled. ®7 : 7€ — R+ defines the nominal firing rates of these
transitions. The finite set A = A4 W Al W Al w AN consists of
discrete (solid arrow), continuous (double-outline arrow), test (dou-
ble arrow) and inhibitor (circle arrow) arcs, which connect places
with transitions. Discrete places and non-continuous transitions
can be connected via discrete arcs in A € (P9 x (T \ TE) U
(T\T€)xP%). A continuous arc in AS € (Pex TC) U (TCx P¢)
connects one continuous place to one continuous transition. Test
arcs in A! € P4 x T~ and inhibitor arcs A" € P4 x T~ connect a
discrete place to any transition.

A transition T is enabled in a marking iff all of its input places
(i.e. places P with (P,T) € AL U AL ) as well as all discrete places
connected to it by a test arc have a token or fluid available, and all
discrete places connected by an inhibitor arc hold no token. When
a non-continuous transition fires, one token is removed from every
input place and one added to every output place (i.e. the places P
with (T, P) € A% U AT ). At any point in time, the amount of time
that a transition was enabled since its last firing is its enabling time.
We refer to [15, 27] for the full formal rules and in particular for a
detailed description of the behaviour of general transitions.

The drift of a place P describes its derivative and equals the sum
of the firing rates of all enabled incoming continuous transitions (i.e.
enabled transitions T with (T, P) € A) minus the sum of the firing
rates of all enabled outgoing continuous transitions (i.e. enabled
transitions T with (P, T) € af ). If the fluid level of P is 0 and the
supposed drift is negative, the drift is set to 0 and the rates of the
incoming transitions get adapted accordingly (as defined by the
rate adaption rules [15]). As we consider constant nominal fluid
rates, we obtain piecewise-linear continuous behavior.

Definition 2.2. A state of an HPnGis a tuple I’ = (m, x, ¢, d, g, e)
with discrete marking m, continuous marking x, and enabling time
c for each deterministic transition. For each continuous place, drift
d records the current change of fluid level per time unit. g holds the
enabling times in R} for general transitions, and e describes the
Boolean enabling status of all transitions. The initial state is I € S
with S the set of all possible states and Iy = (my, xo, 0, do, 0, €9).
The values of the d and e are uniquely determined by m and x.

The discrete part of the state (the numbers of tokens m, the drifts
d, and the enabling statuses e) only changes when an event occurs:
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Definition 2.3. An event Y(I;,Tj+1) = (At;, €;) in an HPnG with
& €ePCUT \TCUALUAP is the change from state I to state
Ti+1, where Ar; € Rar is the time after which the event takes place,
starting from I, such that
(1) potentially T;.m # Tjy;.m A g; € 7\ 7€ (a transition fires), or
(2) T;.d # Ti41.d A &j € P (a boundary is reached), or
(3) potentially I.e # Ij41.eAe; € Al uaAh (arc condition changes).
We denote by E(T;) = {Y(I},Ti+1) = (Ar, &)} the set of events
which can occur in state I; and by §™™(T;) = {Y;T;, 1) = (Atj, €5)
e &) | iﬂYk(I“,-,Fk) = (A1, er) € EI): Aty < ATj} the subset
of events with the minimum remaining time. Having Y(T}, Tj41)
€ &min(T;), the continuous evolution between I; and I;;; results
in the set of states S(I},Ti+1) = {Ij € S |Tj.m = I;m A Tj.d =
I;d A Ij.e=Tj.e A JA7j: 0 < Arj <Aty A Tjx = Iix+I;.d-
Atj A Tj.c=Tj.c +Arj A Tj.g =T;.g + Arj}, as time evolves.

Definition 2.4. A finite path o =T (A, 00), Iy Br,e), Ty is
a finite alternating sequence of states and events s.t. there exists an
event Y(I}, Ti11) = (Arj, &) € EMN(T;) for every i € N,i < n, and
At; is the time spent in states from S(I},Tj+1) before the event
occurs. The state at time ¢ in o is denoted y(o,t) € S(I3, Tis1)
with i = min{j € N: ¢t < X <;jAr} and Ar(y(o.t)) = t -
2o0<i<i—1 At;. We denote the set of all finite paths which start
from the initial state Iy by Paths(Iy) and further we define the
subset of finite paths up to time ¢ (starting from Iy) as Paths(Iy, t) =
{0 =T (A1, &) v (Ar,e), 5y (A, &) | Z{cz—ol At <
< Z?:o Ar;}, such that Tj € S is the state after the i-th event
Y(Ti-1,T3).

Running example. Figure 1 shows an HPnG for the charging and
discharging of an electric car. One can choose between taking this
car or another petrol-powered car, while the (future) state of charge
of the electric car (i.e. the distance it can drive) may be unknown.
The state of charge is modelled by the unbounded continuous place
PS_... It can be filled by the continuous transition Tgmrge and emp-
tied by T‘f , both with nominal rate one (not shown). In the

ischarge

initial marking, T% is enabled but TS is not, due to the
charge discharge

connected test arcs. The token in P2 . that enables TS
charging charge

moved to Pf .. when the general transition TS fires. After its
riving stop

. C s G
firing, T discharge and the general transition Ty

The latter models the (random) distance to be driven. When it fires,

the token in Pcll) .. vanishes and discharging stops. The decision of
riving

which car to take is modelled by the immediate transitions T

I . ] . . G electric
and Tpetml, which fire immediately after the firing of TStop (due to

the inhibitor arcs). Since TY . and T!
electric petrol
in PD

tart fOr firing, only one can fire thereby disabling the other.
This is called a transition conflict.

The electric car is thus charged over night (up to an uncertain
amount of charge) and the decision of which car to take being made
in the morning, just before departure. Note that, even if the petrol
car is chosen, we model the discharging process of the electric car
to be able to model-check whether the best choice of car was made,
after driving is complete. Alternatively, if we exclude the inhibitor
arcs, both transitions are enabled initially, before charging starts,
such that the decision cannot depend on their firing times. We
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become enabled.

require the same token
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Figure 1: Running example HPnG

consider both of these model variants throughout this paper.

To the best of our knowledge, HPnGs are the only Petri net
formalism which combines continuous dynamics and general distri-
butions as required in this example. Alternatively, stochastic hybrid
automata (SHA) [11] could have been used, however due to their
generality they are more difficult to analyse.

2.1 Nondeterminism and Schedulers

Whenever multiple transitions can fire at the same point in time,
there is naturally a nondeterministic choice between the transitions
in conflict!. Previously, such nondeterminism was resolved using
priorities and weights [15]. In this paper, we for the first time
consider HPnGs without such a resolution. Instead, we properly
include the nondeterminism in the HPnG analysis. As is standard
in probabilistic model checking, we use the notion of schedulers to
capture arbitrary fixed resolutions of nondeterminism:

Definition 2.5. Let CT(T,) c¢ 7\ 7€ denote the set of tran-
sitions which are in conflict in a state I),. A discrete probability
distribution over C” (I,) is a function [ cT(T,) — [0,1], such
that support(u) = {T € cT (@) | u(T) > 0} is countable and
2 Tesupportip) M(T) = 1. We denote the set of probability distribu-

tions over C7 (I);) € 7 by Dist(CT (I,)).

Definition 2.6. A scheduler for an HPnG is a measurable func-
tion s: Paths(Iy) — Dist(C7 (T},)) that maps every finite path o =
Ty (Ao, 20) I 224 T, which ends in a conflict of transi-
tions in Iy, to a discrete probability distribution over the transitions
in C7(T},) . Let S" denote the class of those schedulers.

This type of scheduler has complete information about the sys-
tem’s states, its decisions are history-dependent, and it is randomised
since it returns a probability distribution. Randomised schedulers
are in practice only relevant for the verification of multi-objective
problems [9] and in certain certain constrained settings (see e.g.
[18]); we thus restrict to deterministic schedulers that always pick
one transition only in this paper. If we further limit the informa-
tion given to a scheduler, we obtain restricted scheduler classes. For
example, memoryless schedulers only see state I}, of a path, and
discrete-history ones only see the discrete part of a state—the dis-
crete marking, drifts, and enabling status, which only change at
events—and the type of events but not their exact timings, i.e. they
!For simplicity of presentation, we assume absolutely continuous distributions, as the

probability that two general transitions fire at the same time, or one fires at a specific
time point, is then zero and conflicts involving general transitions can be neglected.
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map a discrete path (Iy.m, Ty.d, Tp.e) <% . . . £2=L (T;,.m, T},.d, Ty .€)
to a discrete probability distribution. Let &} denote the class of
memoryless and G the class of discrete-history schedulers.

2.2 Prophetic and Non-Prophetic Scheduling

For stochastic automata (SA) [6], which are stochastic-timed sys-
tems with general distributions like HPnG but without continu-
ous places, the landscape of scheduler classes has recently been
mapped [5]. A general transition in an HPnG corresponds to a clock
in an SA. A clock may be reset, at which point its value is set to
0 and its expiration time is sampled from the clock’s probability
distribution. Once a clock’s value reaches its expiration time, it may
enable an edge in the SA. Clock values correspond to enabling times
in HPnG, and enabling an edge corresponds to firing a general tran-
sition. A notable difference in semantics is that a clock’s (random)
expiration time is determined the moment the clock is reset, while
the states of an HPnG do not track predetermined firing times. The
fact that expiration times are part of the states of an SA gives rise
to prophetic scheduling [17] that takes these times into account to
optimise decisions. In this way, prophetic schedulers can “see” the
timing of “future” events. They are often considered unrealistically
powerful since they can achieve higher (lower) maximal (minimal)
probabilities than one expects if the timing of random events is
assumed to be unpredictable.

Due to this difference in semantics, if we restrict to HPnG with-
out continuous places, the schedulers of Definition 2.6 are clearly
non-prophetic: they have no access to information about the exact
future firing times of general transitions. However, in the full HPnG
formalism, we can fill a continuous place with rate 1 during the
enabling time of a general transition, as we do in our example. This
transfers the firing time of a general transition into a continuous
variable, but only after the firing. Yet the amount of fluid in the
continuous place could subsequently be drained at rate —1 and an
immediate transition be fired once empty. A scheduler can well
observe the continuous marking and thus the time to fire for the
immediate—but now in a sense stochastic—transition. We take the
viewpoint that the choice of making the value of a random variable
available via such an encoding or not is a conscious choice of the
modeller, and schedulers that take such values into account should
not be considered prophetic per se since they only make use of
information that has been explicitly added to the model. Thus, we
consider all the schedulers of Definition 2.6 to be non-prophetic.

In order to define prophetic schedulers for HPnG, we would
modify the semantics to proceed like the semantics for SA: once
a general transition becomes enabled for the first time since its
last firing, the time to firing is drawn according to its associated
probability distribution, and included in states. On this modified se-
mantics, a scheduler according to Definition 2.6 would be prophetic
and we denote this set of schedulers with GP.

2.3 Time-Bounded Reachability

We are interested in the computation of time-bounded reachability,
i.e. the probability of entering certain states with a total time delay
of < tmax. Due to the presence of nondeterminism, there is no single
such probability, but every scheduler applied to a nondeterministic
HPnG induces a fully stochastic version of that HPnG.

Pilch et al.

Definition 2.7. Let Iy € S be the initial state of a given HPnG
(P, T, A, My, ). Let s € S" U SP be a scheduler and let Prob(c, 5)
denote the probability for a single finite path o € Paths(Ty, tmax),
starting in Iy, in which all transition conflicts are resolved by s. We
define the probability that a set of states 58%4/ C § is reached within
a finite time bound tpgx € Rar as

p(sgoal, S, tmax) = /

15goal(0, tmax) . Prob(o, 5) dO’, (1)
Paths(To, tmax)

@)

lsgﬂal(o-a tmax) =

with .
1 if 3T eS8 1€[0, tmax]: y(o,7) =T,
0 otherwise.

For the definition of the probability Prob(c, s), we refer to [27],
where the definition of Prob(c) in Equation 2 has to be changed
as follows: The probability for transition T to fire (first case) is
replaced by the probability s(o)(T) given by the scheduler.

If we fix a class of schedulers S € {S", &}, we obtain a range
of probabilities [pﬁm(sgoal, tmac)s P oar (S8, tmax)], where

pim(sgoal, tmax) = inf P(Sgoala S, tmax) and
seG

P%mx(sgoals tmax) = SuPP(Sgoals S, tmax)
se€c
are the infimum, respectively the supremum, over the probabilities
induced by all schedulers in that class. We refer to these optimal
probabilities as minimum and maximum. The set of states $8°¢/
is said to be reachable before time bound t,,4y if the minimum
probability pim(Sgo“l, tmax) is larger than zero.

2.4 The Parametric Location Tree

The computation of reachability in HPnGs is facilitated by the
parametric location tree (PLT), which describes the evolution of
an HPnG over time but abstracts from concrete probabilities. It
was initially proposed for one general transition firing in [15] and
recently extended for an arbitrary but finite number of such firings
in the case that nondeterminism is not present in the model [20].

Every node in the PLT symbolically represents a set of states
with the same discrete marking. The marking changes due to a
source event, leading to a child node. The evolution of the contin-
uous variables in the model might depend on the firing times of
the general transition, hence different firing times lead to different
successor nodes in the PLT. Every firing time of a general transition
is a random variable that is distributed according to its continu-
ous probability distribution. We denote these random variables by
1,82, . ..,Sp in the order they have been instantiated, where at
any point in time n equals the number of general transition firings
which have already occurred plus the number of general transitions
which are currently enabled [21]. We prohibit cycles of transition
firings, which potentially take no time, i.e. cycles of only immediate
and general transitions, to prevent Zeno-behavior.

Consequently, the PLT symbolically describes the stochastic
behaviour of an HPnG in terms of the random variables s1, s2, . . ., S
and its deterministic evolution by linear functions in those random
variables that corresponds to past firings. This allows a symbolic
representation that is independent of the probability distributions.
The main idea of parametric analysis is to collect, for each random
variable s;, the values that lead to the same (discrete) evolution over
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time into intervals S;. We call these intervals potential domains.
The potential domains of any parent node are split into intervals
for its child nodes, which are disjoint in case that no transition
conflict arises. It thus follows that potential domains in a location
only consist of a single interval per random variable [20].

Definition 2.8. Let (P, T, A, My, ®) be an HPnG and t 45 € Ra'
a time-bound. The parametric location tree (PLT) of the HPnG is a
tree (V, E, vp, ), with V the set of nodes and E the set of edges. Every
node v; € Vis defined by a parametric location A = (ID, ¢, T, S) with
unique identifier A.ID. The entry time A.t is either a time point in
Rg or a linear function of the random variables s1, s2, . . ., s; present
in the HPnG, ie. A.t = ag+ ay - s1 +ag - s2 + -+ + a; - s; whereas
Vj,0 <j<i:a; € Rholds. AT € S is a state of the HPnG.

The vector A.S collects the potential domains, where every S; € S
has lower and upper boundaries S;.I < S;.u. Both S;.I and S;.u are
linear functions of the random variables, i.e. S;.l = by + b1 -s1 + bz -
Sog+---+bj_1-sji—1and S;j.u=co+cr-sy+caSa+ - +Cio1 - Si—1,
having Vj,0 < j < (i = 1): bj,cj € R, such that S; € A.S collects all
values of s; for which A.T is reachable.

The node vy, is the root node of the PLT with A¢.I' = Ty and
Ag.S = S the set of unlimited domains for those random variables
s; that correspond to the first firing of initially enabled general tran-
sitions, i.e. $;°./ = 0 and S7°.u = co. An edge ¢; = (vp;5vn,) €E
exists for vp;, va, € Vif an event Y(A;.T', A.I') exists, such that
any sequence of locations in the PLT from the root to a leaf node
represents a path in Paths(Ty, tmax) of the HPnG.

Example (continued). Figure 2a shows the structure of the PLT
for our example without inhibitor arcs. The nondeterministic choice

is at the root location A1, leading to Az when choosing TIl . and
electric

to Az otherwise. In both sub-trees, the next event is the firing of

G . . G
Ty op into location A4 resp. As. From there, either Tdistance fires next

or PC,,. becomes empty before TdGistance fires. Table 2b summarises
the values stored per location, with x the continuous variable that
represents the amount of fluid in place PS.,, (on the entry time
point to the location) and % its drift. ¢ is the entry time A;.t into
a location A. s resp. s; denotes the random variable of TSG

top
Tgstance and Sy and S; the corresponding potential domains.

resp.

The potential domains in A.S of a location A can be represented
by half spaces and the intersection of those half spaces constitutes
an n-dimensional polytope Py s where n = |A.S] (i.e. the number of
past general transition firings up to A plus the number of general
transitions enabled in A.) [21]. A is reachable within time bound
tmax if A.t < tmax. Hence, in case the entry time A.t is a linear
function on random variables, A is reachable if there exist values for
those random variables within A.S such that the function is smaller
than tp4x. For computing time-bounded reachability, the PLT is
constructed up to time bound ¢, and the potential domains are
restricted to those values that satisfy the time bound requirement.
The probability to reach A within time bound ¢p,4x then equals the
probability that the value of every random variable s; for 0 <i < n
lies within its potential domain S; in A.S:

A.Si.u pA.Sy.u A.S,.u
Prob(A.S) = / l_[g(si)dsn...dSZ dsi, (3)
A.S1.1 JA.S,.1 ASp.d o
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where g(s;) is the probability density function for s;. In practice, we
compute these probabilities by numerical integration techniques in
the same way as described in [20]. Note that Eq. 3 differs from the
computation of the transient probabilities in [20]. The worst-case
complexity of building the PLT is in O(n? - e) with n the number of
random variables and e the number of events. For details on how a
PLT is constructed, we refer to [20].

3 CHECKINGNON-PROPHETICSCHEDULERS

Our approach for computing time-bounded reachability probabil-
ities for nondeterministic HPnG is a modification of the existing
PLT-based one for the case where nondeterminism is resolved via
priorities and weights [20, 21]. Since we keep conflicts as non-
deterministic, the “conflict probability” of [20] is not needed. We
recursively construct the PLT of a (non-Zeno) HPnG as in [20] for
an arbitrary but finite number of general transition firings. The con-
struction stops if a predefined model time bound ¢y is reached or
if no further events can occur; thus the number of parametric loca-
tions is finite. We now describe how to compute probabilities based
on the PLT and give an algorithm to obtain optimal probabilities in
the presence of nondeterminism.

3.1 Computing Optimal Probabilities

Goal locations may be below nondeterministic choices resulting
from conflicts in the PLT. The firing of every transition that par-
ticipates in the conflict leads to a different successor location and
thus a different subtree. To find the overall optimal probability of
reaching any goal location starting from the root, we traverse the
PLT bottom-up and compare the reachability probabilities of the
subtrees in every location in which a conflict arises. We then take
the maximum (minimum) of these probabilities to finally deter-
mine the overall maximum (minimum) probability. The collection
of these decisions characterises a scheduler.

Recall from Section 2.1 that a discrete-history scheduler only sees
the discrete markings, drifts, enabling status and the event types, but
not their timings. Furthermore, a non-prophetic scheduler neither
has information on future events nor can it take base decisions on
the values of continuous variables. Since the (discrete) history of a
location (i.e. the sequence of locations in the PLT back to the root)
is unique, a discrete-history non-prophetic scheduler always takes
the same decision per location. Hence, a scheduler of this class will
always pick the same sub-tree in the PLT and consequently, the
maximum probability (starting from that location) cannot be larger
than the maximum over the single probabilities of the outgoing
conflicting sub-trees (plus the sum over additional non-conflicting
child locations):

Let Ag be the location of a PLT’s root node and for any location
Aj,let C(A;) be the (possibly empty) set of conflicting child locations
and N(A;) the set of non-conflicting child locations. The maximum
probability of the optimal discrete-history non-prophetic scheduler

in Eg to reach any goal location in Loc* is pmax(Ag) with
Prob(A;.S) if A; € Loc*,
Pmax(Ai) = § maxa,, ecia;) Pmax(Air1) ()

+ 2 A1 eN(A;) Pmax(Air1) otherwise.
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Figure 2: Parametric location tree for the running example (without inhibitor arcs)

Algorithm 1 presents pseudocode for the maximum computa-
tion, given a PLT. To compute the minimum probability, perform a
less-than comparison in line 12. Function solveNondetNonProph
is initially called with A being the root location and Loc* being the
set of goal locations. At first, function isGoalloc checks if the par-
ent location A is included in Loc*, and if so, function computeProb
computes the reachability probability of A as described in Sect. 2.3
(lines 3-5). Otherwise, all child locations of A whose source events
are conflicting transitions are collected into the set conflictingLocs
(line 6). If conflictingLocs is not empty (lines 8-22), all locations in
that set are traversed (lines 10-21). For each of the locations A,
in conflictingLocs, the main function is called recursively, return-
ing the maximum reachability probability for the subtree of A,
(line 11). If A, is the first considered location or if the computed
probability is greater than the currently stored value of optimalProb,
a new optimal decision was found. In this case, the set of optimal
locations and optimalProb are updated to the computed maximum
probability (lines 13-15). If the result is equal to the current value of
optimalProb, A, is added to the existing list optimalLocs (lines 17—
20), as multiple scheduler decisions lead to the maximum probability.
After conflictingLocs is completely processed, the main function is
again recursively called for each location in nonConflictingLocs and
their probabilities are added to optimalProb (lines 23-28): Locations
with source events that are not in conflict have different entry times.
Hence, depending on the values of the random variables, either one
of the non-conflicting events or the conflict occurs. Probabilities
for non-conflicting nodes can be summed up as they depend on the
disjoint potential domains. Finally, optimalProb is returned together
with optimalLocs (line 29).

The PLT is recursively processed by post-order traversal and
probabilities are only computed for goal locations. We obtain a
worst-case complexity for Algorithm 1 of O(I + g - fi(n)) with [
the number of locations, g < [ the number of goal locations and
fi(n) the complexity of the integration for n random variables. The
algorithm terminates as the tree is finite.

Optimality. Alg. 1 computes pmax(A;), as in Eq. 4. If A; is a goal
location, Prob(A;.S) is determined according to Equation 3 in lines
3-4. Otherwise, lines 6-7 determine C(A) as conflictingLocs and
N(A) as nonConflictingLocs. Line 11 computes pmax(A¢) for every

Algorithm 1 solveNondetNonProph(A, Loc*)

: optimalProb = 0;

1

2: optimalLocs = new list;

3: if (isGoallLoc(A, Loc*)) then

4: optimalProb = computeProb(A);

5: else

6: conflictingLocs = determineConflictinglocations(A);

7: nonConflictingLocs = childLocations(A) - conflictingLocs;
8: if (size(conflictingLocs) > @) then

9: first = true;

10: for (Ac : conflictingLocs) do

11: (currentProb, currentLocs) = solveNondetNonProph(A¢, Loc™);
12: if (first or currentProb > optimalProb) then

13: optimalProb = currentProb;

14: optimalLocs = currentLocs;

15: optimalLocs.insert(Ac);

16: first = false;

17: else if (currentProb == optimalProb) then

18: optimalLocs. insert(currentLocs) ;

19: optimalLocs. insert(A¢);

20: end if

21: end for

22: end if

23: for (A. : nonConflictingLocs) do

24: (currentProb, currentLocs) = solveNondetNonProph(A., Loc*);
25: optimalProb = optimalProb + currentProb;

26: optimalLocs. insert (currentLocs) ;

27: end for

28: end if

29: return (optimalProb, optimalLocs) ;

Ac € C(A). The maximum over all results is determined by the com-
parison in line 12 and stored as optimalProb. In lines 23-27, the sum
of pmax(Ac) over all A; € N(A) is computed and added to pmax(A).

Schedulers, discrete case. If we restrict to HPnG without continu-
ous places, the locations in the PLT contain no information about
future firing times, even for already enabled general transitions.
The history of reaching a location w.r.t. discrete events (but not
their exact timing) is however unambiguously encoded in the PLT
(as the sequence of locations from the root to the considered lo-
cation). Different locations may represent identical sets of states,
however with a different history. A scheduler thus can take different
decisions for identical states dependent on the history.

Concurrently enabled general transitions in a (parent) location
lead to a conditioning in the potential domains of the corresponding
random variables in the child locations. This allows a scheduler to
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take the relative values of the random variables into account when
taking its decision in any location, where at least one of the general
transition has fired, but the other ones have not fired yet. However,
in such a location, this is anyway observable as part of the discrete
history (through the firing order of the general transitions encoded
in the structure of the PLT). Hence, our algorithm computes optimal
probabilities for, and finds schedulers from, the class of discrete-
history non-prophetic schedulers.

Schedulers, continuous case. Considering the full HPnG formal-
ism, recall from Sect. 2.2 that stochastic firing times can be “stored”
in continuous places, but we do not consider this as allowing pro-
phetic scheduling. Locations in the PLT store the fluid levels of
such places, but only symbolically as linear functions of the ran-
dom values describing previous firings of general transitions. Exact
values are still not available to schedulers in our algorithm. For
these reasons, and since continuous information is only revealed in
a symbolic fashion as induced by discrete events, the class of sched-
ulers we consider in our algorithm remains that of discrete-history
non-prophetic schedulers even for general HPnGs.

3.2 Non-Prophetic Scheduling in the Example

Let us come back to our running example, again without inhibitor

arcs. We prefer taking the electric car but want to avoid the case

where the available charge is insufficient for the (random) driving

distance. Accordingly, we want to reach a state where

(a) the electric car is taken and the charge is sufficient (i.e. the
battery is not empty when discharging stops), or

(b) the petrol-powered car is taken and the charge of the electric
car would not have been sufficient.

So, formally, we want to reach a marking where (mejectric = 1 A

Mdriving = 0 A Ce-car > 0)v (mpetrol = 1A mgriving = 1 A Ce-car = 0)

holds. In the PLT as presented in Figure 2a, the corresponding goal

locations are Ag and Ag. Considering the variant without inhibitor

arcs results in T/ . and T! being initially enabled and in
electric petrol

conflict. The optimal non-prophetic decision can depend on the
distributions of the two random variables for TS?OP and chi;stance’ but
not on their (future) firing times.

We list max. reachability probabilities (fourth column) and the
corresponding non-prophetic schedulers decisions (fifth column)
for 4 scenarios with different probability distributions and ¢,y =48
in Table 1. The distributions for both general transitions are given in
the second and third column. Let 1 time unit in the model be 1h. It
took approx. 13 ms to build the PLT?. We obtained probabilities via
Monte Carlo integration [24] for the multi-dimensional integrals;
we include its statistical error in the last column.

In scenario 1a, the expected charging time is significantly larger
than the expected value of the distance, both with low variance
o?%. Consequently, TeIlectric is the better choice in most cases and
leads to a maximum probability pmax close to 1. Larger variances
in 1b lead to a lower probability as it is now more likely that the
distance is larger than the state of charge allows. The distribution
parameters for both transitions are equal in 1c and 1d, resulting in a
probability of 0.5 for each immediate transition to reach a goal state.

2 All computations were done on a VirtualBox running Ubuntu 18.04 with 2x2.7 GHz
Intel Core i5 processor and 4 GB of RAM; C++17 Code compiled with GCC 7.4.0.

HSCC 20, April 22-24, 2020, Sydney, NSW, Australia

The deviation of the computed maximum probability from 0.5 is
due to the numerical integration, but lies within the error estimate.
Overall, these results show that the resulting probabilities depend
on the probability distributions assigned to the general transitions.
A non-prophetic scheduler cannot optimise further.

4 CHECKING PROPHETIC SCHEDULERS

Non-prophetic schedulers may be more “realistic” and desirable in
practice, yet they are a somewhat arbitrarily restricted class at least
in SA where expiration times are part of states. We now describe a
way towards model checking HPnG w.r.t. classic prophetic sched-
ulers: we use continuous places to store firing times and make the
continuous marking of the current state available to schedulers.
Recall that we call a random variable pre-computed if the delay until
the corresponding general transition fires is made explicit via the
amount of fluid in a continuous place. For models in which at least
one random variable is pre-computed, a scheduler that observes
the fluid level of the corresponding continuous place can make
prophetic decisions for that variable and thereby perform better
than a discrete-history non-prophetic scheduler. Models can be
adapted to pre-compute all random variables as follows:
(1) Add one continuous place P€ for every general transition TC.
(2) Fill P€ with drift 1 as long as TG is enabled.
(3) After TC has fired, drain P with drift —1.
(4) Replace the firing of T by the event of P€ reaching fluid level 0.
Step 4 may require additional changes throughout the model
depending on the interplay of components in the original system;
for time-bounded properties, it may be necessary to pause the
overall system evolution during pre-computation.

Example (continued). In our running example, the firing time of

Ts?op is stored in continuous place P$,,., by nature of the model,

and this place is drained after firing via Tdci‘scharge
to make the value of the random variable available to a prophetic
scheduler, the decision of which car to take needs to be delayed to
after TS?OP has fired. This is achieved by the dashed inhibitor arcs
in Figure 1, which we consider to be included from now on.

The values of the pre-computed random variables are stored in
the states of the adapted model. However, Algorithm 1 for non-
prophetic schedulers does not take this information into account.
Therefore, we now present a different approach for prophetic sched-

ulers, where decision can depend on the random variables.

with rate one. Yet

4.1 Determining Split Hyperplanes

The optimal prophetic decision might depend on the order of ran-
dom variables and their values. The former may not and the latter
definitely is not represented in the PLT unless random variables
are pre-computed. However, if they are, then taking the continuous
values into account when maximising or minimising reachability
probabilities leads to an optimisation problem over the potential
domains of the pre-computed random variables. Solving this opti-
misation problem results in a partitioning of the potential domains
into subsets for which different decisions are optimal. The parti-
tions are characterised by split hyperplanes separating the space
of all random variables into more restricted domains by half space
intersection. Those half spaces represent the scheduler decisions,
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Table 1: Case study results for non-prophetic schedulers

‘ scenario ‘ Ts?op ‘ Tgstame H optimal scheduler decision ‘ Pmax error estimate | run time
1a) folded normal (i = 12h, 62 = 1n) | folded normal (i1 = 8,02 = 1n) Tellectric 0.998277 +4.33E73 2.238s
1b) folded normal (i = 12h, 6% = 16h) | folded normal (i = 8h, 6% = 16h) Tellectric 0.758743 +1.23E74 1.171s
1c) folded normal (i = 8h, 0% = 1n) folded normal ( = 8h, 6% = 1n) Tellecmc, T;etml 0.500274 +8.23E74 2.342s
1d) uniform (7h, 9h) uniform (7h, 9n) L ectricr T 0.499716 +2.08E73 0.640s

electric’ " petrol

and the split hyperplanes can only depend on the values of the
pre-computed random variables (known to the scheduler). The op-
timal scheduler in G then relates to the optimal split hyperplanes
that maximise (minimise) the reachability probabilities, which are
computed over the restricted potential domains (recall Equation 3).

Let A denote a location in the PLT with a conflict between tran-
sitions Tj, j € {1, ..., k}. The firing of T; leads to location A;. We
traverse the k sub-trees with roots A;j...Ag using depth-first search
and identify all locations that represent states in the set of goal
states. Let Loc* denote the set of those goal locations. For n = |A.S|,
let m with 1 < m < n be the number of pre-computed random
variables (visible to the prophetic scheduler at A.t). Recall from
Section 2.4 that the potential domains A;.S can geometrically be
represented by half spaces, whose intersection constitutes a convex
polytope Py, 5. Our goal is to find additional hyperplanes

H; ={(s1,.-»sn) € R" | a1s1 + ... + amsm = b},

that only depend on the m pre-computed random variables. For
each pair of goal locations reached via different choices, up to
two hyperplanes might be required to separate the polytopes, to
maximize (minimize) the total probability over these domains>.

Let H denote the set of those hyperplanes, i.e. |H| < |Loc*|. Any
hyperplane H; € H separates the n-dimensional space into the two
(open) half spaces, which we denote by

b} = {(s1,..,sn) € R" | ass1 + ... + amsm ~ b},

for ~ € {<,>}. Let Loc; C Loc* denote all goal locations in the
subtree of A;. For each location A, € Loc;, the polytope Py s has
to be intersected for each hyperplane H; with one of the half spaces
hf and hl.Z. This leads to a restriction of A..S, which we denote by
A¢.S’. We formalise the optimisation problem for maximising the
probability to reach a goal location from Loc* from a nondetermin-
istic conflict in A as:

max Prob(Locy, ..., Loc; ,H) = Z}C:l S A, eLoc; Prob(A..S")

subject to constraints

Vie{l,.,k}: Vie{l,.,k}: 1 #j: V(Ac, Ag) € Loc; XLOC’;:

AH,,Hs e HA d e, %,0,V € { <, >} with a#F o A% # V:
Py, . equals Py g intersected by the half spaces h}* and h¥

A Py, s equals Py, s intersected by the half spaces hy and hy.

)
The formulation for the minimum probability is analogous. The
optimal scheduler decision results from checking in which of the
half spaces the values of the pre-computed random variables lie.

3Since the polytopes are convex, one hyperplane is in general sufficient to separate
two polytopes according to the hyperplane separation theorem. However, due to the
restriction to hyperplanes which can only depend on the m pre-computed random
variables, two hyperplanes might be necessary if m < n.

4.2 Algorithm Outline

Algorithm 2 shows the pseudocode for computing max. probabili-
ties under prophetic scheduling taking pre-computed continuous
values into account. Function solveNondetProph is initially called
with A being the root location, Loc* the set of goal locations, and
m the number of pre-computed random variables. Compared to
Algorithm 1, we handle locations with conflicts differently.

Again, if the parent location A is a goal location, we compute its
reachability probability (lines 3-5). Otherwise, we traverse every
sub-tree in a pairwise manner, using depth-first search, and collect
all goal locations which are the firstly reached in a path from the
root. Those locations are saved separately per nondeterministic
choice (lines 8-12). For every pair of such nondeterministic choices,
we traverse the Cartesian product over the resulting two sets of
goal states, such that we consider pairs of goal locations A, and
A4 (which are reached from different nondeterministic choices;
lines 13-25). To separate the potential domains A..S and A,.S, we
then solve the optimisation problem of Equation 5 for A and Ay
in line 18, returning the split hyperplanes hy and hy. In addition
to the computation of the hyperplanes, we also have to determine
which decision is taken for which resulting half space, which can
be easily realised by comparing both possibilities. Therefore, we
let the optimisation solver return the corresponding Booleans dir;
and dirz, too. The polytopes Py s and P4, s are intersected by
the half spaces hy and hy (lines 19-22), and the latter are stored
in splits (lines 23-24). Since the potential domains are updated,
but no probabilities are computed, the recursive call is done for all
(conflicting and non-conflicting) child locations in lines 29-33. Note
that this is different to Algorithm 1. Finally, the optimal probability
as well as the splits list are returned in line 35.

Let ¢ denote the number of choices in a single nondeterminis-
tic conflict and g; the number of goal locations, i.e. polytopes to
consider, in a sub-tree related to the choice of location A;. Since
nondeterministic choices are considered in a pairwise manner and
further pairs of goal locations are considered via the Cartesian
product, the number of split hyperplanes is in O(c? - g%,4,) with
gmax = MaXje(y . c}1gj }- The number of free variables in the op-
timisation problem for a single conflict is in O(c? - g2,y - m). Let |
denote the total number of locations and g < I the number of goal
locations. As ¢ < [ and gmax < g holds for every conflict, we denote
the complexity of solving the optimisation problem by f,(I, g, m).
The PLT is again recursively processed by post-order traversal and
again reachability is only computed for goal locations. Thus, the
worst-case runtime for Algorithm 2 is in

0@ film) + 12 - ¢* - foll, g, m)),

where f;(n) is the complexity of integration for n random variables.
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Algorithm 2 solveNondetProph (A, Loc*, m)

1: optimalProb = 0;

2: splits = new list;

3: if (isGoalLoc(A, Loc*)) then

4: optimalProb = optimalProb + computeProb(A);

5: else

6: conflictingLocs = determineConflictinglocations(A);

7: if (size(conflictingLocs) > @) then

8: goalLocs = new list;

9: goalLocs. insert(getGoalLocations(conflictingLocs[01)) ;

10: for (j=0, j < size(conflictingLocs)-1, j++) do

11: for (k = j + 1, k < size(conflictingLocs), k++) do

12: goalLocs. insert(getGoalLocations(conflictingLocs[k1));
13: for each pair (Ac, Ag) € (goalLocs[j1 X goalLocs[k]) do
14: h; = new array[m+1];

15: hy; = new array[m+1];

16: dir; = false;

17: diry = false;

18: (hy, diry, hy, diry) = solveOptimisationProblem(A¢, Ag);
19: Pa..s = Pa..s.intersect(Halfspace(hy, dir));

20: Po..s = Pp..s.intersect(Halfspace(hy, dir));

21: PAd,s = PAd.s.intersect(Halfspace(hl, dir)));

22: Ppr,.s = Pay.s.intersect(Halfspace(hy, dir2));

23: splits. insert(A;, Ak, hi, diry);

24: splits. insert(A;, Ak, ha, dirz);

25: end for

26: end for

27: end for

28: end if

29: for (A. : childlLocations(A)) do

30: (currentProb, currentSplits) = solveNondetProph(A¢, Loc*, m);
31: optimalProb = optimalProb + currentProb;

32: splits. insert (currentSplits) ;

33: end for

34: end if

35: return (optimalProb, splits) ;

The main challenge in implementing Algorithm 2 is to find an
appropriate solver for an optimisation problem of such size, i.e. the
implementation of the function solveOptimisationProblem. We
have implemented the algorithm for the case of only two random
variables and a single split line being sufficient. Our implementation
uses the ALGLIB library (available at alglib.net) for optimisation.
In addition to our case study on the running example, we have
computed prophetic schedulers for two HPnG encodings of models
from [5]. The results we obtain match the expected results.

Optimality. Every pair of restricted polytopes of goal locations
reachable from different scheduler decisions must have empty inter-
section to obtain a valid scheduler. Algorithm 2 iterates every pair
of such polytopes and separates them by split hyperplanes. The fi-
nal set of hyperplanes yields the optimal scheduler. The probability
computed by Algorithm 2 depends on the number of pre-computed
random variables, as this constitutes the amount of information
available. If all random variables are pre-computed, the scheduler

Table 2: Results for prophetic scheduling, partial adaptation

‘ sc. H split value a | decision for sstop > a ‘ Pmax ‘ error ‘ run time ‘

2a 8.59669h TII . 0.997904 | +2.23E7* | 765.645s
electric

2b 7.99520n T 0.816482 | +3.54E7% | 157.588s
electric

2c 8.00360n TI1 . 0.749933 | +5.43E7° | 100.076s
electric

2d 7.99893n TI1 ’ 0.750096 | +2.02E~* | 335.100s
electric
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Figure 3: Model adaptation for the running example

has complete information and the algorithm computes the best pos-
sible result. If only some random variables are pre-computed, the
computed result is optimal w.r.t. the available information, as the set
of possible split hyperplanes is restricted. The resulting probability
is the same for pre-computing the random variables in parallel or
in sequence. However, the former is computationally more efficient
as the split hyperplanes are already encoded in the PLT.

4.3 Prophetic Scheduling in the Example

The non-prophetic case in our running example corresponds to the
owner of the cars having to decide which one to take before the
electric car starts charging (for a random amount of time). We now
present optimal reachability probabilities obtained by prophetic
schedulers (using the example with the inhibitor arcs).

Pre-computation of charge only. We first consider the prophetic
case where we only know the firing time of Ts(t;op’ but not of T(gstance'
In this setting, the decision between cars is made once the electric
car is charged (and the charge can be read from its displays), but
before the driving route is known. Recall that the firing time of
Tsct;Op is already pre-computed via the fluid level of P,

The resulting maximum probabilities and schedulers are sum-
marised in Table 2, using the same four scenarios as in Table 1. The
second column presents the split value a, such that the prophetic
schedulers choose the electric car if the pre-computed state of
charge sstop exceeds a (third column) to achieve the maximum
reachability probability (fourth column).

The resulting split line Hg = {(Sstop, Sdistance) € R? | Sstop = 4},

depends on the distribution of Tf . For all scenarios, the split

istance

values lie around 8, which is the mean of the distribution of Tf
istance

and thus its expected firing time. The probability of scenario 2a
only slightly deviates from scenario 1a (due to the integration error).

Always choosing Tellectric already yields a probability close to one,

as the firing time of TS?OP
variance of the distribution. Since in this case slightly changing the
split value only results in small changes in the resulting probability,

the computation of a is less accurate. The remaining scenarios

is most likely above eight due to the low
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Figure 4: Basic structure of the PLT for the adapted model with pre-computing all random variables in parallel

in Table 2 demonstrate how prophetic scheduling can increase
Pmax for the desired property by taking decisions depending on
the pre-computed firing time of Ts?op. Comparing the run times of
Tables 1 and 2 shows that the computation of prophetic schedulers
in general takes longer. The reason is that optimisation requires a
large number of integrations for different potential split values a

until the optimal value is found.

Pre-computation of charge and distance. The example can further
be adapted to also pre-compute Tgstance. A prophetic scheduler
then knows both firing times before taking its decision. This would
apply if the owner of the cars also knows the route to be driven
before leaving. The firing times can be pre-computed either in
parallel or in sequence. Figure 3 shows the adapted model for both
options. If the gray-dashed arc from TS?O to PP . isexcluded

P receiving

and initially there is a token in P both general transitions

receiving’
are pre-computed in parallel. Including the arc and removing the
tokens results in enabling Tgstance only when TS?OP has been pre-
computed. We added continuous place PrcOute and two continuous
transitions to pre-compute Td?stance' The nondeterministic decision

is delayed by the immediate transition T . | which only fires
ready

after the pre-computation. The outflow transitions T<, nd

discharge a
has fired.
decrease dy

Table 3 shows the maximum probabilities computed by both
non-prophetic (discrete-history) and prophetic schedulers (as im-
plemented for a single split line) for the adapted model with pre-
computing the random variables in parallel. The results are approx-
imately one in all scenarios. This is because the discrete event of
either one of the pre-computations finishing first is encoded in
the PLT, of which an abstraction is shown in Figure 4. The tree
branches into two subtrees encoding the relation of the firing times
of the general transitions. This results in two locations (here Ag

become enabled after TL
read

Table 3: Results for prophetic scheduling, full adaptation

non-prophetic prophetic
sc. Pmax ‘ error ‘ time Pmax ‘ error ‘ time
3a) || 0.999798 +9.07E73 | 2.214s 1.000000 | +4.41E7* | 706.791s
3b) || 0.998012 +1.16E72 | 2.408s || 0.9986220 | +1.93E~% | 318.626s
3c) || 1.000000 | +1.57E2 | 4.480s || 0.999869 | +5.69E~* | 892.401s
3d) || 0.999432 +1.90E7% | 1.094s 0.999438 | +1.08E73 | 439.169s
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and A7) with a nondeterministic choice. As described in Sect. 3.1,
even a non-prophetic scheduler can then base its decision on the

. . . . 1 .
ordering of the firing times. In the example, choosing T, . is

optimal if Td(i;stance has fired first, and otherwise TpIetrol is optimal.
If both general transitions are pre-computed in sequence, no
information on their relative size is encoded in the (discrete) PLT
and the prophetic scheduler should perform better than the non-
prophetic one due to the extra optimisation step. The non-prophetic
results for this example match those of Table 1. Computing an
optimal prophetic scheduler for this case yields an optimisation
problem with multiple free variables, which our implementation
does not support due to alack of efficient solvers. Yet pre-computing
all random variables of the model is a special case in which the
scheduler has complete information on the future evolution and
the required split hyperplanes can be derived from the potential
domains of the goal locations (via union and intersection). For our
example, this leads to pmax =~ 1 in all scenarios, but requires less
computation time than computing split hyperplanes.

5 CONCLUSION

We expanded the reach of model checking for HPnGs to cope with
nondeterminism that naturally arises from transition conflicts. Our
new algorithm computes optimal probabilities ranging over all pos-
sible resolutions of nondeterminism as captured by discrete-history
non-prophetic schedulers. Non-prophetic scheduling is highly desir-
able for stochastic timed systems with non-memoryless probability
distributions. Nevertheless, we investigated how to extend the algo-
rithm to check the theoretically more appropriate class of prophetic
schedulers. This is possible by exploiting the ability of HPnG to
capture continuous dynamics, but requires efficient optimisation
solvers. We provide pseudocode and a proof-of-concept implemen-
tation for this problem. Overall, the case study and its evaluation
with our implementation show that our approach is feasible, for
both types of schedulers. The example also highlights the flexi-
bility of HPnG in allowing not only fully non-prophetic and fully
prophetic scheduling, but also a flexible selection between the two,
as appropriate for every random variable. In contrast to previous ap-
proaches to checking nondeterministic hybrid systems with general
probability distributions that deliver safe over- or underapproxima-
tions of probabilities, such as the one for (the more general model
of) SHA of [16], our algorithm provides exact results (up to the
statistical error of the Monte Carlo integration).
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Data availability. The implementation and test files are avail-
able as part of the HPnmG tool at github.com/jannikhuels/hpnmg,
including the full PLTs of figs. 2a and 4.
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