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A B S T R A C T

The severe accident at the Chornobyl Nuclear Power Plant (ChNPP) in 1986 resulted in extraordinary con-
tamination of the surrounding territory, which necessitated the creation of the Chornobyl Exclusion Zone
(ChEZ). During the accident, liquidation materials contaminated by radioactive fallout (e.g., contaminated soil
and trees) were buried in so-called Radioactive Waste Temporary Storage Places (RWTSPs). The exact locations
of these burials were not always sufficiently documented. However, for safety management, including eventual
remediation works, it is crucial to know their locations and rely on precise hazard maps. Over the past 34 years,
most of these so-called trenches and clamps have been exposed to natural processes. In addition to settlement
and erosion, they have been overgrown with dense vegetation. To date, more than 700 burials have been
thoroughly investigated, but a large number of burial sites (approximately 300) are still unknown. In the past,
numerous burials were identified based on settlement or elevation in the decimeter range, and vegetation
anomalies that tend to appear in the immediate vicinity. Nevertheless, conventional detection methods are time-,
effort- and radiation dose-intensive. Airborne gamma spectrometry and visual ground inspection of morphology
and vegetation can provide useful complementary information, but it is insufficient for precisely localizing
unknown burial sites in many cases. Therefore, sensor technologies, such as UAV-based lidar and multispectral
imagery, have been identified as potential alternative solutions. This paper presents a novel method to detect
radioactive waste sites based on a set of prominent features generated from high-resolution remote sensing data
in combination with a random forest (RF) classifier. Initially, we generate a digital terrain model (DTM) and 3D
vegetation map from the data and derive tree-based features, including tree density, tree height, and tree species.
Feature subsets compiled from normalized DTM height, fast point feature histograms (FPFH), and lidar metrics
are then incorporated. Next, an RF classifier is trained on reference areas defined by visual interpretation of the
DTM grid. A backward feature selection strategy reduces the feature space significantly and avoids overfitting.
Feature relevance assessment clearly demonstrates that the members of all feature subsets represent a final list of
the most prominent features. For three representative study areas, the mean overall accuracy (OA) is 98.2%
when using area-wide test data. Cohens’ kappa coefficient ranges from 0.609 to 0.758. Additionally, we de-
monstrate the transferability of a trained classifier to an adjacent study area (OA = 93.6%, = 0.452). As
expected, when utilizing the classifier on geometrically incorrect and incomplete reference data, which were
generated from old maps and orthophotos based on visual inspection, the OA decreases significantly to 65.1%
( = 0.481). Finally, detection is verified through 38 borings that successfully confirm the existence of pre-
viously unknown buried nuclear materials in classified areas. These results demonstrate that the proposed
methodology is applicable to detecting area-wide unknown radioactive biomass burials in the ChEZ.

1. Introduction

On April 26, 1986, an explosion of Reactor Unit 4 at the Chornobyl
Nuclear Power Plant (ChNPP), located approximately 100 km north of

Kiev, Ukraine, was recorded as a major accident according to the
International Nuclear and Radiological Event Scale. To re-establish
safety, the surrounding population was evacuated from severely af-
fected areas, and the Chornobyl Exclusion Zone (ChEZ) was created.
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This zone remains in effect today. Based on the extraordinary con-
tamination caused by the spread of radioactive materials, the forest in
the fallout trails adjacent to the ChNPP turned reddish-brown and died
(hereafter referred to as the “Red Forest”). During the implementation
of liquidation measures, the contaminated biomass and topsoil were
buried on-site in trenches and clamps, then covered by a clean soil layer
with a typical thickness of approximately 1 m. These burials were
created in areas called Radioactive Waste Temporary Storage Places
(RWTSPs). A total of nine RWTSPs were created in the vicinity of the
ChNPP, consisting of approximately 1000 trenches and clamps (Molitor
et al., 2017). To stabilize the surface cover and reduce re-suspension of
contaminated dust particles by wind, many parts of the RWTSPs were
re-vegetated. Initially, clean-up actions decreased the external exposure
dose rate significantly. However, based on the absence of appropriate
barriers, burials in RWTSPs do not provide sufficient protection against
radiation mobilization into groundwater. Unfortunately, accident li-
quidation measures were performed under extraordinary boundary
conditions. Therefore, no detailed systematic documentation of the
RWTSPs is available. Most current information relies on improvised
records that were created during or after the liquidation measures.
Thus, a comprehensive overview and precise mapping of trenches and
clamps (exact number, location, geometry, contents, etc.) are necessary
to improve safety during maintenance and facilitate the eventual re-
mediation of burials.

The main objective of this study is to map unknown radioactive
biomass burials in the ChEZ automatically and accurately. On-site vi-
sual inspections of known burials revealed three important facts. First,
many burials can be identified based on settlement or elevation in the
decimeter range or more. Second, distinctive vegetation features are
also characteristic of many burials. Third, based on significant re-
maining contamination, a remote measurement technique is required to
avoid risky trespassing of the study areas. Therefore, the key idea of this
study is to utilize remote sensing devices in combination with machine
learning (ML) methods to perform precise 3D vegetation mapping fol-
lowed by the classification of areas containing buried radioactive ma-
terials. As a sensor platform, a UAV can be deployed to collect data
from a safe distance. Because it is able to penetrate vegetation, airborne
lidar data can be utilized to extract precise digital terrain models
(DTMs), even in overgrown areas (Sithole and Vosselman, 2004;
Gevaert et al., 2018). By combining DTM information with standard ML
techniques, the detection of small terrain height anomalies has been
performed successfully in the past. By inspecting small elevation
changes, cultural remains can be identified in archaeological in-
vestigations (Lasaponara et al., 2010; Bollandsås et al., 2012), even
when they are located under dense vegetation (Guyot et al., 2018).
Furthermore, lidar facilitates precise 3D mapping of forests at the tree
level (Reitberger et al., 2008). Because multispectral (MS) imagery can
support tree species classification (Holmgren et al., 2008; Trier et al.,
2018), we supplemented the lidar sensor with two high-resolution MS
cameras to collect image data in the visible and near-infrared (NIR)
spectra.

The current paper proposes the utilization of terrain-based and ve-
getation-based features in combination with a random forest (RF)
classifier for the area-wide detection of unknown radioactive waste
sites in the ChEZ. Using UAV-based lidar data and MS imagery, we
conduct a precise 3D vegetation mapping at the tree level and introduce
novel tree-based features (TF). Subsequently, we train an RF classifier
to predict the class labels for each DTM grid point (“trench”, “clamp”,
“non-contaminated”). Excellent classification results are achieved, and
a backward feature selection strategy demonstrates that e.g. TF and fast
point feature histograms (FPFH) can enhance the proposed classifier.
Our results are verified by 38 borings that confirm the existence and
absence of previously unknown buried nuclear materials in the classi-
fied areas (OA = 89.5%). Interestingly, at an average depth of 1–2 m,
the borings hit radioactive material, exhibiting dose rates that were up
to 30 times greater than those on the terrain surface. Finally, the

existing hazard maps have been upgraded to minimize worker radiation
dose uptake and optimize accident liquidation.

In the following sections, we address related work, the study areas,
reference data, the UAV system, sensors, and data preprocessing.
Subsequently, we present the entire processing pipeline for the detec-
tion of radioactive burials and the conducted experiments, including
sensitivity analysis. Finally, we discuss the results and draw conclusions
from our research.

2. Related work

2.1. Risk management in the ChEZ

An EU-financed project entitled “Support to radioactive waste
management in Ukraine” (European Union, 2014) facilitated numerous
research studies, including the investigation on radioactive waste sites.
Some RWTSPs have already been thoroughly investigated, but an esti-
mated 300 burial sites remain unknown in terms of their exact location
and geometry. These sites must be identified and characterized. Be-
cause ground dose rate measurements and electromagnetic soil con-
ductivity surveys were not expedient, Bugai et al. (2005) successfully
carried out ground-based geo-radar surveys using ground-penetrating
radar (GPR). Using this technique, the subsurface geometry of one
suspected burial site was elucidated. Based on a GPR survey, Saintenoy
et al. (2017) verified the position of a trench in the RWTSP Red Forest.
However, such ground-based methods necessitate considerable radia-
tion exposure for workers. Furthermore, the GPR approach is relatively
time consuming for the exploration of larger vegetated areas that are
difficult to access. Zabulonov et al. (2015) conducted UAV-based geo-
physical surveys using a gamma spectrometer. By detecting local in-
homogeneity in spectrometer data, the authors revealed that the ac-
curate mapping of burials located in non-vegetated areas is possible
using high-resolution gamma field radiation measurements (detection
rate = 90%). The results demonstrated that local gamma ray intensity
significantly exceeds the level of the total background radiation in
contaminated areas. However, in vegetated areas, biomass substantially
distorts measurements and the detection rate drops significantly to
50%. Recently, there has been increased pressure to make the ChEZ
accessible again. To this end, simulations have been carried out to
model worker radiation dose uptakes (Molitor et al., 2017). Never-
theless, improved models are needed to create action plans for forest
maintenance and mitigate hazard situations – such as forest fires and
tornadoes – more efficiently. Therefore, simulations must consider the
individual radioactive radiation levels of different tree species to
achieve the most realistic possible results.

2.2. Vegetation anomalies in the ChEZ

In the ChEZ, various studies have been carried out to explore the
impact of radioactive contamination on the vegetation. Because the
half-lives of 137-Cs and 90-Sr are approximately 30 years (Flynn et al.,
1965), these radioactive isotopes still exist in the soil of contaminated
areas and have been absorbed by the vegetation. Bugai et al. (2012)
characterized the hydro-geological situation in the ChEZ and modeled
groundwater transport to describe the migration of radionuclides.
Furthermore, Kashparov et al. (2012) presented studies describing the
biogenic migration of radionuclides from subsurface storage to plants.
Moreover, Thiry et al. (2009) demonstrated that trees growing on burial
sites accumulated an average of 1.7 times more 137-Cs and 5.4 times
more 90-Sr in their above-ground biomass compared to trees growing
off of burial sites. In a long-term observation, Arkhipov et al. (1994)
explored the forest stands regarding viability and mortality rate, re-
establishment and canopy growth, and reproduction anomalies. Their
results show that these parameters depend on the absorbed irradiation
dose, on the age of the tree stand, and on forest composition. Moreover,
Yoschenko et al. (2011) investigated over 1100 replanted Scots pines
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selected from areas with strongly varying levels of radioactive con-
tamination. The authors reported on the effects occurring on the mor-
phological level of trees that were exposed to chronic radiation. Based
on long-term studies, Tikhomirov and Shcheglov (1994) revealed that
the migration of radionuclides is highly dependent on the tree species.
Furthermore, the authors found out that coniferous trees are on average
an order of magnitude less resistant to radioactive contamination than
deciduous trees. According to Davids and Tyler (2003), spectral re-
flectance measurements of silver birch and Scots pine can be used to
detect the effect of radionuclide contamination on the vegetation.
Particularly, the authors demonstrated that certain spectral character-
istics of leaves and needles correlate well with the level of radioactive
contamination. All in all, vegetation anomalies (e.g., tree density,
dominant tree species, tree shape, spectral reflectance of the vegetation,
etc.) tend to appear in highly contaminated areas such as the vicinity of
trenches and clamps.

2.3. Vegetation mapping

In the past, extensive research has been conducted on vegetation
mapping using remote sensing data, particularly airborne laser scan-
ning (ALS) point clouds fused with optical imagery (Latifi and Heurich,
2019). One major research focus was to establish methods that would
work at the tree level. A delineation of single trees from ALS data was
either performed based on a previously generated canopy height model
(Pyysalo and Hyyppå, 2002; Solberg et al., 2006) or on the original 3D
point cloud (Reitberger et al., 2009; Wu et al., 2016). For the classifi-
cation of individual tree species, a large majority of previous studies
relied on a two-step approach (Fassnacht et al., 2016). First, hand-
crafted feature sets describing the geometry and radiometry of single
trees were extracted from the data. Second, appropriate ML classifiers
were applied to categorize the single trees. For example, Yu et al.
(2017) classified three tree species using multispectral ALS data
(OA = 86%). Moreover, Shi et al. (2018a) categorized five species,
fusing ALS data and hyperspectral imagery (OA = 84%). Based on the
features generated from ALS data and color-infrared imagery, Kaminska
et al. (2018) classified six tree classes (OA = 94%). Recently, Amiri
et al. (2019) reported on a combined classification of tree species and
standing dead trees with crowns (OA = 82%). Overall, these studies
motivated the generation of handcrafted features for an RF-based
classification of individual tree species in the ChEZ.

3. Materials

3.1. Study areas

In this paper, experimental results for three different study areas
with a total area of 37 ha are presented (Fig. 1). Located approximately

1.5 km west of the ChNPP, these areas are situated in the RWTSP Red
Forest and RWTSP Yanov Station areas. For these areas, a historical
map created from the memories of so-called liquidation workers in-
dicated the existance of possible radioactive waste sites (Fig. 2). In a
first UAV flight mission conducted in November of 2017, area#1 (6 ha)
was surveyed using a YellowScan Mapper I laser scanner (Briechle
et al., 2018). The lidar data were supplemented with MS images cap-
tured in a second mission in April of 2018. At the same time, both lidar
data and MS images were collected in area#2 (8 ha) and area#3
(23 ha). With a tree density of approximately 400 trees/ha, all three
study areas are densely vegetated. The main tree species are Scots pine
(Pinus sylvestris), silver birch (Betula pendula), and black alder (Alnus
glutinosa) with tree heights of up to 30 m (Bonzom et al., 2016). Overall,
the forest stand was found to be dominated by Scots pine planted after
the nuclear disaster, comprising approximately 50% of all trees. Based
on visual interpretation of aerial imagery, we roughly estimated the
distribution of pines, birches, and alders in area#1 (50/20/30), area#2
(40/30/30), and area#3 (60/20/20).

3.2. Reference data

3.2.1. Visual interpretation
For obvious reasons, the ground truth data for tree species classifi-

cation could not be acquired by field measurements. Thus, the reference
dataset was prepared manually and balanced according to the three
occurring tree species (pine, birch, alder). Based on visual interpreta-
tion of the generated orthomosaics and 3D geometries of single trees,
we labeled 684 tree segments (228 per tree species). Thereafter, for
each study area, these reference datasets were randomly split into
training and test datasets using a sample ratio of 0.8.

Reference data for trenches and clamps were only available in
area#3, using RWTSP vector data. These data were digitized from old
maps and orthophotos based on visual inspection in the past using a
simple office scanner and uncalibrated digital cameras. Therefore, the
data are geometrically incomplete and show random position offsets in
the order of a few meters. This can be clearly observed by overlaying
the reference data and the normalized DTM height, which was gener-
ated from the ALS data (Fig. 3). Nevertheless, we used this rather in-
appropriate dataset in the labeling process for one of our experiments.
In all other experiments, we relied on manually labeled reference data
created by visual interpretation of the normalized DTM. In area#1 and
area#2, the structure of burials was quite obvious and labeling was
straightforward. However, in area#3, the labeling was more challen-
ging because of fairly nonsystematic DTM structures. Here, the direc-
tions and lengths of the burials were partially unclear. Although the
labeling was supported by RWTSP vector data, the reference dataset in
this study area must be considered less reliable. For the labeling of DTM
grid pixels, we outlined polygons representing 25 trenches and eight

Fig. 1. Overview of the study areas, located around 1.5 km west of Reactor Unit 4 at the ChNPP; Coordinate system: UTM zone 36N (EPSG 32636); Base map source:
bing map ©Microsoft Corporation.
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clamps from all three study areas, covering an area of 9116 m2 and
2900 m2, respectively. Using a 50 cm DTM, more than 48,000 samples
were extracted from these burials. Additionally, samples for non-con-
taminated DTM pixels were selected some meters off the burials to
guarantee the pureness of samples. Then, for each study area, we uti-
lized a sample ratio of 0.5 to randomly split the reference data into
training and test datasets. Subsequently, the particular test datasets
were completed by considering all remaining unlabeled pixels in the
corresponding study areas as non-contaminated. As a consequence, the
quality of the classifier could be tested area-wide and, especially in the
transition zones from burials to non-contaminated areas.

3.2.2. Ground reference data
In preceding ground surveys, neither a visual interpretation of the

terrain nor anomalies in the equivalent dose rate (EDR) measurements
on the ground surface (EDRsurface) indicated existing trenches. However,
a strong evidence was provided based on the detection methods de-
scribed in this paper. Therefore, during an evaluation campaign con-
ducted in autumn 2018, 20 on-site borings were drilled directly into the
suspected trenches of area#1 and nine in area#2. For comparison, nine
additional borings were drilled at a considerable distance of at least

15 m away from the expected trenches of area#1 (Table 3). Borings C1,
C2, C3, C4 and C5 were planned at spots showing unexceptional
EDRsurface values. In contrast, the locations for borings C98, C206, C208
and C216 were selected in places showing relatively high EDRsurface
values, thus assuming they were suspicious for buried contaminated
waste. In area#3, no borings have been conducted so far. In general, all
borings were performed by the Central Radioactive Waste Management
Enterprise (CRWME), a state organisation responsible for maintenance
and management of the RWTSPs under authority of the State Agency of
Ukraine for the Exclusion Zone Management. The borings were carried
out using a gasoline motor drill (up to a depth of 1.5 m) and a Geolog-2
hand drill (depth 1.5–2.5 m). The EDR was measured on the ground
surface and inside the bore holes using an MKS-07 “Poshuk” dosimeter-
radiometer. Tables 1–3 show EDRsurface values, maximum EDR values
(EDRmax) and the corresponding depth for each boring. Ratio EDR

EDR
max

surface
is

a coefficient to demonstrate the degree of contamination inside the
borings compared to the ground surface.

3.3. UAV system

UAV-based sensor systems operate at a sufficient safe distance,

Fig. 2. Scan of a historical map that was created from the memories of liquidators, roughly showing positions and extents of burials (Antropov et al., 2001); outlines
of study areas in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Available RWTSP reference data and manually labeled reference data in area#3, showing possible trenches/clamps and normalized DTM height. (base map:
bing map ©Microsoft Corporation).
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which is of prime importance considering the high radiation dose rates
within the study area. For our flight missions, we utilized an octocopter
that was developed by a team from the Department of Nuclear Physics
Technologies of the Institute of Environment Geochemistry of the
National Academy of Sciences of Ukraine. With a maximum payload of
5 kg, both the lidar system and the MS cameras can be carried by the
octocopter simultaneously (Fig. 4). Nevertheless, we relied on a sepa-
rate configuration, mainly to maximize lidar mission time. Regarding

safety issues, the pilots had to ensure a minimum distance from the
ChNPP of 1 km. Moreover, no power lines were flown over to avoid
possible electromagnetic interaction with Global Navigation Satellite
System (GNSS) signals and radio link. All flights were carried out in
fully automatic mode to avoid the direct trespassing of contaminated
areas. Advantageously, local authorities allowed flying the UAV out of
visual line of sight. To avoid collisions, the relative altitude in mapping
mode was set to at least 50 m in this flat terrain, guaranteeing a safety
distance of approximately 20 m to the highest tree crowns. Further-
more, the safety distance for operator at take-off and landing was ap-
proximately 15 m. Finally, all data presented in this paper were col-
lected during sunny, partly cloudy weather conditions at a mostly
constant wind speed (2–3 m/s).

3.4. Lidar data

Lidar data were collected by a YellowScan Mapper I laser scanner
(Table 4). Flights were conducted at a constant altitude of 50 m and
speed of 6 m/s. Therefore, the relatively slow speed of the copter en-
abled a high lidar point density, which is important for a sufficient
penetration rate to the ground to ensure the generation of detailed
DTMs. The maximum lidar mission time with one battery set was ap-
proximately 20 min. GNSS waypoints were defined in the flight plans to
guarantee parallel flight lines and a constant line-to-line distance of
40 m. During a one-week mission in the ChEZ in April of 2018, five leaf-
off lidar flights were conducted in three selected areas. More flights
were not possible due to upcoming wind speeds up to 20 m/s. A cali-
bration flight over a building was conducted on the first day to check
the boresight angles provided by the manufacturer. Simultaneously to
all UAV flights, GNSS measurements were collected by a Trimble R4
base station (measurement rate: 1 s). These data were used in a dif-
ferential GNSS postprocessing step using the commercial software

Table 1
Borings in suspected trenches of area#1.

Boring ID EDRsurface
[μSv/h]

EDRmax
[μSv/h]

Depth for EDRmax
[m]

EDRmax
EDRsurface

111 1.5 13.4 1.8 8.9
112 1.0 7.2 0.8 7.2
113 0.4 13.5 1.4 33.8
114 1.9 7.6 0.6 4.0
115 1.6 14.6 1.0 9.1

121 1.0 20.3 1.4 20.3
122 1.6 7.7 1.2 4.8
123 1.9 14.3 1.2 7.5
124 0.9 26.5 1.4 29.4
125 0.8 24.5 1.8 30.6

131 1.3 2.4 0.8 1.9
132 0.7 7.0 1.0 10.3
133 0.9 8.6 1.2 9.2
134 2.9 4.1 0.8 1.4
135 1.9 8.3 0.8 4.4

151 3.8 16.3 1.2 4.3
152 1.0 18.6 1.2 18.6
153 2.9 17.5 0.6 6.0
154 1.3 7.3 1.6 5.6
155 1.5 10.3 1.2 6.9

Table 2
Borings in suspected trenches of area#2.

Boring ID EDRsurface
[μSv/h]

EDRmax
[μSv/h]

Depth for EDRmax
[m]

EDRmax
EDRsurface

211 0.7 6.0 1.6 8.6

221 1.5 10.1 1.4 6.7
222 1.0 30.2 1.6 30.2

232 2.4 10.3 0.6 4.3
233 2.9 12.3 1.0 4.2
234 0.6 12.8 1.2 21.3

242 1.5 18.8 1.0 12.5
243 4.7 14.9 1.4 3.2
244 1.3 20.2 1.6 15.5

Table 3
Borings drilled at a considerable distance away from the trenches of area#1.

Boring ID EDRsurface
[μSv/h]

EDRmax
[μSv/h]

Depth for EDRmax
[m]

EDRmax
EDRsurface

C1 1.3 1.3 0.0 1.0
C2 3.2 3.2 0.0 1.0
C3 3.9 3.9 0.0 1.0
C4 1.0 1.0 0.0 1.0
C5 0.6 0.6 0.0 1.0

C198 10.8 10.8 0.0 1.0
C206 7.5 7.5 0.0 1.0
C208 8.0 8.0 0.0 1.0
C216 4.8 6.7 0.2 1.4

Fig. 4. UAV-mounted laserscanner and multispectral cameras.

Table 4
Technical specifications of the YellowScan Mapper I laserscanner
(YellowScan, 2016).

Item Value

Laser wavelength 905 nm
Pulse rate 18.5 kHz
Echoes per shot 3 (first, middle, last return)
Weight 2.1 kg (battery included)
Range resolution 4 cm
Precision1 10 cm
Absolute (XY) accuracy2 0.10m+1% of altitude
Absolute (Z) accuracy 0.10m+0.5% of altitude

1Also called reproducibility or repeatability (variation of measurements
taken on the same target).
2Degree of conformity of a measured position to its actual (true) value.
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Inertial Explorer 8.70 (NovAtel Inc., 2017) to ensure flight trajectories
with centimeter-level precision. Following the flight missions, the scan
angle range of the lidar data was reduced from 100° to 70° to eliminate
potentially inaccurate long-distance measurements on the edges of
strips, resulting in a nominal point density of approximately 53 points/
m2 (effective side lap of 43%). For the following lidar preprocessing
steps, we utilized BayesStripAlign 1.3 (BayesMap Solutions LLC, 2018).
The boresight angle differences were calculated using the “calib” option
and the strips of the aforementioned calibration flight. The residuals
amounted to 0.02° (roll), −0.12° (pitch), and −0.12° (yaw) and were
subsequently used to correct all recorded flight strips (“corr” option).
Next, all strips were aligned to achieve geometrically consistent lidar
point clouds. Note that the “align” option in BayesStripAlign 1.3 is
based on the approach discussed in Jalobeanu and Gonçalves (2014).
Overall, the mean discrepancy between adjacent strips was approxi-
mately 5 cm, which is in the range of the measurement accuracy of the
lidar instrument. By fitting the ALS point clouds to the enclosing
polygons of nearby buildings (“shift” option), absolute 3D georeferen-
cing with an accuracy of a few centimeters was achieved.

3.5. MS imagery

We captured MS images using two MicaSense RedEdge cameras
(Table 5) with a total payload of 500 g, incl. external batteries. These
MS cameras capture light wavelengths in five spectral bands between
475 nm and 840 nm. The two cameras were mounted in a twisted
configuration with an angle of 22.5°. This setup guaranteed a 50% side
overlap of the camera foot-prints and a total field of view of approxi-
mately 70°. Time synchronization of the cameras was realized by re-
cording images with a frame rate of 2 s at each even GPS second. During
data collection, the altitude was 130 m, leading to a ground sample
distance of 8.9 cm/pixel. A flight speed of 9 m/s accounted for a for-
ward overlap of 79%, whereas the lateral overlap was set to 50%. To
compensate for changing illumination conditions during and between
the flights, we utilized both MicaSense’s calibrated reflectance panel
(CRP) and downwelling light sensor (DLS). Basically, these accessories
are able to provide useful information for the subsequent reflectance
calibration. In practice, we took close-up images of the CRP before and
after each flight. Moreover, the DLS was installed on top of the UAV,
facing upwards with a clear view of the sky. Before each flight, we
checked the calibration of the DLS magnetometer to ensure correct
heading and orientation measurements. Agisoft PhotoScan Professional
1.4.1 (Agisoft LLC, 2018) was used for the following postprocessing
steps. Initially, all images were aligned area-wise in a bundle adjust-
ment (option “highest”). Here, the implemented RedEdge camera
model was based on a standard frame camera model. In detail, the
model specifies the transformation from point coordinates in the local
camera coordinate system to the pixel coordinates in the image frame.
Overall, the model comprises focal length, principal point offsets, two
radial and two tangential distortion coefficients, and two skewness
coefficients. In our approach, we estimated the master and slave camera
models for the first flight and applied it to all other flights. The mean
reprojection error for all flights was 1.3 pixels, corroborating our as-
sumption of constant camera parameters between flights. Finally, dense

photogrammetric 3D point clouds were generated with a point density
of approximately 80 points/m2 (option “high”).

4. Methodology

4.1. Outline of the proposed method

Initially, various pre-processing steps must be performed for de-
tecting radioactive waste sites. First, the reflectance of the 2D aerial
images was calibrated, and Normalized Difference Vegetation Index
(NDVI) and Red Edge Normalized Difference Vegetation Index
(RENDVI) orthomosaics were created. Previous studies have proven a
positive effect on the results for tree species classification by normal-
izing lidar intensity values (Höfle and Pfeifer, 2007; Korpela et al.,
2010; Ørka et al., 2012). Thus, in our approach, the radiometric in-
formation of all lidar points was adjusted in a data-driven correction
step. Based on the resulting lidar point cloud, ground points were fil-
tered and a regular DTM grid was computed. Next, the lidar point cloud
was segmented into 3D clusters representing single trees using the
normalized cut algorithm (Reitberger et al., 2009). The convex hulls of
the segmented trees were then projected onto the orthomosaics to ex-
tract NDVI and RENDVI features for each segment. To supplement the
geometric and radiometric features generated from the lidar point
clouds of single tree segments, tree species classification was conducted
based on a standard RF classifier including a feature selection step.
Based on the results of tree classification, tree-based features (TF) were
generated to describe possible vegetation anomalies. Next, the nor-
malized DTM height (hnorm) was extracted from the DTM grid. In
combination with lidar metrics (LM) and FPFH, an RF classifier was
trained to distinguish burial sites (trenches and clamps) from non-
contaminated areas. In a recursive feature elimination step, the most
significant features were identified. Finally, probability maps and en-
closing 2D polygons for burial sites were generated. The entire pro-
cessing pipeline is illustrated in Fig. 5. In the following sections, all
important steps are described in greater detail.

4.2. Pre-processing of sensor data

4.2.1. Reflectance calibration of MS imagery
MS imagery was captured at changing light conditions over dif-

ferent days and times (see Section 3.5). Therefore, the reflectance must
be calibrated to generate high-quality images. We performed this step
in Agisoft PhotoScan Professional 1.4.1, integrating the spectral in-
formation from both the CRP and DLS. Initially, panel-specific absolute
reflectance values for the spectral range of the camera were introduced.
These calibration data were provided by the manufacturer in incre-
ments of 1 nm for each band. In the software, the transformation of raw
pixel values into reflectance basically follows a two-step approach
(MicaSense Inc, 2019). First, the raw pixel values of all images were
converted to absolute spectral radiance using a camera-specific radio-
metric calibration model. Here, sensor-specific characteristics like
sensor black level and lens vignette effects were compensated. Second,
a factor was estimated, allowing for a transformation from radiance to
reflectance. At this point, the reflectance values from the CRP calibra-
tion data and the radiance values of the CRP images captured in the
field were taken into account. Overall, the CRP-based calibration pro-
cedure assumes constant lighting conditions over the flight duration. In
case CRP images were taken before and after the flight, the reflectance
of MS imagery is calibrated based on linear interpolation of the CRP
information. In situations with changing conditions in the middle of a
flight, the DLS can help to improve reflectance calibration by applying
additional corrections image-wise. Although the integration of DLS data
was suitable in area#1 and area#2, the approach reached its limits in
area#3. Rapidly changing cloud coverage throughout the entire flight
impeded an accurate calibration of reflectance. In the event of clouds
shadowing the captured image area but not the DLS, radiometric

Table 5
Technical specifications of the MicaSense RedEdge multispectral camera
(MicaSense Inc, 2015).

Item Value

Focal length 5.5 mm
Field of view 47.2° horizontal, 69.7° horizontal (double-camera

setup), 35.4° vertical
Imager size / resolution 4.8 mm×3.6mm / 1280×960 pixels
Spectral bands Blue (475 nm), Green (560 nm), Red (668 nm),

Red Edge (717 nm), Near IR (840 nm)
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information of the images could not be corrected properly. As a con-
sequence, the MS imagery in area#3 was not used for further in-
vestigation. Thus, in this area, tree species classification was only based
on the geometric and radiometric features generated from lidar data.

4.2.2. Orthomosaic generation
Based on missing ground control points in overflown inaccessible

areas, we registered the photogrammetric data to the georeferenced
lidar data. Therefore, different steps in several software packages had to
be executed for area#1 and area#2. Initially, the georeferenced lidar
point cloud was transformed to the aforementioned photogrammetric
dense point cloud via iterative closest point (ICP) algorithm in
CloudCompare 2.8 (CloudCompare Development Team, 2019). Here,
the root mean squared error was 0.237 m. Then, we utilized Quick
Terrain Modeler (Applied Imagery, 2018) to calculate a digital eleva-
tion model (DEM) from the transformed lidar point cloud. Next, the
resulting 15 cm DEM was exported as a TIFF image and loaded into
Agisoft PhotoScan Professional 1.4.1. Here, an orthomosaic with a
10 cm resolution was computed. In this orthorectification procedure,
we relied on the precise lidar DEM instead of using a less accurate DEM
calculated from a dense photogrammetric point cloud. Subsequently,
vegetation index images were calculated. In addition to the widely used
NDVI images, RENDVI images (Sims and Gamon, 2002) were created by
utilizing the red edge (RE) and near infra-red channels (NIR). The
RENDVI (Eq. 1) can be computed as

=
+

RENDVI RE NIR
RE NIR

. (1)

Afterwards, the photogrammetric products must be georeferenced. The
dense point clouds were transformed in CloudCompare 2.8, utilizing the
particular inverse transformation matrix of the aforementioned ICP.
Finally, based on the 2D components of these matrices, the orthomo-
saics were shifted in QGIS 2.18 (QGIS Development Team, 2017).

4.2.3. Radiometric correction of lidar data
In addition to the 3D coordinates of each laser point, the YellowScan

Mapper I provides intensity values. The instrument is equipped with an
Ibeo LUX 2010® laser unit for generating Gaussian-shaped pulses.
According to the technical description, the recorded intensity values are
equivalent to the widths Ewi of the echo pulses measured at a fixed
internal threshold g0 (Fig. 6). In a series of n Gaussian return pulses

= =g t A exp t t( ) ( ) ,i
n

i
i

i
1

2

2 (2)

the parameter Ewi theoretically depends on the shape of the return
pulses, which is defined by the pulse width i and amplitude Ai (Eq. 2).
Both of these parameters are influenced by the scan angle. Assuming a
flat terrain and the Lampertian law for scattering targets, the pulse
width i is slightly broadened towards the swath edge of a laser strip.

Fig. 5. Overview of the proposed method for detecting radioactive waste sites.

Fig. 6. Definition of parameter Ew in YellowScan Mapper I (according to Ibeo
Automotive Systems GmbH (2010)).
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Additionally, echo width widening leads to a reduction in the amplitude
Ai with respect to the scan angle, assuming that the emitted laser power
is constant (Ussyshkin et al., 2009). Furthermore, the amplitude Ai it-
self is dependent on the square of the distance between the sensor and
target, meaning it also depends on the scan angle. In summary, we can
theoretically expect a significant change in the shape of the return pulse
and, the parameter Ewi toward the swath edge. To the best of our
knowledge, changes in the parameter Ewi toward the swath edge have
not been studied experimentally to date. However, many researchers
have evaluated the dependency of intensity (=Ai· i) and pulse width on
the scan angle. Jutzi and Gross (2009) demonstrated that lidar intensity
decreases according to the cosine of the scan angle. In principle, the
experiments conducted by Kaasalainen et al. (2011) using terrestrial
laser scanners confirm this finding. Reitberger et al. (2007) investigated
pulse width in forest areas and calculated scan-angle-dependent in-
creases in pulse width of 15%/20° for laser points with well-defined and
smooth reflecting areas (i.e., stem points). Additionally, the same study
confirmed a decrease in intensity of 13%/20° corrected by the square of
the laser distance for ground points.

Fig. 7a illustrates the raw Ewi values for area#1, where dark areas
are a result of the scan angle effect of the raw parameter Ewi, which was
not compensated in the individual laser strips. For 3D vegetation
mapping, raw Ewi values must be corrected to avoid misclassification
effects. Our data-driven method corrects the parameter Ewi based on
the incidence angle, which is approximately equal to the sum of the
scan angle and roll angle. First, we filter single return points from the
ground points in one reference strip and assume that the forest floor has
consistent spectral reflectance properties. Second, the raw values of Ewi
for the reference strip are divided into bins of size 1° with respect to the
corresponding incidence angle. Third, the mean value and standard
deviation (std) of Ewi are calculated for each bin. Subsequently, a
parabola (R2 = 0.95) is fitted to the mean values of Ewi (see Fig. 8a).
The vertex value of the parabola Ewref and std Ew( )ref of the corre-
sponding bin are used as constant parameters in the empirical correc-
tion function. The corrected values Ewcorr

i are computed as

= +Ew Ew Ew
std Ew
std Ew

Ew( )
( )
( )

,corr
i

raw
i

fit
i ref

bin
i ref

(3)

where Ewraw
i is the raw value of a single point, Ewfit

i is the reference
value of a single point on the parabola, and std Ew( )bin

i is the std of the
corresponding bin (Eq. 3). Note that the correction function is only
valid for one specific flight height because we did not perform drone
flights at different altitudes. Fig. 8b presents the result of correction for
the reference strip in area#1. The fitted red horizontal line indicates
that the mean values of Ewcorr

i are independent of the incidence angle.
Fig. 7b presents all points in area#1 colored according to their cor-
rected values. Apparently, the edge effects disappear and the para-
meters Ewcorr

i can be used as additional features for 3D vegetation
mapping.

4.2.4. Tree segmentation
As a basis for the tree species classification performed at a later

stage, single trees were segmented from the lidar point cloud utilizing
the TreeFinder software package (PRIMAVISION Technologies GbR,
2017). The implementation is based on the normalized cut algorithm
(Shi and Malik, 2000) which is a top-down method for segmenting
objects over a discrete graph structure =G V E( , ). The vertices V re-
present individual objects and the edges E correspond to neighborhood
topology. The input 3D lidar point cloud is split into disjointed seg-
ments to minimize the normalized cut criterion. A recursive bisection of
the graph’s vertices V into disjointed segments A and B maximizes the
intra-segment similarity of objects and minimizes their inter-segment
dissimilarity. The normalized cut criterion to be minimized is defined as

= +NCut A B Cut A B
Assoc A V

Cut A B
Assoc B V

( , ) ( , )
( , )

( , )
( , )

,
(4)

where =Cut A B w( , ) i A j B ij, is defined as the sum of all weights
between A and B segments and =Assoc A V w( , ) i A j V ij, is the sum of
the weights of all edges ending in A segments (Eq. 4). Following the
recommendations of Reitberger et al. (2009), we set the static stopping
criterion of the normalized cut segmentation to 0.16. Visual inspection
helped to verify that no oversegmentation or undersegmentation oc-
curred. The result of tree segmentation is a set of polygons describing
the hulls of single trees, as well as characteristic parameters, such as
tree height, crown base height (CBH), and crown volume.

Fig. 7. Ewi values in area#1, before (a) and after (b) correction; flight lines overlay (red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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4.2.5. DTM generation
In the next step, we used the ground routine based on Axelsson

(2000) in the commercial software TerraSolid TerraScanTM(Soininen,
2016) to filter ground points from the ALS point cloud. The resulting
ground points with a point density of approximately five points per m2

were subsequently interpolated into a 50 cm DTM grid (Polewski et al.,
2015). The impact of the DTM smoothing coefficient on detection
results is discussed in Section 5.2.

4.3. Tree species classification

A classic ML approach using the RF classifier requires a set of so-
called handcrafted features. These features are typically calculated from
the available datasets, adapting as much as possible to the various tasks
being addressed. In general, they are engineered manually and are
mainly based on statistical terms. For tree species classification, we
generated salient features for each tree segment. In total, the feature set
consisted of 65 features (Table 6) derived from both lidar and MS data:
32 geometry features (GEOM), 14 Ew-based features (EW), and 19 MS
features (MS), including statistics calculated from the NDVI and RE-
NDVI. Thereafter, the feature space was reduced and an RF classifier
was trained to classify tree segments as species of birch, pine, and alder.
Note that the detailed classification strategy will be presented in Sec-
tion 4.5.

Fig. 8. Ew values in the reference strip (area#1).

Table 6
Feature set for tree species classification; GEOM#(1–20) are adopted from
Næsset (2004), GEOM#(21–32) and EW#(1–14) from Reitberger (2010).

Features Definition Quantity

GEOM#(1–10) Density distribution of points per height layer 101

GEOM#(11–20) Vertical distribution of the tree substance per
height layer

10

GEOM#(21–30) Mean distance of points to the segment center 10
GEOM#(31–32) Standard deviation (std) of the distance of crown

points to the segment center, in x and y direction
2

EW#1 Mean Ew of points of a single tree 1
EW#(2–11) Mean Ew of points of a single tree per height layer 10
EW#12 ( middle/ first) reflections 1
EW#13 ( single/ first) reflections 1
EW#14 ( first + middle)/( single + last) reflections 1

MS#(1–8) NDVI max/min/max-min/mean/std/quartiles2 8
MS#(9–16) RENDVI max/min/max-min/mean/std/quartiles2 8
MS#(17–19) Entries of covariance matrix of NDVI and RENDVI 3

65

1 Increasing numbering from bottom (1) to top (10).
2 1st, 2nd, 3rd.
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4.4. Detection of radioactive waste sites

The main characteristics of radioactive burials are slight ground
settlements (Fig. 9) or elevations and vegetation anomalies in the sur-
rounding areas (see Section 2.2). Therefore, we utilized the results of
tree species classification and DTM extraction to prepare a feature set
containing handcrafted tree-based features TF, normalized DTM height
hnorm, fast point feature histograms FPFH and lidar metrics LM
(Table 7).

Vegetation anomalies are supposed to be an indicator for the ex-
istence of radioactive burials. Therefore, we calculated 19 TF based
upon the results of prior 3D vegetation mapping (Table 8). In general,
the resolution of all generated TF was 5x5 m. For each grid point,
nearby trees were found by applying a range search within a radius rtree
describing a local neighborhood. Then, the feature set was derived
based on the information of these filtered tree segments. Initially, the
number of neighboring trees resulted in TF#1. Next, the tree attributes
tree height, CBH, and crown volume were used to generate features
TF#(2–7) that represent the mean and std of these three attributes

within the circular neighborhood. TF#(14–15) were based on the area
size of the tree polygons. For each filtered tree, the crown diameter Dcr
was calculated from the crown size by assuming a circular crown shape,
resulting in TF#(16–17). Moreover, ratios describing the frequencies of
individual tree species in each neighborhood were defined as TF#
(8–10). Additionally, for each tree class, tree species classification also
provided the class probabilities pi for each tree segment. The mean pi
values of neighboring trees were used to define the features TF#
(11–13). Finally, we estimated the total above-ground biomass Pa of
individual trees. To this end, we utilized a transcontinental allometric
model developed for the main Eurasian tree species using tree height H
and crown diameter Dcr as regressors. We estimated Pa using the allo-
metric function

= + +lnP a a lnH a lnDa cr0 1 2 (5)

to generate features TF#(18–19). Eq. 5 and the coefficients a0, a1, and
a2 for the tree species of pine, birch, and alder were taken from Usoltsev
et al. (2019).

Prior experiments have demonstrated that the normalized DTM
height hnorm is a promising feature for describing terrain height
anomalies (Briechle et al., 2018). This feature was calculated by re-
ducing the corresponding absolute terrain height hDTM for each DTM
grid position by htrend (Eq. 6):

=h h hnorm DTM trend (6)

htrend is the mean height in a surrounding quadratic area defined by an
edge length etrend and is calculated for every DTM grid point using a
sliding window approach.

Because the shape of trenches and clamps is cylindrical, local shape
descriptors are a promising feature set because they are able to dis-
tinguish between different geometric shapes (plane, cylinder, sphere,
etc.). We calculated a set of FPFH (Rusu et al., 2009), an enhanced
version of point feature histograms (Rusu et al., 2008), which were
developed for real-time robotics applications. Retaining most of the
power of the point feature histograms, these features are invariant to
3D translations or rotations and robust to varying point density and
noisy datasets. As input data, we utilized filtered ground points from
the lidar data, with a point density of approximately five points per m2

in forested areas. Initially, normal vectors were computed for each
ground point. Here, the neighborhood size was defined by a radius rN .
Next, FPFH features were calculated for each point of a synthetic 2 × 2
m grid. In detail, geometric properties were estimated by modeling the
relationships between surface normals to characterize the local geo-
metry in the area around each grid point. This calculation is based on
the analysis of the eigenvectors and eigenvalues of the covariance
matrix formed by points within a circular neighborhood defined by a
radius rFPFH . Based on the angular differences between each pair of
normals, a normalized multidimensional histogram was computed,
leading to a total of 33 FPFH features.

The feature set was completed with 133 height- and density-de-
pendent lidar features to characterize vegetation. Based on the raw 3D
point cloud, these lidar metrics (Næsset, 2004) were computed for
quadratic cells defined by a cell size ecell. In detail, features were

Fig. 9. Cross section of lidar point cloud in area#1 showing possible trench. Points are colored according to flight line. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 7
Feature subsets for detection of radioactive waste sites.

Feature subset Definition Quantity

TF Tree-based features 19
hnorm Normalized DTM height 1
FPFH Fast point feature histograms 33
LM Lidar metrics 133

186

Table 8
Definition of tree-based features TF.

TF# Feature Definition

1 tree_amount Number of trees
2 tree_height_mean Mean tree height [m]
3 tree_height_std Std of tree height [m]
4 CBH_mean Mean CBH1 [m]
5 CBH_std Std of CBH [m]
6 crownVol_mean Mean crown volume [m3]
7 crownVol_std Std of crown volume [m3]
8 treeClass0_ratio Pine tree ratio ( pines/ trees)
9 treeClass1_ratio Alder tree ratio ( alders/ trees)
10 treeClass2_ratio Birch tree ratio ( birches/ trees)
11 pred0_mean Mean pine probability
12 pred1_mean Mean alder probability
13 pred2_mean Mean birch probability
14 areaSize_mean Mean 2D tree dimension [m2]
15 areaSize_std Std of 2D tree dimension [m2]
16 Dcr _mean Mean crown diameter [m]
17 Dcr _std Std of crown diameter [m]
18 biomass_mean Mean above-ground biomass [kg]
19 biomass_std Std of above-ground biomass [kg]

1 crown base height.
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generated for 10 different height layers (0–1.5 m, 0.5–2 m, 0.5–5 m,
1.5–5 m, 5–12 m,>−0.5 m,<0 m,>0 m,> 2 m,>12 m). Note that
the decisive control parameters for extracting the overall feature set
were optimized in a sensitivity analysis (see Section 5.2), leading to a
final list of best-performing parameters. Moreover, the complete feature
set consisting of 186 individual features was bilinearly resampled to a
grid of 50 cm resolution which is congruent to the DTM. We used this
feature set to train an RF classifier (see Section 4.5) for categorizing
DTM grid points into the classes “trench”, “clamp” or “non-con-
taminated”. Next, polygonal objects were generated from DTM grid
points which showed a trench or clamp probability of more than 95% as
concave hulls. Finally, isolated classification errors were eliminated
using an area threshold of 30 m2.

4.5. Classification strategy

In our study, we utilized RF classifiers for the classification of both
tree species and radioactive waste sites. This popular supervised ML
method has proven to achieve high-quality results in typical remote
sensing tasks like land cover classification (Pal, 2005; Rodriguez-
Galiano et al., 2012) and tree species classification (Immitzer et al.,
2012; Puissant et al., 2014). By now, this type of classifier has been
implemented in various programming languages. In our experiments,
we used the randomForest package (Liaw and Wiener, 2002) in R (R
Core Team, 2018). In the preprocessing procedure, the high-dimen-
sional feature space was gradually reduced to avoid overfitting. At the
beginning, highly correlated redundant features were deleted from the
feature set to avoid deterioration of classification accuracy. This process
was based on the application of a threshold to feature-to-feature cross-
correlation. First, a covariance matrix was calculated. Second, a cross-
correlation threshold was used to eliminate high pair-wise re-
dundancy. Specifically, one feature of any feature pair with a correla-
tion coefficient exceeding was eliminated. Different values (0.85,
0.90, 0.95, 1.00) were tested to find an optimal threshold. To in-
vestigate the capability of the proposed handcrafted feature subsets, RF
classifiers were trained on these reduced datasets. Next, an RF model
was built using all feature subsets. Three iterations of fivefold cross-
validation were used to derive average OA and values. The number of
trees was set to 500, with a minimum size for the terminal nodes of one.
Generally, trees were grown to the maximum depth. The parameter
controlling size of the samples to be drawn per node was equal to the
number of training samples. Furthermore, the number of features ran-
domly sampled as candidates at each split was set to the square root of
the number of total features. Finally, the optimal model was selected
based on the metric “accuracy”. In general, irrelevant features can have
a negative impact on model accuracy. Therefore, it is essential to per-
form feature selection prior to building the final model. On a smaller
and more robust dataset, both overfitting and training time can be re-
duced. In the literature, a backward feature selection technique based
on the recursive feature elimination (RFE) algorithm has been re-
commended quite often (Ma et al., 2017; Gregorutti et al., 2017). At the
beginning, this algorithm trains an RF model on the overall feature set.
Thereby, the relevance of individual features can be computed based on
the mean decrease in accuracy. Then, the least important features can
be recursively excluded from the feature space until a final best per-
forming set is obtained. In the present study, we utilized the RFE al-
gorithm from the caret package (Kuhn, 2008) in R and set the “rerank”
parameter to “false”. Thus, the variable importance was not re-
calculated each time features had to be removed. Based on the corre-
sponding OA value, the resulting RFE model was compared to the RF
model containing all available features. Finally, the RFE model was
utilized to calculate class predictions predi and class probabilities probi
for each sample. In all study areas, the quality of the final RFE model
was verified by comparing the predicted labels and real values of the
particular test dataset. For quantitative evaluation, a confusion matrix
was generated and quality metrics (OA, , precision, recall, F1) were

derived. Furthermore, we investigated the transferability of the trained
classifiers. Therefore, the classifier optimized on study area#1 was
applied to all labeled data of area#2.

5. Experiments

5.1. Tree species classification

RF classifiers ( = 0.90) using all feature subsets achieved an OA of
90.2% ( = 0.853) in area#1, 90.0% ( = 0.850) in area#2, and
81.3% ( = 0.720) in area#3 (Table 9). Using only individual feature
subsets, the average OA values were 80.6% (geometry features), 80.1%
(Ew-based features), and 86.7% (MS features). Here, ranged from
0.633 to 0.812. Depending on the study area, backward feature selec-
tion (RFE) improved the OA by 0.4% (area#3) to 2.6% (area#1, see
Fig. 10). Furthermore, the dimensions of feature spaces were sig-
nificantly reduced (average reduction of 41.1%). On the test datasets,

Table 9
Results of tree species classification.

Area#1 Area#2 Area#3

Training samples 180 162 204
GEOM 83.4 (0.750)1 81.7 (0.725) 76.7 (0.650)
EW 85.9 (0.787) 75.6 (0.633) 78.7 (0.681)
MS 87.2 (0.812) 86.1 (0.792) —2

All subsets (RF) 87.6 (0.814) 88.5 (0.828) 80.9 (0.713)

All subsets (RFE) 90.2 (0.853) 90.0 (0.850) 81.3 (0.720)
Gain in OA 2.6 1.5 0.4
Feat. reduction 35.8% 46.3% 41.3%

Top 7 feat. EW#1 MS#7 EW#1
MS#8 EW#1 EW#11
EW#10 EW#11 EW#10
EW#11 EW#10 GEOM#11
GEOM#9 GEOM#9 EW#13
GEOM#31 MS#15 EW#14
MS#15 GEOM#31 GEOM#9

Test samples 45 42 51

All subsets (RFE) 88.9 (0.832) 88.1 (0.821) 78.4 (0.677)
pine 0.88 / 0.94 / 0.913 0.92 / 0.86 / 0.89 0.89 / 0.89 / 0.89
birch 0.88 / 0.82 / 0.85 0.80 / 0.86 / 0.83 0.72 / 0.76 / 0.74
alder 0.92 / 0.92 / 0.92 0.93 / 0.93 / 0.93 0.73 / 0.69 / 0.71

1OA in %, in brackets.
2For area#3, no accurate MS data were available.
3precision/ recall/ F1 score.

Fig. 10. RFE result for tree species classification in area#1.
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the trained classifiers achieved OA values of 88.9% (area#1), 88.1%
(area#2), and 78.4% (area#3). Here, the mean F1 scores were 0.90
(pine), 0.81 (birch), and 0.85 (alder).

The seven best features for each study area were ranked according
to the mean decrease in accuracy. Features from all three feature sub-
sets were ranked among the seven most important features. The most
relevant feature was the mean Ew value of all laser points for a single
tree (EW#1). Other important Ew-based features were the mean Ew
value of points in the two top height layers of trees (EW#10, EW#11),
as well as the features describing penetration (EW#13, EW#14).
Geometry features ranked in the top seven were related to crown
density (GEOM#9), crown shape (GEOM#31), or the occurrence of
points in the lowest height layer of trees (GEOM#11). The most im-
portant MS features were the second and third quartile of the NDVI
values (MS#7, MS#8), as well as the second quartile of the RENDVI
values (MS#15) inside a tree polygon.

5.2. Sensitivity analysis

The four feature subsets used for the detection of trenches and
clamps are dependent on six decisive control parameters (Table 10) that
must be optimized through sensitivity analysis. During this optimiza-
tion process, we used the OA value of the RF classifier as a quality
measure. Different radii rtree for neighborhood definition for the selec-
tion of nearby trees were tested. The value of 5 m yielded the best
performance. Therefore, the circular area size for the creation of TF was
78.5 m2. The key parameter for the generation of hDTM is the DTM
smoothing coefficient (Polewski et al., 2015). Values ranging from 1
to 10 were evaluated and the optimal value was determined to be
three. For the computation of htrend, the decisive parameter is the size of
the surrounding quadratic area. Areas with a varying side length etrend
were tested and the best OA was achieved with etrend = 5.5 m. The radii
rN and rFPFH defining the neighborhood for the computation of surface
normals and FPFH generation were also optimized. Fourteen combi-
nations of parameters were tested. The optimal values were rN = 3.0 m
and rFPFH = 7.0 m. Finally, the cell size ecell for the calculation of lidar
metrics was set to 5 × 5 m.

5.3. Detection of radioactive waste sites

5.3.1. Classification results
For the detection of trenches and clamps, the mean OA of the RF

classifiers ( = 0.90) was 98.9% for the training data and 98.2% for the
test data (Table 11). In general, the recall and precision for the class
“non-contaminated” were 0.97 or higher in all study areas, leading to
excellent F1 scores. Furthermore, the recall values for “trench” were at
least equal to 0.98, whereas the precision values ranged between 0.37
and 0.62. Apparently, numerous DTM pixels were predicted as trench
pixels although labeled as “non-contaminated”. Moreover, in area#3,
the RF classifier reached an F1 score of 0.80 for the class “clamp”
(precision = 0.66, recall = 1.00).

A reduction of the feature sets to individual feature subsets led to
mean OA values of 88.7% (TF), 71.6% (hnorm), 93.9% (FPFH), and
95.3% (LM). By including the RFE step, the feature space was con-
siderably reduced by an average of 40.2% and the gain in OA was

0.23%. Feature relevance assessment clearly demonstrated that mem-
bers of all four feature subsets are represented in the final list of the 10
most important features. The normalized DTM height hnorm is ranked
here, as well as the features FPFH#(16–18,27,28). The most important
lidar metrics are features that describe the terrain surface and vegeta-
tion below 1.5 m, namely the mean value of points with a negative
height LM_mean(h < 0 m) or a height below 1.5 m LM_mean
(h < 1.5 m) and the minimum height of all points LM_min(h). TF
utilizing tree height (TF#(2,3)), mean CBH (TF#4), and mean crown
diameter (TF#16) are also contained in this ranking. Furthermore,
species-related features, namely alder tree ratio (TF#9) and mean alder
probability (TF#12), seem to be of importance for the waste site clas-
sification. The TF comprise approximately 27% of the top 10 features
among all areas (eight out of 30). Besides the estimated class labels, we
also calculated the class probabilities for each DTM pixel. From these
values, probability maps (Fig. 11b) were created showing DTM grid
points classified with more than 95% as “trench”. The results are highly
correlated to the DTM height (Fig. 11a). In the last step, polygonal
objects were generated from classified DTM pixels as concave hulls. To
clean up the results, we set an area threshold of 30 m2 to remove small
objects that were obviously generated by clusters of wrongly classified
DTM pixels. Finally, an overview of all the detected radioactive burials
was created (Fig. 15).

We now focus more on the spatial distribution of the classification
errors. Fig. 12a shows the normalized DTM height and the manually
produced polygons that were used to label the DTM pixels in area#1.
Fig. 12b illustrates the classification errors on the test dataset
(OA = 99.1%, = 0.758) and highlights the errors. On the one hand,
false positives (FP) appear in the transition zone from trench to non-
contaminated areas. On the other hand, some accumulated FP occur,
and these are not correlated to the normalized DTM height in most
cases. The results in area#2 (OA = 98.2%, = 0.744) are mostly
comparable to those of area#1. In area#3 (OA = 97.2%, = 0.609), a
large number of non-contaminated pixels were wrongly classified as
trench pixels (22,491). A closer look at these grouped FP demonstrates
that they strongly resemble the typical shape of trenches (Fig. 13a).
Moreover, they are correlated to the normalized DTM height. Further-
more, we could find a fairly high number of FP (4613) for the class
“clamp”. However, most of these errors are only located in the transi-
tion zone from clamp to non-contaminated areas (Fig. 13b).

5.3.2. Classifier generalization
In addition to classifier evaluation on manually labeled test data in

the same study area, we conducted an experiment to investigate the
generalization capabilities of the trained classifiers. The classifier
trained for area#1 was applied to the entire dataset of area#2. If we
analyze the relevant confusion matrix (Table 12), we can notice a
considerable high number of FN (6440) and FP (9719) causing a rela-
tively low F1 score for the class “trench” (0.49). Note that the extremely
high number of TN (227,752) still led to an excellent OA (93.6%). For a
section of area#2, Fig. 14b shows the spatial distribution of the clas-
sification errors. Apparently, in some areas, numerous FP were gener-
ated in the vicinity of DTM pits (Fig. 14a).

Table 10
Control parameters.

Parameter Definition Tested values Optimized value

rtree Radius to identify close-up trees 3 m, 5 m, 10 m, 20 m, 30 m 5 m
DTM smoothing coefficient 1 to 10 (step size of 1) 3

etrend Edge length of quadratic area to calculate DTM trend 0.5 to 45.5 m (step size of 5 m) 5.5 m
rn Radius used to compute surface normals 1.5 to 5.0 m 3.0 m
rFPFH Radius used to generate FPFH 2.0 to 10.0 m 7.0 m
ecell Cell size for calculation of lidar metrics 2 × 2 m, 5 × 5 m, 10 × 10 m 5 × 5 m
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5.3.3. Classifier evaluation using ground truths
First, the classifier trained on area#3 was applied to geometrically

incorrect and incomplete RWTSP reference data from area#3. Here, the

classification accuracy was relatively low (Table 13). Specifically,
55.7% (39,328 out of 70,598) of the DTM grid points located in the
RWTSP trench areas were classified as “non-contaminated”. Note that
the quality of these reference data is poor because these data are based
on nonprofessional generation techniques (see Section 3.2). Second, 38
borings (Fig. 15) verified the existence (25) or absence (9) of buried
radioactive biomass and demolition waste in 34 cases (OA= 89.5%). In
four cases (borings C132, C151, C155 and C221), radioactive waste was
found in areas that had been classified as “non-contaminated”. How-
ever, these FN are located only 3–9 meters off the detected trenches. All
deposits occurred at an average depth of 1–2 m, exhibiting EDR values
that were up to 30 times greater than those on the terrain surface
(Tables 1 and 2).

6. Discussion

6.1. Tree species classification

6.1.1. Classification results
In general, the results demonstrate that the three main tree species

in the ChEZ (birch, alder, and pine) were successfully classified using
both lidar data and MS imagery. Moreover, the low decrease in clas-
sification results on the test data compared with training data (1.3–2.9
percentage points) indicates a fairly good generalization quality. The
best results were achieved in the case of the available MS data in
area#1 and area#2 (mean OA = 88.5%, mean = 0.827). These re-
sults are highly comparable to Kaminska et al. (2018), who classified six
classes of trees with an OA of 88.6% ( = 0.851) fusing color-infrared
(CIR) imagery and leaf-off ALS data with normalized intensity values.
Without MS data (area#3), the OA decreased to 78.4% ( = 0.677). In
our experiments, MS features generated from five spectral channels
clearly increased the classification result by approximately 10%. This
finding corresponds to Holmgren et al. (2008) and Ørka et al. (2012),
who also demonstrated a significant improvement in classification re-
sults by including information from MS images. Regarding the single
tree species, the overall F1 score for pine (0.90) was generally better
than for the deciduous species birch (0.81) and alder (0.85). Even

Table 11
Classification results for detection of radioactive waste sites.

Area#1 Area#2 Area#3

Training samples 6222 14,310 22,872
TF 88.5 (0.841)1 90.7 (0.893) 86.9 (0.851)
hnorm 79.7 (0.590) 71.1 (0.422) 64.0 (0.460)
FPFH 96.1 (0.914) 95.4 (0.917) 90.1 (0.852)
LM 95.3 (0.910) 95.9 (0.926) 94.6 (0.923)
All subsets (RF) 98.9 (0.972) 99.4 (0.987) 97.6 (0.961)

All subsets (RFE) 99.1 (0.982) 99.6 (0.992) 97.9 (0.968)
Gain in OA 0.2 0.2 0.3
Feat. reduction 43.4% 64.1% 13.2%

Top 10 feat. FPFH#16 LM_mean(h< 0 m) FPFH#16
FPFH#18 FPFH#16 LM_mean

(h< 0 m)
LM_mean
(h< 0 m)

TF#3 LM_min(h)

TF#4 FPFH#18 FPFH#18
LM_min(h) TF#2 hnorm

hnorm LM_mean
(h< 1.5 m)

LM_mean
(h< 1.5 m)

TF#12 hnorm TF#4
FPFH#27 TF#12 FPFH#28
FPFH#17 FPFH#28 FPFH#27
TF#16 FPFH#27 TF#9

Test samples 208,704 251,561 1,015,037

All subsets (RFE) 99.1 (0.758) 98.2 (0.744) 97.3 (0.609)
non-contaminated 1.00 / 0.99 /

1.002
1.00 / 0.98 / 0.99 1.00 / 0.97 / 0.99

trench 0.62 / 0.99 / 0.76 0.61 / 0.98 / 0.75 0.37 / 0.98 / 0.54
clamp — — 0.66 / 1.00 / 0.80

1OA in %, in brackets.
2precision/ recall/ F1 score.

Fig. 11. Classification result for area#1.
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without MS features (area#3), pines were classified with a F1 score of
0.89. Obviously, MS features primarily improved the classification of
birch and alder. This is because at the time of data collection, birches
had already sprouted. Therefore, their characteristic spectral appear-
ance supported the classification significantly.

6.1.2. Feature importance
Furthermore, feature selection led to a significant reduction of the

feature space and improved the OA by 1.5% on average. According to
the feature relevance assessment, the mean Ew value of all laser points
for a single tree was the most relevant feature. This fact substantiates
the quality of our newly introduced data-driven correction method for
radiometric lidar data of the YellowScan Mapper I laserscanner.
Moreover, geometry- and Ew-based features related to the tree crown
and penetration of the laser beam to the ground were also among the
top seven features. This is in full accordance with Shi et al. (2018b) and
Amiri et al. (2019), showing that these types of features mainly control
the quality of tree species classification. In our experiments, certain
quartiles of the NDVI and RENDVI values significantly enhanced the

classifier. Regarding the feature subsets, the MS features provided
better results than the lidar-related features (GEOM, EW). A classifier
using only the MS features was only slightly worse than the classifier
using the complete feature set.

Fig. 12. Classification errors for detection of trenches (section of area#1).

Fig. 13. Classification errors (section of area#3).

Table 12
Results for applying the classifier trained for area#1 to the dataset for area#2
(OA = 93.6%).

1 non-contaminated
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6.2. Detection of radioactive waste sites

6.2.1. Classification results
Our results show that the area-wide detection of unknown radio-

active burial sites in the forested areas of the ChEZ can be performed
successfully using both UAV-based lidar data and MS imagery. A clas-
sification accuracy of over 97% for DTM grid points potentially located
in areas with buried radioactive materials is relatively high for all study
areas. By including a feature selection technique, we removed re-
dundant and irrelevant features from the dataset and effectively

Fig. 14. Generalization capabilities of the classifier (section of area#2).

Table 13
Results for applying the classifier trained for area#3 to the RWTSP reference
data (OA = 65.1%).

Fig. 15. Detected burial sites (trenches and clamps) and conducted borings in the study areas; Coordinate system: UTM zone 36 N (EPSG 32636); Base map source:
bing map ©Microsoft Corporation.
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avoided overfitting for a standard RF classifier. The OA values of the
proposed classifiers on the test datasets are comparable to the results of
a fivefold cross validation that we performed during classifier training.
However, FP in the transition zones from burials to non-contaminated
areas caused a decrease in the precision values for both trenches and
clamps. Manual generation of reference data based on visual DTM in-
terpretation may certainly affect these errors. In area#3, we realized
that approximately 30% of the FP are grouped in longish clusters and,
thus, strongly resemble the typical shape of trenches. Moreover, they
are correlated to the normalized DTM height. Based on the results for
the class “trench” in area#1 (F1 = 0.76) and area#2 (F1 = 0.75), we
assume that the classification accuracy for trench pixels is actually
higher. Because of missing ground reference data in this study area, we
can only speculate that these grouped errors are located in trenches that
were not considered during manual labeling. Theoretically, if these
30% of rather obvious FP samples were taken into account in area#3,
the F1 score for “trench” would improve from 0.54 to approximately
0.72.

6.2.2. Feature importance
A feature relevance assessment supported the classification results

and demonstrated that handcrafted features from all the subsets appear
among the most important features. Clearly, local shape descriptors are
very significant features for modeling the cylindrical shapes of both
trenches and clamps. Two FPFH features (FPFH#16 and FPFH#18)
were ranked in the top four features for all study areas. Unsurprisingly,
the normalized DTM height hnorm is a promising feature in all three
study areas. Regarding the lidar metrics, we observed that the most
important variables are features describing the terrain surface and low
structures. In addition to the features describing the terrain geometry,
the newly developed TF comprise approximately 27% of the top 10
features for all study areas, meaning they also had a significant impact
on the classification results. Aside from the features describing the tree
geometry (TF#(2–4,16)), species-related features such as alder tree
ratio (TF#9) and mean alder probability (TF#12) are capable of further
improving the proposed classifier. For example, it appears that alder
trees preferably grow in the vicinity of the trenches of area#1 and
area#2. In summary, tree species classification is beneficial for de-
tecting radioactive waste sites in the ChEZ.

6.2.3. Transferability between study areas
To a certain degree, the capabilities of the trained classifier for

trench detection in area#1 were transferable to adjacent area#2
(OA = 93.6%). Compared with the results of an RF classifier being
trained directly in study area#2, the F1 score for non-contaminated
DTM pixels remained almost unchanged (F1 = 0.97). Nevertheless, a
considerable high number of misclassified DTM pixels caused clearly
worse results for the class “trench” (F1 = 0.49). When analyzing the
spatial distribution of these errors, we observed that numerous FP were
generated in the vicinity of DTM pits. Furthermore, comparing the
feature importance of the classifiers trained in area#1 and area#2, it
seems that some of the TF are disadvantageous for classifier general-
ization. Namely, the mean CBH is ranked 4th in area#1, whereas the
mean and std of the tree height are in the top five features in area#2.
Due to different characteristics regarding the tree geometry (crown
shape, tree height), these TF vary between the study areas. However,
these differences could not be detected in a visual interpretation of the
dataset. The importance of features related to the terrain geometry is
less fluctuating. In other words, these features should be focused on if a
generalization of the classifier is to be considered. Unsurprisingly, when
using geometrically incorrect and incomplete RWTSP reference data
(see Section 3.2.1), the OA is relatively low (OA = 65.1%).

6.2.4. Verification based on ground truths
A comparison of detection results and 38 borings clearly shows that

25 TP and 9 TN could be verified in area#1 and area#2 (OA = 89.5%).

Only four FN occurred less than 9 m off the detected trenches, meaning
the classifier falsely predicted areas as “non-contaminated”. In sum-
mary, EDR measurements inside the bore holes confirmed the existence
of suspected trenches that were unknown and not identified prior to the
application of our methodology. Furthermore, EDR measurements re-
vealed that the radioactive waste in the trenches was covered with a
layer of approximately 0.5 m of “clean” sand. This layer shielded the
active inventory. Therefore, these radioactive waste burials were not
detected by standard EDR measurements.

6.2.5. Comparison to previous studies
To the best of our knowledge, the detection of radioactive burials

using remotely sensed optical data has never been performed before.
Thus, there is a lack of comparable studies. Nevertheless, our task is
partially similar to certain research in the archaeology community. For
example, Guyot et al. (2018) detected burial mounds based on the
normalized height calculated from a 25 cm DTM. Furthermore,
Lasaponara et al. (2010) demonstrated that micro-elevation changes in
lidar-based DTMs support the identification of archaeological sites.
Interestingly, our method significantly outperforms UAV-based gamma
spectrometry surveys (Zabulonov et al., 2015), which have a detection
rate of approximately 50% in vegetated areas. Moreover, compared
with a historical map created from the memories of so-called liquida-
tion workers (Fig. 2), the quality of our precise and reliable mapping
approach is enormous.

6.3. Limitations of method

Despite fairly good results, our methodology has some limitations.
Needless to say, the detection of radioactive waste sites greatly depends
on the resolution of the lidar-based DTM. As stated by other studies,
ground point density is the most important when detecting slight
ground settlements or elevations. For example, Bollandsås et al. (2012)
could show that the lidar-based DTM resolution had a significant effect
on the detection success of cultural remains. Especially in densely ve-
getated areas, enhanced UAV lidar sensors with pulse repetition fre-
quencies beyond 1 MHz and the realization of flight missions with
cross-strips could tackle this limiting factor. Another weakness of our
methodology for tree species classification is the manual preparation of
training and test samples. However, because of understandable reasons,
the collection of field reference data was not possible in the study area.

7. Conclusion

Our experiments demonstrated that area-wide detection of un-
known radioactive waste sites in the ChEZ can be conducted success-
fully using the proposed methodology. Overall, we achieved excellent
classification results fusing high-resolution UAV-based lidar data and
MS imagery. A key factor of our approach is the generation of a feature
set that can describe both the ground surface and nearby vegetation.
Moreover, we applied an effective feature selection strategy to avoid
overfitting of the RF models, resulting in remarkable generalization
properties. Furthermore, we presented an efficient correction method
for the radiometric data collected by the YellowScan Mapper I la-
serscanner. Based on geometrically and radiometrically consistent data,
precise 3D vegetation mapping at the tree level enabled the generation
of meaningful TF that supported the proposed classifier. Our results
were verified based on 38 borings that confirmed the existence of
previously unknown buried nuclear materials in the classified areas.
Compared to the ground surface, EDR measurements revealed values up
to 30 times greater in the soil layers containing buried biomass and
demolition waste. Moreover, it is noteworthy that some of the para-
meters from 3D vegetation mapping (i.e. tree height, tree species, stem
diameters, tree positions) can be used advantageously in radiologic si-
mulations. Based on the results in Briechle et al. (2018), Molitor et al.
(2018) calculated the potential exposure to external irradiation from a
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single tree species for a person working in the ChEZ forest. Therefore,
more realistic radiologic modeling based on the method proposed in
this paper for 3D vegetation mapping should be possible. Finally, ex-
isting hazard maps could be upgraded using the proposed method to
minimize worker radiation dose uptake and optimize accident liqui-
dation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The authors would like to thank V. Antropov, O. Tretyak and the
collegues from CRWME for the technical support in the ChEZ and the
conducted borings. We also highly appreciate the support from Y.
Zabulonov from the Institute of Environmental Geochemistry, the
supply of the octocopter and its piloting by our Ukrainian colleagues
from Flycamstudio. The research was funded by Federal Ministry of
Education and Research (BMBF) (Grant No. 03FH004IX6).

References

Agisoft LLC, 2018. Agisoft PhotoScan Professional 1.4.1. https://www.agisoft.com/ (ac-
cessed: 2020-05-01).

Amiri, N., Krzystek, P., Heurich, M., Skidmore, A., 2019. Classification of tree species as
well as standing dead trees using triple wavelength ALS in a temperate forest. Remote
Sens. 11.

Antropov, V., Bugai, D., Dutton, L., Gerchikov, M., Kennett, E., Ledenev, A., Novikov, A.,
Rudko, V., Ziegenhagen, J., 2001. Review and Analysis of Solid Long-lived and High
Level Radioactive Waste arising at the Chernobyl Nuclear Power Plant and the
Restricted Zone. Technical Report.

Applied Imagery, 2018. Quick Terrain Modeler v8.0.7. http://www.appliedimagery.com
(accessed: 2020-05-01).

Arkhipov, N., Kuchma, N., Askbrant, S., Pasternak, P., Musica, V., 1994. Acute and long-
term effects of irradiation on pine (Pinus silvestris) stands post-Chernobyl. Sci. Total
Environ. 157, 383–386.

Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models.
Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. ISPRS Arch. 33, 110–117
(accessed: 2020–05-01).

BayesMap Solutions LLC, 2018. BayesStripAlign 2.0. http://bayesmap.com/products/
bayesstripalign/ (accessed: 2020-05-01).

Bollandsås, O., Risbøl, O., Ene, L., Nesbakken, A., Gobakken, T., Næsset, E., 2012. Using
airborne small-footprint laser scanner data for detection of cultural remains in for-
ests: An experimental study of the effects of pulse density and DTM smoothing. J.
Archaeol. Sci. 39, 2733–2743.

Bonzom, J.-M., Håttenschwiler, S., Lecomte-Pradines, C., Chauvet, E., Gaschak, S.,
Beaugelin-Seiller, K., Della-Vedova, C., Dubourg, N., Maksimenko, A., Garnier-
Laplace, J., Adam-Guillermin, C., 2016. Effects of radionuclide contamination on leaf
litter decomposition in the Chernobyl Exclusion Zone. Sci. Total Environ. 562,
596–603.

Briechle, S., Sizov, A., Tretyak, O., Antropov, V., Molitor, N., Krzystek, P., 2018. UAV-
based detection of unknown radioactive biomass deposits in Chernobyl’s Exclusion
Zone. Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. - ISPRS Arch. 42,
163–169.

Bugai, D., Kashparov, V., Dewiére, L., Khomutinin, Y., Levchuk, S., Yoschenko, V., 2005.
Characterization of subsurface geometry and radioactivity distribution in the trench
containing Chernobyl clean-up wastes. Environ. Geol. 47, 869–881.

Bugai, D., Skalskyy, A., Dzhepo, S., Kubko, Y., Kashparov, V., Van Meir, N., Stammose, D.,
Simonucci, C., Martin-Garin, A., 2012. Radionuclide migration at experimental
polygon at Red Forest waste site in Chernobyl zone. Part 2: Hydrogeological char-
acterization and groundwater transport modeling. Appl. Geochem. 27, 1359–1374.

CloudCompare Development Team, 2019. CloudCompare 2.8 [GPL software]. http://
www.cloudcompare.org/ (accessed: 2020-05-01).

Davids, C., Tyler, A., 2003. Detecting contamination-induced tree stress within the
Chernobyl Exclusion Zone. Remote Sens. Environ. 85, 30–38.

European Union (2014–2017). Support to radioactive waste management in Ukraine.
https://nuclear.jrc.ec.europa.eu/tipins/contracts/support-radioactive-waste-
management-ukraine (accessed: 2020-05-01).

Fassnacht, F., Latifi, H., Sterenczak, K., Modzelewska, A., Lefsky, M., Waser, L., Straub, C.,
Ghosh, A., 2016. Review of studies on tree species classification from remotely sensed
data. Remote Sens. Environ. 186, 64–87.

Flynn, K., Glendenin, L., Harkness, A., Steinberg, E., 1965. Half-lives of 90Sr and 137Cs. J.
Inorg. Nucl. Chem. 27, 21–23.

Gevaert, C., Persello, C., Nex, F., Vosselman, G., 2018. A deep learning approach to DTM
extraction from imagery using rule-based training labels. ISPRS J. Photogram.

Remote Sens. 142, 106–123.
Gregorutti, B., Michel, B., Saint-Pierre, P., 2017. Correlation and variable importance in

random forests. Stat. Comput. 27, 659–678.
Guyot, A., Hubert-Moy, L., Lorho, T., 2018. Detecting Neolithic burial mounds from lidar-

derived elevation data using a multi-scale approach and machine learning techni-
ques. Remote Sens. 10.

Höfle, B., Pfeifer, N., 2007. Correction of laser scanning intensity data: Data and model-
driven approaches. ISPRS J. Photogram. Remote Sens. 62, 415–433.

Holmgren, J., Persson, Å., Söderman, U., 2008. Species identification of individual trees
by combining high resolution lidar data with multi-spectral images. Int. J. Remote
Sens. 29, 1537–1552.

Ibeo Automotive Systems GmbH, 2010. Operating manual ibeo LUX 2010 laserscanner
v1.6. Unpublished internal technical report, pp. 20.

Immitzer, M., Atzberger, C., Koukal, T., 2012. Tree species classification with random
forest using very high spatial resolution 8-band worldview-2 satellite data. Remote
Sens. 4, 2661–2693.

Jalobeanu, A., Gonçalves, G.R., 2014. Automated probabilistic lidar swath registration.
In: AGU Fall Meeting Abstracts.

Jutzi, B., Gross, H., 2009. Normalization of lidar intensity data based on range and surface
incidence angle. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 38, 213–218
(accessed: 2020–05-01).

Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A., Kukko, A., 2011. Analysis of
incidence angle and distance effects on terrestrial laser scanner intensity: Search for
correction methods. Remote Sens. 3, 2207–2221.

Kaminska, A., Lisiewicz, M., Sterenczak, K., Kraszewski, B., Sadkowski, R., 2018. Species-
related single dead tree detection using multi-temporal ALS data and CIR imagery.
Remote Sens. Environ. 219, 31–43.

Kashparov, V., Yoschenko, V., Levchuk, S., Bugai, D., Van Meir, N., Simonucci, C., Martin-
Garin, A., 2012. Radionuclide migration in the experimental polygon of the Red
Forest waste site in the Chernobyl zone - Part 1: Characterization of the waste trench,
fuel particle transformation processes in soils, biogenic fluxes and effects on biota.
Appl. Geochem. 27, 1348–1358.

Korpela, I., Ørka, H., Hyyppå, J., Heikkinen, V., Tokola, T., 2010. Range and AGC nor-
malization in airborne discrete-return lidar intensity data for forest canopies. ISPRS J.
Photogram. Remote Sens. 65, 369–379.

Kuhn, M., 2008. Building predictive models in R using the caret package. J. Stat. Softw.
28, 1–26.

Lasaponara, R., Coluzzi, R., Gizzi, F., Masini, N., 2010. On the lidar contribution for the
archaeological and geomorphological study of a deserted medieval village in
Southern Italy. J. Geophys. Eng. 7, 155–163.

Latifi, H., Heurich, M., 2019. Multi-scale remote sensing-assisted forest inventory: A
glimpse of the state-of-the-art and future prospects. Remote Sens. 11.

Liaw, A., Wiener, M., 2002. Classification and regression by randomforest. R News 2,
18–22 (accessed: 2020–05-01).

Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Ma, X., Chen, D., 2017. Evaluation
of feature selection methods for object-based land cover mapping of unmanned aerial
vehicle imagery using random forest and support vector machine classifiers. ISPRS
Int. J. Geo-Inform. 6.

MicaSense Inc, 2015. MicaSense RedEdge 3 Multispectral Camera User Manual, Rev 06.
https://support.micasense.com/hc/en-us/article_attachments/204648307/RedEdge_
User_Manual_06.pdf (accessed: 2020-05-01).

MicaSense Inc, 2019. Use of calibrated reflectance panels for rededge data. https://
support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-
Reflectance-Panels-For-RedEdge-Data (accessed: 2020-05-01).

Molitor, N., Thierfeldt, S., Haneke, K., Nitzsche, O., Bugai, D., Sizov, A., Drace, Z., 2017.
Recent safety assessment findings on management of legacy wastes from Chornobyl
accident. In: International Conference on Nuclear Decommissioning and Environment
Recovery, INUDECO. https://www.researchgate.net/publication/317400817_
Recent_safety_assessment_findings_on_management_of_legacy_wastes_from_
Chornobyl_accident (accessed: 2020-05-01).

Molitor, N., Zabulonov, Y., Krzystek, P., Siebold, K., Haneke, K., Nitzsche, O., Groot J., d.,
Antropov, V., Tretyak, O., Sizov, A., Bugai, D., Kovach, V., Bayer, P., Drace, Z.,
Bachmaier, B. (2018). New developments in airborne geophysical survey technolo-
gies and their application for investigation and radiological assessment of highly
contaminated areas and legacy radioactive waste storages in the Chornobyl Exclusion
Zone. In: International Conference on Nuclear Decommissioning and Environment
Recovery, INUDECO. https://www.researchgate.net/publication/327704022_New_
developments_in_airborne_geophysical_survey_technologies_and_their_application_
for_investigation_and_radiological_assessment_of_highly_contaminated_areas_and_
legacy_radioactive_waste_storages_in_t (accessed: 2020-05-01).

Næsset, E., 2004. Practical large-scale forest stand inventory using a small-footprint air-
borne scanning laser. Scand. J. For. Res. 19, 164–179.

NovAtel Inc., 2017. Inertial Explorer 8.70 - GNSS and inertial post-processing software.
https://www.novatel.com/products/software/inertial-explorer/ (accessed: 2020-
05-01).

Pal, M., 2005. Random forest classifier for remote sensing classification. Int. J. Remote
Sens. 26, 217–222.

Polewski, P., Yao, W., Heurich, M., Krzystek, P., Stilla, U., 2015. Detection of fallen trees
in ALS point clouds using a Normalized Cut approach trained by simulation. ISPRS J.
Photogram. Remote Sens. 105, 252–271.

PRIMAVISION Technologies GbR, 2017. 3D tree segmentation from point clouds (lidar,
DSM) for forest inventory. http://primavision-tec.de/products/prod_tree-finder (ac-
cessed 2020-05-01).

Puissant, A., Rougiera, S., Stumpf, A., 2014. Object-oriented mapping of urban trees using
random forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 26, 235–245.

Pyysalo, U., Hyyppå, H., 2002. Reconstructing tree crowns from laser scanner data for

S. Briechle, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 345–362

361

https://www.agisoft.com/
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0010
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0010
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0010
http://www.appliedimagery.com
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0025
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0025
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0025
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0030
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0030
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0030
http://bayesmap.com/products/bayesstripalign/
http://bayesmap.com/products/bayesstripalign/
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0040
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0040
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0040
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0040
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0045
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0045
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0045
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0045
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0045
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0050
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0050
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0050
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0050
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0055
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0055
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0055
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0060
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0060
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0060
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0060
http://www.cloudcompare.org/
http://www.cloudcompare.org/
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0070
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0070
https://nuclear.jrc.ec.europa.eu/tipins/contracts/support-radioactive-waste-management-ukraine
https://nuclear.jrc.ec.europa.eu/tipins/contracts/support-radioactive-waste-management-ukraine
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0080
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0080
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0080
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0085
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0085
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0090
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0090
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0090
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0095
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0095
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0100
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0100
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0100
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0105
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0105
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0110
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0110
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0110
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0120
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0120
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0120
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0130
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0130
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0130
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0135
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0135
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0135
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0140
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0140
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0140
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0145
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0145
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0145
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0145
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0145
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0150
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0150
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0150
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0155
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0155
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0160
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0160
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0160
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0165
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0165
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0170
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0170
https://support.micasense.com/hc/en-us/article_attachments/204648307/RedEdge_User_Manual_06.pdf
https://support.micasense.com/hc/en-us/article_attachments/204648307/RedEdge_User_Manual_06.pdf
https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data
https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data
https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data
https://www.researchgate.net/publication/317400817_Recent_safety_assessment_findings_on_management_of_legacy_wastes_from_Chornobyl_accident
https://www.researchgate.net/publication/317400817_Recent_safety_assessment_findings_on_management_of_legacy_wastes_from_Chornobyl_accident
https://www.researchgate.net/publication/317400817_Recent_safety_assessment_findings_on_management_of_legacy_wastes_from_Chornobyl_accident
https://www.researchgate.net/publication/327704022_New_developments_in_airborne_geophysical_survey_technologies_and_their_application_for_investigation_and_radiological_assessment_of_highly_contaminated_areas_and_legacy_radioactive_waste_storages_in_t
https://www.researchgate.net/publication/327704022_New_developments_in_airborne_geophysical_survey_technologies_and_their_application_for_investigation_and_radiological_assessment_of_highly_contaminated_areas_and_legacy_radioactive_waste_storages_in_t
https://www.researchgate.net/publication/327704022_New_developments_in_airborne_geophysical_survey_technologies_and_their_application_for_investigation_and_radiological_assessment_of_highly_contaminated_areas_and_legacy_radioactive_waste_storages_in_t
https://www.researchgate.net/publication/327704022_New_developments_in_airborne_geophysical_survey_technologies_and_their_application_for_investigation_and_radiological_assessment_of_highly_contaminated_areas_and_legacy_radioactive_waste_storages_in_t
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0200
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0200
https://www.novatel.com/products/software/inertial-explorer/
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0210
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0210
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0215
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0215
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0215
http://primavision-tec.de/products/prod_tree-finder
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0225
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0225


feature extraction. Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. ISPRS
Arch. 34 (accessed: 2020–05-01).

QGIS Development Team, 2017. QGIS 2.18.3. https://qgis.org (accessed: 2020-05-01).
R Core Team, 2018. R: A language and environment for statistical computing. R foun-

dation for statistical computing. Vienna, Austria. https://www.R-project.org/ (ac-
cessed: 2020-05-01).

Reitberger, J., 2010. 3D-Segmentierung von Einzelbäumen und Baumartenklassifikation
aus Daten flugzeuggetragener Full Waveform Laserscanner. Ph.D. thesis Technische.
Universität München.

Reitberger, J., Krzystek, P., Stilla, U., 2007. Combined tree segmentation and stem de-
tection using full waveform lidar data. Int. Arch. Photogram. Remote Sens. Spatial
Inf. Sci. 36, 332–337 (accessed: 2020–05-01).

Reitberger, J., Krzystek, P., Stilla, U., 2008. 3D segmentation and classification of single
trees with full waveform lidar data. Proc. SilviLaser 2008 (8), 17–19.

Reitberger, J., Schnörr, C., Krzystek, P., Stilla, U., 2009. 3D segmentation of single trees
exploiting full waveform lidar data. ISPRS J. Photogram. Remote Sens. 64, 561–574.

Ørka, H., Gobakken, T., Næsset, E., Ene, L., Lien, V., 2012. Simultaneously acquired
airborne laser scanning and multispectral imagery for individual tree species iden-
tification. Can. J. Remote Sens. 38, 125–138.

Rodriguez-Galiano, V., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J., 2012.
An assessment of the effectiveness of a random forest classifier for land-cover clas-
sification. ISPRS J. Photogram. Remote Sens. 67, 93–104.

Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast point feature histograms (FPFH) for 3D
registration. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 3212–3217.

Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M., 2008. Learning informative point classes
for the acquisition of object model maps. In: 2008 10th International Conference on
Control, Automation, Robotics and Vision (ICARCV), pp. 643–650.

Saintenoy, A., Courbet, C., Nguyen, L., Léger, E., Bugai, D., 2017. Results from two GPR
surveys (2002 and 2015) in the Chernobyl Exclusion Zone. In: 2017 9th International
Workshop on Advanced Ground Penetrating Radar (IWAGPR). IEEE, pp. 1–6.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22, 888–905.

Shi, Y., Skidmore, A., Wang, T., Holzwarth, S., Heiden, U., Pinnel, N., Zhu, X., Heurich,
M., 2018a. Tree species classification using plant functional traits from lidar and
hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 73, 207–219.

Shi, Y., Wang, T., Skidmore, A., Heurich, M., 2018b. Important lidar metrics for dis-
criminating forest tree species in Central Europe. ISPRS J. Photogram. Remote Sens.
137, 163–174.

Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and spectral
reflectance across a wide range of species, leaf structures and developmental stages.

Remote Sens. Environ. 81, 337–354.
Sithole, G., Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-

earth extraction from airborne laser scanning point clouds. ISPRS J. Photogram.
Remote Sens. 59, 85–101.

Soininen, A., 2016. TerraScan user’s guide. https://www.terrasolid.com/download/tscan.
pdf (accessed: 2020-05-01).

Solberg, S., Naesset, E., Bollandsas, O., 2006. Single tree segmentation using airborne
laser scanner data in a structurally heterogeneous spruce forest. Photogram. Eng.
Remote Sens. 72, 1369–1378.

Thiry, Y., Colle, C., Yoschenko, V., Levchuk, S., Van Hees, M., Hurtevent, P., Kashparov,
V., 2009. Impact of Scots pine (Pinus sylvestris L.) plantings on long term 137Cs and
90Sr recycling from a waste burial site in the Chernobyl Red Forest. J. Environ.
Radioact. 100, 1062–1068.

Tikhomirov, F., Shcheglov, A., 1994. Main investigation results on the forest radioecology
in the Kyshtym and Chernobyl accident zones. Sci. Total Environ. 157, 45–57.

Trier, Ø.D., Salberg, A.-B., Kermit, M., Rudjord, Ø., Gobakken, T., Næsset, E., Aarsten, D.,
2018. Tree species classification in Norway from airborne hyperspectral and airborne
laser scanning data. Eur. J. Remote Sens. 51, 336–351.

Usoltsev, V., Shobairi, S., Chasovskikh, V., 2019. Comparing of allometric models of
single-tree biomass intended for airborne laser sensing and terrestrial taxation of
carbon pool in the forests of Eurasia. Nat. Resource Model. 32.

Ussyshkin, R., Ravi, R., Ilnicki, M., Pokorny, M., 2009. Mitigating the impact of the laser
footprint size on airborne lidar data accuracy. In: American Society for
Photogrammetry and Remote Sensing Annual Conference 2009 (ASPRS), vol. 2, pp.
854–862 (accessed: 2020-05-01).

Wu, B., Yu, B., Wu, Q., Huang, Y., Chen, Z., Wu, J., 2016. Individual tree crown deli-
neation using localized contour tree method and airborne lidar data in coniferous
forests. Int. J. Appl. Earth Obs. Geoinf. 52, 82–94.

YellowScan, 2016. YellowScan Mapper - The lightweight LiDAR solution for UAVs.
https://www.microgeo.it/public/userfiles/Yellowscan-Mapper-datasheet.pdf (ac-
cessed: 2020-05-01).

Yoschenko, V., Kashparov, V., Melnychuk, M., Levchuk, S., Bondar, Y., Lazarev, M.,
Yoschenko, M., Farfán, E., Jannik, G., 2011. Chronic irradiation of Scots pine trees
(Pinus Sylvestris) in the Chernobyl Exclusion Zone: Dosimetry and radiobiological
effects. Health Phys. 101, 393–408.

Yu, X., Hyyppä, J., Litkey, P., Kaartinen, H., Vastaranta, M., Holopainen, M., 2017. Single-
sensor solution to tree species classification using multispectral airborne laser scan-
ning. Remote Sens. 9.

Zabulonov, Y., Burtnyak, V., Zolkin, I., 2015. Airborne gamma spectrometric survey in
the Chernobyl exclusion zone based on oktokopter UAV type. Problems Atom. Sci.
Technol. 99, 163–167 (accessed: 2020–05-01).

S. Briechle, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 345–362

362

https://qgis.org
https://www.R-project.org/
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0245
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0245
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0245
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0250
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0250
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0250
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0255
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0255
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0260
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0260
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0265
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0265
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0265
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0270
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0270
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0270
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0275
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0275
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0275
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0280
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0280
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0280
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0285
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0285
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0285
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0290
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0290
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0295
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0295
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0295
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0300
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0300
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0300
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0305
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0305
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0305
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0310
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0310
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0310
https://www.terrasolid.com/download/tscan.pdf
https://www.terrasolid.com/download/tscan.pdf
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0320
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0320
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0320
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0325
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0325
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0325
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0325
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0330
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0330
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0335
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0335
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0335
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0350
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0350
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0350
https://www.microgeo.it/public/userfiles/Yellowscan-Mapper-datasheet.pdf
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0360
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0360
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0360
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0360
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0365
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0365
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0365
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0370
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0370
http://refhub.elsevier.com/S0924-2716(20)30173-8/h0370

	Detection of radioactive waste sites in the Chornobyl exclusion zone using UAV-based lidar data and multispectral imagery
	Introduction
	Related work
	Risk management in the ChEZ
	Vegetation anomalies in the ChEZ
	Vegetation mapping

	Materials
	Study areas
	Reference data
	Visual interpretation
	Ground reference data

	UAV system
	Lidar data
	MS imagery

	Methodology
	Outline of the proposed method
	Pre-processing of sensor data
	Reflectance calibration of MS imagery
	Orthomosaic generation
	Radiometric correction of lidar data
	Tree segmentation
	DTM generation

	Tree species classification
	Detection of radioactive waste sites
	Classification strategy

	Experiments
	Tree species classification
	Sensitivity analysis
	Detection of radioactive waste sites
	Classification results
	Classifier generalization
	Classifier evaluation using ground truths


	Discussion
	Tree species classification
	Classification results
	Feature importance

	Detection of radioactive waste sites
	Classification results
	Feature importance
	Transferability between study areas
	Verification based on ground truths
	Comparison to previous studies

	Limitations of method

	Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References




