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Abstract. The parameters of a first-order process with known disturbance bounds are 
known to lie in an ellipsoidal region. At each sample, a static output feedback is designed 
which minimizes the maximum absolute output over the disturbance and parameter ranges. 
Then from the resulting measurements, the ellipsoid is updated according to a specific 
criterion. This criterion should be chosen for adequate performance of the resulting self­
tuning regulator. It is shown that a dual criterion minimizing a weighted sum·of ellipsoidal 
volume and contr~l performance outperforms these separate criteria. 
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1. INTRODUCTION 

Many practical processes suffer from parametric 
perturbances. Therefore recently much attention has 
been given to parameter-robust performance control 
(e.g. Malan et al., 1996). For such controllers, the 
worst-case performance increases for lower 
parameter uncertainty, which may be obtained by 
bound estimation (e.g. Walter and Piet-Lahanier, 
1990). If control cannot wait for estimation, bound 
estimation and controller redesign should occur at 
each sample. This is called self-tuning parameter­
robust performance control (e.g. Uihnberg and Van 
de Waal, 1994). It should not be confused with 
robust self-tuning control, that is a self-tuning 
certainty-equivalent controller which is robust to 
structural uncertainty. 

Self-tuning parameter-robust control requires fast 
estimation of bounds, suitable for fast parameter­
robust control design. For bound estimation, 
ellipsoidal bounding is faster than using an exact 
polytope. Moreover, it is more suitable for fast 
parameter-robust control than an orthotope. Specially 
for ellipsoidal parameter bounds, parameter-robust 
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minimax output control (Lohnberg and Romer, 1995) 
can be designed fast. Therefore this combination is 
attractive. 

Ellipsoidal bounding requires a criterion to choose 
between the infinite number of ellipsoids containing 
the real parameter range (e.g. Fogel and Huang, 
1982). As such, it looks attractive to choose the 
ellipsoid that causes the best control performance 
when used for parameter-robust control design 
(Uihnberg and Schukkink, 1995). Unfortunately, like 
some adaptive certainty-equivalence controllers 
(Polderman, 1989), use of this criterion in adaptive 
robust control does not yield convergence in case 
only the controller parameters are identifiable but the 
process parameters are not. 

Inspired by dual solutions for adaptive certainty­
equivalence control (e.g. Wittenmark, 1975) and 
worst-case duality for polytopes (e.g. Graves and 
Veres, 1995), also for this situation a dual solution 
was sought which yields good control at the next 
sample, also decreasing the parameter uncertainty. 
The method is illustrated for a first-order process. 
Details have been described by Eisenberg (1995). 
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2. PROCESS, UNCERTAIN1Y AND CON1ROL 

2.1. Process 

The method is illustrated for the first-order discrete­
time L TI SISO process 

where Yk , uk and ek are samples of output, input and 
white disturbance respectively at sampLe number k, 
where 

hl SCJVk (2) 

with known bound CJ, and where the regressor and 
process parameter vector respectively are 

4Jk+l =[Yk ukt , 

8=[-a bf, b#O. 

2.2. Regulator and controlled system 

(3) 

(4) 

For simplicity, the process is regulated by the static 
output feedback 

(5) 

where X k is the controller parameter. Substitution of 

control equation (5) into regressor (3) yields 

(6) 

for short notation introducing the extended controL 
parameter vector 

(7) 

Substitution of output feedback (7) into process 
model (1) yields controlled process equation 

Yk+l = -aYk -bxkYk +ek+l = ckYk +ek+l 

= -X[Byk +ek+l' 

introducing the closed loop poLe 

(8) 

(9) 

A constant controller X k == X, and hence by (10) 

ck = c , only allows identification of the line 

a=bx-c (10) 

and not of the process parameters a and b separately. 

2.3. Certainty minimax output reguLation 

In case of parameter certainty, that is known process 
parameter vector 8, a simple practical regulation 
criterion is to minimize the maximum absolute 
output value over the disturbance range, which with 
closed loop equation (8) can be written as the 
certainty cost function 

(11) 

Because disturbance bound CJ is known, and because 
Yk does not depend on Xk ' minimization of cost 

function (11) by optimaL certainty controller X * is 

equivalent to minimizing the simpLified cost function 

(12) 

being < 1 for stability. 

This cost is minimized by the optimaL certainty 
controller vector X* (8) fulfilling 
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IX*T (8)"81 = o. (13) 

Geometrically this is equivalent to 

X*T (8)1.8. 

2.4. Process parameter uncertainty region 

At sample k, the process parameter vector e is 
bounded by the known a-priori ellipsoidal region 

(14) 

where e k is the a-priori ellipsoidaL center, and Pk is 

the symmetric positive definite a-priori ellipsoidaL 
matrix representing the ellipsoidal size and 
orientation. For the example process, 
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2.5. Parameter-robust minimax output controL 

(15) 

The parameter-robust control criterion is to minimize 
the worst-case cost function 

(16) 
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with J S(e,xk) (2) having its maxima over e E Ek 

at the parameter values (Lohnberg and Schukkink, 
1995) 

(17) 

Substitution of these parameter values (17) into 
worst-case cost function (6) yields with (2) 

minimized by the parameter-robust controller 

x ~ (E k ) = arg min J w (E k ' X k ) . (19) 
Xt 

This results in the minimum worst-case control cost 

= J e,k + J P,k ' (20) 

with the center certainty equivalent (CCE) controller 

X ~ (0 k ) fulfilling 

(21) 

often being found as the solution of (19), then 
resulting in a remaining cost from the uncertainty 

3. UNCERTAINrY REGION UPDATE 

3. J. Set of possible a-posteriori ellipsoids 

By process equation 0) with bounds (2), Yk+1 and 

iflk+1 bound the feasible region for e between the 

hyperplanes 

Hk+1 = {~Yk+1 -b $ iflf+le $ Yk+1 +b} 

= {el(Yk+1 -iflf+le r b-2(Yk+l -iflfle )$1} 
(23) 

The intersection of Hk+1 and prior ellipsoid Ek (4) 

(24) 

is contained in an infinite number of potential a­
posteriori ellipsoids. Of these, the ones which cross 
the crossings between Ek and H k+1 are characterized 

by (pogel and Huang, 1982) 

Ek+I(q) = 

1 
(e-Okr pk"l(e-ok) } 

e +q(Yk+1 -iflf+le r b-2{yk+1 -iflf+le )$1+q 

= {el(e- 0 k+1 (q) r Pk"ll (q)(e-o k+1 (q))$ + 

with a-posteriori ellipsoid center and matrix 

(25) 

(26) 

(27) 

(28) 

(29) 

In new ellipsoid equation (25), update factor q 
should be chosen adequately. It is illustrated by 
figure 1 that q = 0 indicates that the old ellipsoid Ek 
is kept, whereas for q = 00 the new ellipsoid 
degenerates to the hyperplanes Hk+I ' 
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Fig. 1. Set of potential new ellipsoids. 

A unique choice of q requires a criterion, for which 
the most relevant candidates are treated in the next 
sections. 

3.2. Minimum-volume q 

Fogel and Huang (1982) suggested to select the value 
of q which minimizes the ellipsoidal volume 

(30) 
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