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Abstract. The parameters of a first-order process with known disturbance bounds are
known to lie in an ellipsoidal region. At each sample, a static output feedback is designed
which minimizes the maximum absolute output over the disturbance and parameter ranges.
Then from the resulting measurements, the ellipsoid is updated according to a specific
criterion. This criterion should be chosen for adequate performance of the resulting self-
tuning regulator. It is shown that a dual criterion minimizing a weighted sum-of ellipsoidal
volume and control performance outperforms these separate criteria.
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1. INTRODUCTION

Many practical processes suffer from parametric
perturbances. Therefore recently much attention has
been given to parameter-robust performance control
(e.g. Malan et al., 1996). For such controllers, the
worst-case  performance increases for lower
parameter uncertainty, which may be obtained by
bound estimation (e.g. Walter and Piet-Lahanier,
1990). If control cannot wait for estimation, bound
estimation and controller redesign should occur at
each sample. This is called self-tuning parameter-
robust performance control (e.g. Lohnberg and Van
de Waal, 1994). It should not be confused with
robust self-tuning control, that is a self-tuning
certainty-equivalent controller which is robust to
structural uncertainty.

Self-tuning parameter-robust control requires fast
estimation of bounds, suitable for fast parameter-
robust control design. For bound estimation,
ellipsoidal bounding is faster than using an exact
polytope. Moreover, it is more suitable for fast
parameter-robust control than an orthotope. Specially
for ellipsoidal parameter bounds, parameter-robust
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minimax output control (Léhnberg and Romer, 1995)
can be designed fast. Therefore this combination is
attractive.

Ellipsoidal bounding requires a criterion to choose
between the infinite number of ellipsoids containing
the real parameter range (e.g. Fogel and Huang,
1982). As such, it looks attractive to choose the
ellipsoid that causes the best control performance
when used for parameter-robust control design
(Lohnberg and Schukkink, 1995). Unfortunately, like
some adaptive certainty-equivalence controllers
(Polderman, 1989), use of this criterion in adaptive
robust control does not yield convergence in case
only the controller parameters are identifiable but the
process parameters are not.

Inspired by dual solutions for adaptive certainty-
equivalence control (e.g. Wittenmark, 1975) and
worst-case duality for polytopes (e.g. Graves and
Veres, 1995), also for this situation a dual solution
was sought which yields good control at the next
sample, also decreasing the parameter uncertainty.
The method is illustrated for a first-order process.
Details have been described by Eisenberg (1995).



2. PROCESS, UNCERTAINTY AND CONTROL
2.1. Process

The method is illustrated for the first-order discrete-
time LTI SISO process

T
Yisl = =@y +buy +ep =@p0+ery, (1)

where y;, u; and e, are samples of output, input and

white disturbance respectively at sample number k,
where

lex| < 8Vk @

with known bound &, and where the regressor and
process parameter vector respectively are

Pi+1 =[}’k “k]r'

0=[-a b]", b#0.

3)
4)

2.2. Regulator and controlled system

For simplicity, the process is regulated by the static
output feedback
U ==Xk Yk 5)

where y, is the controller parameter. Substitution of
control equation (5) into regressor (3) yields

T
Pr+1 = [)’k —Xk)’k] ==XgYi (6)

for short notation introducing the extended control
parameter vector

Xe=[-1 ul]" %)

Substitution of output feedback (7) into process
model (1) yields controlled process equation

Vit = =@k —bY Yk teps1 = Ck Y Tekay

(8)
=—X} 6y +epan
introducing the closed loop pole
cxi=—a—byy =—X6. ©)

A constant controller y; =y, and hence by (10)
¢, =c, only allows identification of the line
a=by—c (10)

and not of the process parameters a and b separately.
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2.3. Certainty minimax output regulation

In case of parameter certainty, that is known process
parameter vector 6, a simple practical regulation
criterion is to minimize the maximum absolute
output value over the disturbance range, which with
closed loop equation (8) can be written as the
certainty cost function

J(6,X;)= max [yis|= IXIE’"M |+6.

(11)
]ek+II56
Because disturbance bound & is known, and because
¥ does not depend on x,, minimization of cost
function (11) by optimal certainty controller x* is
equivalent to minimizing the simplified cost function

75(6.X)=|X"6|=|d (12)

being <1 for stability.

This cost is minimized by the optimal certainty
controller vector X" () fulfilling

X7 (6)-6|=0. (13)
Geometrically this is equivalent to

X'T(0)16.

2.4. Process parameter uncertainty region

At sample k, the process parameter vector 6 is
bounded by the known a-priori ellipsoidal region

Ej ={9\(9—ék)TP;‘(9-ék)s 1},

where ék is the a-priori ellipsoidal center, and Py is
the symmetric positive definite a-priori ellipsoidal

(14)

matrix rtepresenting the ellipsoidal size and
orientation. For the example process,
5 |9 —[P1 P]Z]
Op=| | P= . 15
k [ b ] k [Plz P2 Lok

2.5. Parameter-robust minimax output control

The parameter-robust control criterion is to minimize
the worst-case cost function

JW(EkvXk)=9“é‘? Js(6,X) (16)



with J¢(0,X;) (12) having its maxima over 6 € E,

at the parameter values (Lohnberg and Schukkink,
1995)

P Xy

91‘2 = ék b= i
JxXIpX,

17)

Substitution of these parameter values (17) into
worst-case cost function (16) yields with (12)

Tw(Ee X)) =[XE0, | +yXTReX, . a®)
minimized by the parameter-robust controller
X (E)=argmin Jy (E, . X, ). (19)
X

k

This results in the minimum worst-case control cost

ek =Jw (Ek X (Ey ))
=[X3T (B Bk |+ XiT (B4 )P X (Ey)
(20)

= jé,k +JPJ¢ i

with the center certainty equivalent (CCE) controller
X; (6, ) fulfilling

Ti =|X1T(ék)§k|=0,

often being found as the solution of (19), then
resulting in a remaining cost from the uncertainty

Jek =Jpx = JX;T (ék )’kx;c(ék)-

(21)

(22)

3. UNCERTAINTY REGION UPDATE

3.1. Set of possible a-posteriori ellipsoids

By process equation (1) with bounds (2), y;4; and
¢4 bound the feasible region for 6 between the
hyperplanes

Hiy = {9})’“1 —0<¢f 0=y ‘*‘5}
= {9 ()’k-l-l —¢{+19)T5_2 ()’k+‘.i —¢{19)5 1}-

(23)
The intersection of Hy, and prior ellipsoid E; (14)

Uk1:= Ex NHyyy (24)
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is contained in an infinite number of potential a-
posteriori ellipsoids. Of these, the ones which cross
the crossings between E, and H), are characterized
by (Fogel and Huang, 1982)

Ei ()=

e(e-ék)rpgl(e—ék)

+‘?()’k+1 = ¢{+19)T5_2 ()’Jc+| — P+ 9)3 l+q

~{fo-800) PR E-bra(@)=1].

420 (25)
with a-posteriori ellipsoid center and matrix
Orr1 =6k +qP PR Vesy, R=67%, (26)
2
Vk+1
=P, |[1+g———H |, 27
Pis r[ q R+qu+l] 27)

Grr1 = PharPebrats Viar = Yea1 —Pha16p, (28)
T
P=P; _QM_ (29)
R+qGy

In new ellipsoid equation (25), update factor g
should be chosen adequately. It is illustrated by
figure 1 that g = O indicates that the old ellipsoid E,
is kept, whereas for g= o the new ellipsoid
degenerates to the hyperplanes Hy,,.

6, =b Ex =Ex41(@=0)

=Eg41(q =)

91-'-'—8

Fig. 1. Set of potential new ellipsoids.

A unique choice of g requires a criterion, for which
the most relevant candidates are treated in the next
sections.

3.2. Minimum-volume gq

Fogel and Huang (1982) suggested to select the value
of g which minimizes the ellipsoidal volume

Viri(g)= JIJIPM (@) =7y Ve (9), (30)



which is equivalent to minimizing the ellipsoidal
determinant

Vin(g) = |Pk+1('?)| = del(Pkﬂ(q)) ; (31

This yields the minimum volume q
qy =argmin[P,., (q), (32)
q=0
resulting in minimum ellipsoidal determinant
Vv *
Vi1 =Vient (‘?V ) (33)
with inherently decreasing value

0= Vk":-l Eipk_'_l (01 = Vkv. (34)

3.3. Optimum performance control q

The most logical identification criterion for control
would be to select g such that at the next sample the
worst case control cost (20) would be minimized.
This yields the optimal performance control q

gc =argmin J ¢ i41(q)
g=0

_ (35)
=arg :Onn{l bust (@ Tprn (q)}‘
q

3.4. Duality g

A compromise between identification and control
would be a dual cost similar to the stochastic one by
Wittenmark (1975)

Tpa+1(@ A ks1) =T ca41(a) + A1V () . 36)
where the parameter uncertainty weight Ay, is
designed below to decrease the volume V,. This

yields the duality q

= gp=argminJp 41(q). (37)
O=g=gqy

where g < q; can be shown to guarantee

V1 (9) < Vi (0)= V. (38)

4. ADAPTIVE CONVERGENCE
4.1. Self-tuning regulator convergence problem

Self-tuning coupling of parameter bound estimation
and parameter-robust control should converge to
reasonable control in spite of poor excitation in
closed-loop. The convergence is analyzed and
illustrated for a simple example.

4.2. Example process, uncertainty and CE control

The self-tuning behavior is illustrated for the
arbitrary unstable process with parameter vector

6=[3.5 0.4]", disturbance uniformly distributed
with disturbance amplitude bound 6=0.5, initial
output yo=10, and initial ellipsoid with
6o=[2 2] and Py=6I. This yields the initial
CCE controller

xo'-_h———:l (39)

with initial closed-loop pole
co=—a—byy=3.5-0.4-1=31>1, (40)

yielding an unstable controlled system needing
adaptation.

4.3. Self-tuning minimum-volume

Eisenberg (1995) showed the self-tuning minimum-
volume method of section 3.2 to converge with the
CCE controller if after a finite number of samples the
ellipsoid does not alter any more. This assumption
held in all simulations because new hyperplanes
ceased to intersect the previous ellipsoid.

For the example, figure 2 shows a fast decrease in the
ellipsoidal volume as expected from the minimum-
volume criterion.

82 =}

b o -

91 =—a
Fig. 2. Subsequent minimum-volume ellipsoids.
X = process.



Because robust control performance was not
optimized in this choice of g, figure 3 shows a
relatively large output value at sample 5.

30r
20}
Yk
10}
0
0 2 4 6 8 10
sample k
Fig. 3. Output samples for minimum-volume
criterion.

4.4. Self-tuning optimum performance

Self-tuning optimum performance adaptation using
the optimum performance control g of section 3.3
showed two problems. The first one was that the
performance optimization according to (35) was too
complicated to carry out on-line.

The second problem was the possibility that qE =,
so E, =H,. Then definition (19) of optimal
parameter-robust controller  vector
X3 (E,) yields X} LH,. Because according to (6),
closed-loop regressor ¢, has the direction of X;.
also the new hyperplanes HHIJ.X; and therefore
have the same direction as H. This is illustrated in
figure 4 together with the solution described below.
So qE = remains, keeping worst-case cost (16)
Iw(E, Xy )=

extended

This situation always occurred when replacing new
controller X} 4;(g) by old controller X;, which did
converge off-line (Lohnberg and Schukkink, 1995).

Both problems can be solved by taking the CCE
controller X rcg ; minimizing the next uncertainty

(22). 4 that
XccexLOk+1s XccE x is not perpendicular to Hyy,

cost

Figure shows because

and hence g# o unless H;,, is symmetric relative
to 6 = 0.

Because of the CCE controller,
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.51
Fig. 4. Optimal and CCE controller.

e =ar min.;lr2
qc gzo P.k+1(€r')
=arg;r{;inXLL(q)Pm(q)XIH(q)

=0= Jc.k+1(qz:)5-’c,k»‘?;:<°°- Xj <, (41)

which still may stop adapting at an unstable system.

4.5. Self-tuning dual
The constant ellipsoid obtained in section 4.4 can be
prevented by not only penalizing the next control

cost but also the next volume in dual cost (36).

Adaptation is assured if
JD,I:+1(?‘:’s}'k-r-l){JD,kH(oa)'kH]' 42)

According to dual cost definition (36) with
Vi41(0) =V, condition (42) is equivalent to

Jea+1(0)=Jcpnt (q':' )

Vi _Vk+1(q;’)

k+1 > = A mink+1 » (43)

requiring

Ve —Vk+l(q;)>s, £>0, (44)
which always occurred. Otherwise one should take
gp =0. Inequality (43) can be assured by taking

A1 = Amink+1 +@, a@>0. (45)

If gy =0, then take Ep . = E;, and if A0 4 <0,
choose Appin 41 = 0. The resulting 4, appeared to
remain bounded.

For the example and a=0.01, figure 5 shows a
slower decrease in the ellipsoidal volume relative to
minimum-volume ellipsoids of figure 2.



92 =p

A O o o

Fig. 5. Subsequent dual ellipsoids;
X = process.

Because robust control performance is part of the
dual criterion, figure 6 shows lower output values
than the minimum-volume output of figure 3.

307
20¢
Yk
10}
o @~
0 2 4 6 8 10
sample k

Fig. 6. Output samples for dual criterion.

5 CONCLUSIONS

This paper showed sub-optimal solutions to the
problem that optimal self-tuning control minimizing
the control cost at the next sampling instant would be
complicated and yield a constant controller causing
degenerating hyperplanes by non-identifiability.

It was shown that on the one hand minimizing the
ellipsoidal volume decreases the uncertainty but
yields poor control, and that on the other hand
minimizing the certainty-equivalent control cost is
simple but yields poor identification.

In contrast, the compromise dual cost yields adequate
control and identification.

Although it would be elegant to prove that the
parameter uncertainty weight is bounded, no counter-
examples were found in all of the many simulation
examples. :

Even better convergence is expected for identifiable
process parameters by using the first-order regulator
or preferably controller which also allows
disturbance rejection. It remains to be investigated
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what are the implications for higher-order and/or
non-minimum phase processes.
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