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Abstract—In this paper, a novel paradigm of adapting wireless
communications based on the factory schedules in an indoor
factory floor is explored. Since the fourth industrial revolution
(4IR) strengthens the industries with a wide range of advanced
applications such as digital twin and predictive maintenance,
a large number of devices and systems are deployed densely
near machines in a factory floor. Such new devices and systems,
along with the existing systems, are networked by the Industrial
Internet of Things (IIoT) wirelessly for their functioning. Devices
closer to machines have a greater probability of interference from
the operation of the machine. Since the operation of machines
in a factory are often scheduled, their impact on wireless com-
munication can be learnt and predicted. The first step towards
it is, to estimate the effect of various processes in a factory
schedule on wireless communication. This research empirically
investigates the extent and nature of the impact of factory
schedules and presents its findings. The obtained results indicate
that the machines influence the packet reception rate (16% on an
average), positively for certain nodes while negatively for others.
Furthermore, based on these findings, this paper categorizes
the factory schedules into two broad categories (‘Macro’ and
‘Micro’ processes) and discusses the challenges in developing a
mechanism to detect and classify them. The interference detection
and identification can have applications such as scheduling delay-
tolerant traffic and adjusting power levels while transmitting a
packet apart from increasing reliability of IToT.

Index Terms—Industrial IoT, Networking, Factories of the
Future, Interference Aware Transmission, Fourth Industrial Rev-
olution

I. INTRODUCTION

Manufacturing industries are at the dawn of the fourth
industrial revolution (4IR). Following the previous three rev-
olutions, 4IR will increase the level of automation by adding
a cognitive power to augment decision making [9]; result-
ing in the development of a vision called Factories of the
Future (FotF) into reality. The major technological enabler
for FotF is Internet of Things (IoT) attributed as Industrial
IoT (IIoT). IloT facilitates FotF with new applications such
as Digital Twin (DT) and Predictive Maintenance (PdM). A
fully functional IIoT system can have thousands of devices
(sensors, actuators, computational devices, etc.) and some of
them require mobility support. Therefore the wireless network
for IIoT should be adaptive to support scalability and mobility
while being reliable at the same time [10], [11].
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Achieving a reliable wireless network is intricate owing to
the harsh wireless conditions in an industry. Major reasons for
this include interference from typical operation of machines,
multiple radio access technologies operating in the same
frequency band and metallic infrastructures [12]. Since most
of the currently available solutions for industrial wireless con-
nectivity such as WirelessHART, ISA100.11a, WISA, WIA-
PA, iWLAN, Bluetooth Low Energy (BLE) and IEEE 802.11-
based networks operate on the same frequency band - 2.4GHz,
each of them use diverse co-existence techniques to weaken
the effect of interference from co-located similar/dissimilar
networks [13]. These techniques do not guarantee quality
of service [8]. Therefore, the international standard, IEC
62657(2) [14] recommends usage of Interference Aware Trans-
mission (IAT) for industrial wireless networks.

The initial step towards IAT is to detect the sources of inter-
ference and identify them (referred to as IDI) [8]. The focus
of IDI based schemes in available literature is on identifying
interference from other wireless technologies operating in the
same frequency band (usually the 2.4GHz ISM band) [2], [6]
and not on the interference caused by machines operating in
the factory floor. However, 4IR applications like DT and PdM
require extensive multi-modal sensing as well as actuation,
predominantly within the vicinity of machines present on the
factory floor. Therefore, the impact of machine operation on
wireless communication of sensors deployed for DT and PdAM
become more prominent and important to mitigate.

Researchers have found that the interference characteristics
largely depend on the topology of the factory floor [12];
in particular the presence and operation of heavy rotating
machines [15]-[17]. Since the processes in a factory floor are
scheduled to happen in a particular sequence and the sequence
repeats in fixed intervals, the schedules can be learnt and
later used to adapt communications. Therefore, an intelligent
adaptation strategy for achieving reliable networking in FotF
could be, to detect and identify the interference caused by
schedules (operation of machines) and adapt the communi-
cations accordingly. To the best of our knowledge, there is
not any literature available that focuses on developing an IDI
mechanism which classifies the machine operation. This paper
aims to initiate this new research direction by performing the
initial steps required in building such a system. The major
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TABLE I
A COMPARISON OF PROMINENT IDI WORKS IN IOT AND IIOT CONTEXTS.

Reference Data Used Methodology Industrial Interference Source Classified
[1], [2] Bit error pattern Threshold-based algorithm v IEEE 802.11b/g, Multi-Path Fading

and Attenuation

[3] Spectral features of received signal Spectral-features-based algorithm X IEEE 802.11b and Microwave
Oven

[4] Spectral features of received signal (dual-radio) | Spectral-features-based algorithm X Multiple 802.11 networks

[5] Temporal features of received signal Temporal-features-based algorithm X IEEE 802.11 or Bluetooth or Mi-
crowave Oven

[6] Spectral features of received signal Supervised Machine Learning v IEEE 802.11 and Microwave Oven

[7] Temporal features of received signal Unsupervised Machine Learning X Multiple 802.11, Bluetooth and Mi-
crowave Oven

[8] Spectral features of received signal Supervised Machine Learning X IEEE  802.11b/g/n,  802.15.4,
802.15.1, and BLE

contributions of the paper are:

1) Experimentally estimating the effects of factory schedule
(focusing on machine operation) on devices communi-
cating within a factory-floor-like environment;

2) Identifying and categorizing the challenges involved in
developing a mechanism to detect and classify schedules
in a factory-like environment; and

3) Proposing approaches to overcome identified challenges
in developing an IDI mechanism.

Based on our findings presented in this paper, we plan to
develop an IDI algorithm as a future work.

The rest of the article is organized as follows, Section II
presents a brief overview of related IDI works available in lit-
erature. The experiment set-up is elaborated in Section III. The
findings of the experiment (influence of machine operation)
are presented along with their insights in Section IV. Based
on the findings, in Section V, the challenges in developing an
IDI system that classifies machine operation state is presented
along with possible approaches to overcome the identified
challenges. Lastly, Section VI presents the conclusions of the
research performed along with potential future works.

II. RELATED WORKS

As mentioned in the previous section, IDI mechanisms
empower devices operating in unlicensed frequency band to
identify/classify sources of interference for better co-existence.
The available literature on IDI can be divided into two broad
categories based on the data used for IDI. They are: 1) Bit
Error Pattern (BEP) based [1], [2], [18]; and 2) Received
Signal Features based [3]-[8].

Barac et al. [1] and Sisinni et al. [2] proposed BEP based
hard-coded-threshold algorithms to identify the source of
interference as either IEEE 802.11b/g networks or multi-path
fading and attenuation with varying accuracy. Since Pereira et
al. [16] and Nabetani et al. [15] observed machines affecting
the features of received signal during their experiments to
characterize indoor industrial environment, it is plausible to
use features from received signals to detect the interference
caused by presence and/or operation of machine.

Using the features of the received signal to perform IDI
has been widely researched in the context of IoT and not

so much in that of IIoT. Although currently there are not
any IDI mechanisms detecting the interference caused by
machines, it is interesting to briefly discuss about existing
approaches in literature. Chowdhury et al. measured spectral
characteristics of IEEE 802.11 networks and an operational
microwave oven to obtain a reference spectrum shape [3].
Later the reference shape was used to classify interference
during network operation. Zacharias et al. proposed a different
approach towards IDI based on the temporal variations in
received signal. Using temporal features over spectral features
removes the necessity to demodulate received signal for IDI
processing [5]. However, the drawback of Chowdhury et al.’s
and Zacharias et al.’s approach is that the approach does
not identify the presence of more than one co-located source
of interference [3], [5]. Ansari et al. partially overcame this
disadvantage by proposing a spectral-features-based algorithm
which was capable of identifying multiple co-located 802.11
networks [4].

Iyer at al. proposed an unsupervised machine learning
(ML) approach titled ‘SpeckSense’ to tackle the problem of
identifying multiple sources of interference operating simul-
taneously [7]. SpeckSense’s interference detection component
clustered RSSI samples. These clusters were then passed on
to the interference identification component which observed
periodicity in order to classify the presence of multiple sources
of interference. SpeckSense was shown to detect and classify
multiple IEEE 802.11, Bluetooth networks and operation of
microwave oven.

Recently, Grimaldi et al. utilized a combination of spec-
tral characteristics and RSSI envelope to detect presence of
previously undetected/unclassified wireless networks such as
IEEE 802.15.1 [8]. This work was performed and evaluated
in an IoT environment. In another work by Grimaldi et al.,
they had proposed an ML based IDI for industrial applications
[6]. Interestingly, that is one of the very few works available
for IDI in an industrial setting. The authors successfully
identified presence of IEEE 802.11 networks in industrial
environment. In addition, they also identified the presence of
a microwave oven although it is not a common situation to
have a microwave oven in a factory floor.

Table I compares the prominent related works based on
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the data used to formulate their methodology. The Table
I also presents the sources detected and identified by IDI
mechanisms in related works. Furthermore, it also mentions
if they were designed and evaluated in an industrial setting.

III. EXPERIMENTAL SETUP AND DATA ACQUISITION

The experiment was performed in a metals workshop in the
University of Twente, The Netherlands. The workshop was
accessible to students and researchers to perform experiments
during working hours on working days. During non-working
hours (and days), the operators are restricted from accessing
the workshop. The workshop had heavy machines which,
during operation, have high-speed rotating components. The
layout of the workshop is presented in Figure 1. The top part of
the figure contains box plots of RSSI for each node during the
operation of various machines. This plot is presented alongside
the layout for readers’ ease but is explained in Section IV.
The workshop had nine units of metallic lathe machine, each
with dimensions of 1.5m x 0.5m. They are used in shaping
metallic work-piece. Machines can only be operated from a
fixed position. These positions are illustrated with images of
operators adjacent to the machines in Figure 1. The environ-
ment also had a wooden table upon which the transmitter node
(labelled as ‘T’ in Figure 1) was mounted. Let M represent
the set of machines and m; represent an individual machine;
then M = {m;|i € {0,1,2,3,4,5,6,7,8}. Machines mao, my
and my are separated from machines ms, ms and mg by a
distance of 1.25 meters. The workshop is accessed through a
door located behind machine my. It is important to note that
not all machines were operational throughout the experiment
period. The operators (students or researchers) work with a
machine of their preference. However, during the experiment
period, operators were encouraged to use one of mg, M1, Mma,
ms, My and ms.

The transmitter node was configured to operate in injec-
tion mode of 802.11n protocol at 5GHz frequency band.
In the injection mode, the transmitter broadcasts packets at
the specified transmission rate, packet size and channel. In
principle, all receivers listening on that channel shall receive
the broadcasted packets. The injection mode was used in
order to observe the effects of machine operations on different
receivers simultaneously. No other external influences such as
WiFi operating in SGHz frequency band were found in the
vicinity of the workshop.

In order to observe the effect of machine operation, three
receivers were strategically placed. The first receiver node (N1
in Figure 1) was placed in such a way that machine was the
only thing between the transmitter and receiver nodes (the
pathway between Machine m; and the wooden table was
restricted for usage). The second receiver node (N2 in Figure
1) was placed just across the transmitter node thereby acting
as a line-of-sight node. In principle, N2 will be able to pick-up
the effects of people crossing the pathway. The third receiver
node (N3 in Figure 1) was placed behind a machine which
was across the pathway. In principle, results from this node
would reflect the effects of a pathway along with operation of

rssi

Fig. 1. Top: Box plot of normalized RSSI for each node when different
machines were operational. Botfom: Experiment setup in a metal workshop

machine. Approximately, N1 and N3 were 2 and 2.75 meters
away from the transmitter, while N2 was just 0.75 meter away
from the transmitter. The node orientation and height were
constant throughout the period of experiment. All the receiver
nodes were placed very close to the machines because 4IR
applications such as DT and PdM require sensing on the
surface of operating machines [19].

The experiments were carried out for six continuous days.
Let D represent the set of days and d; represent an individual
day; then D = {d;|i € {1,2,3,4,5,6}. Among the six
days of experiment, four were working days represented as
Dy = {d;|i € {1,4,5,6}) and two were non-working days
represented as Dj, = {d;|i € {2,3}). On d; and ds the
measurements were only conducted half day (second half of
dy and first half of dg).

A machine can be in one of the following states: ‘Off’,
‘Idle’ or ‘Running’ represented as S = {s;|i € {0,1,2}}
respectively. During the ‘Off” state (sg), the machine is com-
pletely switched off. During this state there may or may not
be operators present adjacent to the machine. In the ‘Idle’
state (s1), the machine is in stand-by i.e., the exhaust fan is
operational while in the ‘Running’ state (s2), the head spindle
- principle rotating component, is operational. Operators are
allowed to leave the machine in ‘Idle’ state (s{) but not in
‘Running’ state (s3). During the experiment, the state of the
machine along with the presence of operator was noted. The
raw data is made available in [20].

IV. EXPLORATORY DATA ANALYSIS AND RESULTS

In order to single out the effects of machine operation in
a factory-floor like environment, the collected data was split
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different classes different classes

into three classes based on the hours of operation.

C1 - ‘Operation’: In general, when a machine operates in
S1 Or sg, an activity is said to occur and data collected
during those hours constitute class Cp, Investigating
data in C', provides insights into the effect of machine
operation on packet reception.

Cy - ‘nonOperationWork’: This class constitutes the data
collected during the working hours of the workshop
when none of the machines were in operation (sg).
Data in C5 aid in reasoning the differences caused by
changes in the environment around the experimental area
(working vs non-working day).

Cs - ‘nonWorking’: This class constitutes the data collected
during non-working hours of the workshop. Investigat-
ing data in C'3 provides insights into environment such
as the presence (not operation) of machines. Therefore
('3 serves as the baseline.

The packet reception rate (PRR) per receiver node per
class is investigated and the results are presented in Figure 2.
Regardless of the class, line of sight node N2 receives the most
number of packets. The difference in PRR between classes
Csy and C3 is marginal, suggesting that the PRR remains
unaffected by external influences caused during working hours.
In class Cy, although all nodes are placed within the same
environment and are subjected to the same factors (machine
operation), the PRR of nodes vary significantly from other
classes namely C5 and Cj. These variations are due to the
operation of machines but the variations are not homogeneous.
Some nodes are positively influenced while others are nega-
tively influenced by operation of machines. Nodes N1 and N2
are negatively influenced by the operation of machines. The
extent of the influence varies between them. Node N1’s PRR
reduces by 27.5% while that of node N2 only drops by 6.6%.
The reason behind this phenomena is that, N2 is the closest
to the transmitter as well as in line of sight of the transmitter.
Contrary to nodes N1 and N2, node N3 is positively influenced
by operation of machines; its PRR increases by about 15% in
Class C}.

The other features (apart from PRR) analyzed are mean
and variance of normalized (‘standard score’) RSSI in each
node. These features were chosen in our research because the
references [15], [16] observed disturbances in RSSI during the
operation of machines. These disturbances could potentially

in different classes
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Fig. 5. Packet Reception Ratio of node N3 under different scenarios

have characteristic information about the machine operation,
hence they were examined in this research. A comparison of
the three examined parameters is presented in Figures 2, 3
and 4. The mean of RSSI has the same distribution for classes
Cs and Cj. So, the external influences during working hours
do not have a significant effect on the RSSI on an average
however, the effect is reflected in variance. The high variance
in RSSI of node N1 during ‘nonWorking’ hours (C3) can
be attributed to its placement close to the workshop door.
Since N3 was the node farthest away from the transmitter, the
machine operation resulted in notable fluctuations in RSSI.
This effect can also be noted in box plot of Figure 1 wherein
the inter-quartile distance of N3 is larger when machines mg
or my operate than when other machines operate.

Upon further investigation of N3, it was found that different
machines affect N3’s PRR differently. When machine ms is
operating in state so, the PRR of node N3 is 18% greater than
the overall PRR experienced by N3. However, when machine
mg 1s operating in state so, the PRR of node N3 is 11% lesser
than the overall PRR experienced by N3. Hence, it is evident
that operation of machines is not always detrimental to packet
reception. When both machines my and mjy were in operation
the PRR of node N3 is closer neither as high as when ms was
in operation or as low as when my was in operation. These
observations are presented in Figure 5 along with the overall
average PRR observed in node N3 in class Cf.

From our experiments, it is evident that the operation of
machines have a notable effect, either positive or negative, on
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packet reception rate. This phenomena becomes even more
important to study in the context of 4IR since it involves
placing devices requiring wireless connectivity on the machine
within a factory floor. Variations in RSSI are marginal and
hence are not conclusive enough. Further investigations into
RSSI based IDI is required.

V. CHALLENGES IN IDI AND ITS INFERENCES

Factories, to a large extent, have fixed schedule of oper-
ation. Processes in the factory schedule repeat over varying
timescales. Some processes in the factory schedule repeat over
hours (quality check of product produced), while others repeat
over milliseconds (rotating component of a machine). This re-
sults in diverse challenges in developing an IDI mechanism as
well as presents diverse applications for utilizing the identified
factory schedule. Hence, we define two classes of processes
in a factory schedule. They are:

1) Macro Processes; and
2) Micro Processes.

A. Macro Processes

Processes of a factory such as change in operation shifts,
change in properties of product produced, etc. have longer
timescale of repetition, usually in the order of hours and
days. Such processes in a factory schedule constitute ‘Macro
processes’. In the experiment conducted, the classes C7, Cs
and C'3 are macro processes.

Challenges & Inference: In the experiment conducted, the
macro processes (C7, Cy and C'3) influence the PRR and RSSI
of all receiver nodes. As mentioned earlier, the nature and
extent of the influence of macro process on PRR varies among
different receivers. Adding to that, the PRR and RSSI are not
directly correlated in each node during the macro processes.
This observation can be further elaborated by comparing the
relationship between mean RSSI (Figure 3) and PRR values
(Figure 2) of nodes N1 and N3. For N1, the mean of RSSI
is highest in ‘Operation’ class C; but the PRR of NI is
lowest in the same class Cp. Thus, mean RSSI and PRR
have a negative correlation between them. Whereas, for N3,
the mean RSSI and PRR are highest in the same class C
suggesting a positive correlation. This observation contradicts
with observation for N1. Therefore, the two major challenges
in developing IDI algorithm for macro processes are a) effect
of macro process on nodes are not homogeneous; and b) the
relationship between selected features (PRR and RSSI) could
be dissimilar.

Possible Approach: With inputs from different nodes, an IDI
algorithm running on a macro base station can compute the
temporal characteristics of macro schedules such as length and
repetition pattern of a process in macro schedule and inform
the same to the nodes. The nodes can locally compute the
nature and extent of a macro schedule’s influence and adapt
accordingly.

Applications: An IDI algorithm which predicts macro pro-
cesses can be used for dynamic network planning such as 1)
altering the position of relay nodes, 2) altering the transmit

power depending on the expected channel conditions during a
Macro process.

B. Micro Processes

Local processes of a factory such as machines with rotating
components, influence devices communicating in their vicin-
ity. Such processes in a factory schedule constitute ‘Micro
processes’ for a particular communicating device. In the exper-
iment conducted, operation states (s, s; and s) of machine
ms are considered micro process for node N3 but not for node
N1 because operation states of ms influences neither PRR nor
RSSI of N1.

Challenges & Inference: The effect of different machines on
the same node being non-homogeneous and effect of one
machine on different nodes also being non-homogeneous is
a challenge. Adding to that, nodes experience a combined
effect when multiple machines operate simultaneously. This
effect is explained in Section IV and illustrated in Figure 5.
The consequence of this effect is the explosion in the number
of states to be detected and classified by the IDI algorithm.
The data available for each micro process analysis was limited
because of combined influence of machine operation. Thereby
limiting the observations for micro processes.

Possible Approach: Because of the explosion in number of
states to be detected, it may be advantageous if an IDI
algorithm for micro processes focuses on detecting levels of
PRR instead of identifying the source of interference. It would
be an interesting future research to study the trade-off between
detecting and identifying micro processes.

Applications: An IDI algorithm which predicts micro pro-
cesses (possibly in milliseconds time scale) can be used
for applications such as scheduling of resource blocks for
communication.

C. Macro vs Micro Processes

Since the macro processes are slow-changing processes, an
IDI algorithm which can predict average channel response
will be sufficient. Therefore, resource-constraint nodes may
run only an IDI algorithm which detects and analyzes macro
process. Furthermore, the schedule of the macro processes can
be fed into network by the system administrator and the IDI
algorithm can only merely learn the channel response observed
during the macro processes. On the other hand, precisely
detecting and identifying micro processes are difficult but
if possible, it will result in a fine-grained communication
optimization.

VI. CONCLUSIONS AND FUTURE WORKS

This research experimentally evaluates and provides evi-
dence that operation of machines in a factory-like environment
has significant influence on the reliability of IIoT network. On
an average, a node’s PRR varies by 16%. Certain machines
have a positive impact on the PRR of a node ie., a node
receives more packet when a particular machine operates,
while others have negative or no impact. When multiple
machines operate, nodes experience a combined effect. Based
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on the observations of the experiment, a break down of the
processes in factory schedule into macro and micro processes
depending upon the time-scale of a process is defined. The
challenges in designing an IDI algorithm for macro and micro
processes are elaborated alongside possible approaches to
tackle them. Apart from the discussion in Section V, it is
advised to set-up a well planned and controlled experiment
and to perform extensive analysis into communication and
computational overhead. Developing controlled environment
can be justified by the fact that the machines and floor plan of a
factory floor rarely changes. Once the network/IDI mechanism
learns the effect of different machines, the knowledge obtained
can be utilized for reliable communication. This research is a
first step towards a more profound development of adaptive
networks to increase the reliability of an IIoT system.
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