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14.1 Introduction

Bridges are elements of infrastructure linking two or more distant sites and providing
access over obstacles. They provide the means for our society to operate efficiently and
at all. Their health (i.e., fitness for purpose, safety, conditions), soundness, and
functionality are prioritized. Bridges are exposed to continuously applied loads such
as traffic, wind, and temperature, which accelerate their and their component wear
and tear. General and principal bridge investigations are scheduled every 2 and
6 years, respectively, to assess bridge conditions. Inspections might be subjective
and are infrequent, thus rising a need for implementation of robust and frequent struc-
tural health monitoring (SHM). The purpose of SHM is to assess the performance of
the bridge and support asset owner’s decisions for required interventions.

Developments of sensing technologies and advances in signal processing
algorithms enable asset owners and engineers to obtain useful information about
bridge performance using appropriate monitoring systems. Sensor systems are selected
depending on the size of a bridge, measured structural response, measurement of
collection frequency, and cost, which has become a very important factor. Sensing
systems providing high accuracy such as fiber optic sensors are expensive. Wireless
sensor networks (WSNs) consisting of wireless sensor nodes (usually measuring
accelerations with microelectromechanical components) could be a good solution.
WSNs are said to be low cost, which is around $200 per sensor node (Chae et al.,
2012). However, they have the following shortcomings: (1) overall costs of a
WSN are still high, (2) short life span of a battery (Noel et al., 2017), and (3) access
requirements, which is a common challenge to contact sensors (i.e., devices that need
to be physically attached to the structure or its component). The need for a
cost-efficient, available, and easily operable bridge monitoring means still exists.

Modern smartphones are mini computers equipped with sensors such as accelero-
meters, global positioning system (GPS), gyroscopes, and cameras. They offer high
processing power and smartphone applications (apps) with a user-friendly interface.
Their availability, software, and hardware scope opportunities for the engineering
community to use them as low-cost sensors and/or sensor networks for bridge
monitoring. Smartphones are considered as next-generation smart sensors, which are
affordable, easy to install, capable of collecting and storing large datasets, and offering
real-time monitoring (Sony et al., 2019). Besides, when overcoming privacy and data
sharing/protection challenges, smartphones are ideal for citizen-centered monitoring of
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civil infrastructure (Alavi and Buttlar, 2019). Smartphone availability, in comparison
with conventional sensor systems, and aforementioned features make them an
attractive chose in bridge monitoring applications.

The suitability of smartphone technology for the collection of accurate engineering
measurements is a hot research topic. A decade ago, Mohan et al. (2008) proposed
monitoring road and traffic conditions using smartphones. Since then (predominantly
starting from 2015), many scholars piloted applications of smartphones for measuring
response of laboratory test beds and full-scale bridges. In addition to hardware
enhancements, which are driven by manufacturers, smartphone app developers and
researchers have taken opportunity to develop free and proprietary apps that utilize
smartphone-integrated sensors for acquisition of structure’s response. This chapter
reviews current methods and applications of smartphones for bridge monitoring,
provides a case study, and discusses future trends and challenges.

This chapter is organized as follows. The next section introduces health monitoring
of bridges, which includes bridge management and collection and analysis of
bridge response for condition assessment. It is followed by a section on bridge health
monitoring using smartphones. Although the main emphasis of the section is on
smartphone applications for measuring bridge response, examples on laboratory test
beds, which are specifically designed to mimic bridges, are also presented. A case
study section demonstrates applications of smartphones, specifically their cameras,
for ultrahigh-resolution image stream for measuring deformations of a pedestrian
footbridge. The concluding section provides an insight into current challenges and
future perspectives of smartphone applications in bridge health monitoring.

14.2 Characterizing bridge response

Efficient and effective bridge management (e.g., decision-making process providing
save operational conditions) strategies overview the entire bridge system with traffic,
applied loads and surrounding environment, and plan for condition assessments and
interventions to reduce life cycle costs (Catbas and Aktan, 2002). A bridge management
paradigm, where measurements of bridge response are collected using smartphones, is
envisioned in Fig. 14.1. A bridge is a structural system that (1) is exposed to applied
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Figure 14.1 A bridge management paradigm involving smartphones-driven bridge monitoring.
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loads such as traffic, wind, and temperature, (2) has a defined geometry and boundary
conditions, and (3) is safe to use and fit for purpose. To characterize its performance,
detecting and locating rust, erosion, cracks, and pot holes is not enough. Instead,
knowledge of load-response mechanism is required.

A sensing system measures bridge response such as deflections induced by
vehicular loads. Response measurements, which could be displacement time histories
or signals, are firstly preprocessed and only then interpreted for the purpose of
structural system (i.e., bridge) identification. Engineers scrutinize the analyzed data
and provide their judgment on bridge conditions. Information on bridge performance
is communicated to asset owners who can also be decision-makers. They plan for
necessary interventions if any deviations from previously observed bridge behavior
are detected.

To arrive to a stage when bridge response can be characterized, engineers have to
(1) understand bridge response, (2) measure the response using a suitable sensing
system, and (3) perform data analysis. These three topics are discussed in the following
subsections.

14.2.1 Bridge response

Bridge response can be static, quasi-static, and dynamic. Static response, in its simple
form, is easy to visualize and understand. It results from a load applied to the structure,
which deforms correspondingly. Such load can be applied slowly at desired locations
or can be induced by traffic (i.e., moving vehicles). Bridge response to moving loads
is more complex than that to static loads at strategic locations. Typically measured
deformations are displacements (lateral, transverse, and longitudinal), strains, and tilts.
An important factor influencing bridge deformations to static loads is temperature
(Nguyen et al., 2016). For example, when ambient temperature increases, the bridge
(such as shown in Fig. 14.1) lengthens, thus slightly changing its geometry and
response to static loads.

Quasi-static bridge response is generated by slowly applied loads such as variations
in ambient temperature. This response might seem insignificant in short term;
however, in long term, it governs deformations of bridges. For example, Catbas
et al. (2008) observed that maximum peak-to-peak strains of a long span truss bridge
induced by traffic are approximately 10 times smaller than strains resulting from yearly
temperature variations. Temperature loads create the same deformations as static loads.
However, to understand phenomena of temperature-induced response, distributed
temperature needs to be measured.

Bridge dynamic response is very complex. It includes bridge damping and natural
frequencies with their associated mode shapes. Capturing dynamic (or vibration)
properties may require more sophisticated sensing system than for capturing static
response. Bridge dynamics are obtained from accelerations and/or displacements of
structural nodes, from which the majority of natural frequencies can be measured
and fundamental mode shapes can be constructed. Similarly to static response,
temperature effect has to be considered for a reliable characterization of bridge
dynamic response (Xia et al., 2012).
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14.2.2 Sensing systems

Accurate and reliable response measurements are of utmost importance for meaningful
data interpretation and bridge response characterization. Fig. 14.1 envisions smart-
phones, instead of a conventional sensor system typically consisting of contact
sensors, for measurement collection. Sensors and their configuration (such as location
and measurement frequency) are chosen based on monitoring requirements, type of
response, and budget.

An accelerometer is a device measuring accelerations (i.e., dissipated forces) of a
bridge under excitations. Multiple accelerometers form a WSN, which can provide
much information on bridge dynamic properties. Global navigation satellite systems
(GNSS) and robotic total stations are frequently employed for short- and long-term
displacement monitoring. A long-term GPS monitoring system on the Humber Bridge
has provided engineers with useful data on the behavior of large-span suspension
bridges (Brownjohn et al., 2010). Fiber optic sensors are a very good option to collect
strains, which can be converted to displacements and tilts, at high and low frequencies.
They have been used for more than two decades in bridge monitoring (Casas and Cruz,
2003). Their accuracy, reliability, and robustness, especially in long-term monitoring,
are outstanding, so is the high cost of a fiber optic system.

Applications of computer vision have beenwidely considered and employed for short-
term bridge monitoring (Feng and Feng, 2018). The majority of affordable cameras offer
recording ultrahigh or 4k resolution (i.e., 3840 � 2160 pixels) videos at 30 frames per
second (fps). With the aid of appropriate image processing algorithms, small changes
in structural response, which is captured at high rates and from far, can be computed.

Smartphones have integrated accelerometers, gyroscopes, magnetometers, GPS,
and cameras, which could be deployed to replace aforementioned sensors/sensing
systems.

14.2.3 Data analysis

Response measurements are meaningless, unless they are correctly interpreted. Much
research has been devoted to derive approaches, techniques, strategies, and methodol-
ogies for data analysis. The main focus is to characterize the performance of the
structure and, in a way, “make sense” of the data. The first step is measurement
preprocessing, in which

(i) outliers are removed or replaced with statistical values derived from neighboring measure-
ment points;

(ii) noisy data are smoothed with moving average or low-pass filters;
(iii) high-frequency data sets are downsampled (if needed) to a frequency required for fast and,

at the same time, accurate data interpretation.

Dynamic analysis focuses on structure’s frequencies and corresponding mode
shapes. Frequently numerical or finite element models are developed. These are
calibrated to mimic response of full-scale bridges for system identification, and
damage and anomaly event detections.
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Static response is very useful for short-term measurement interpretation. For
example, vertical displacement and strain measurements of bridges at events of train
or truck passages can provide information on axel loads. In some countries, overweight
vehicles expose bridges to loads that can even result in its collapse (Yu et al., 2013).
It has been a challenge for the bridge monitoring community to develop systems
detecting extreme loads and identifying vehicle owners.

Quasi-static measurements form time histories or signals requiring sophisticated
preprocessing approaches, which involve either removal or characterization of traffic
and thermal loads. Many methodologies are proposed to analyze long-term monitoring
data. Some methodologies are output only (i.e., response measurements alone are
considered) such as cointegration (Cross et al., 2011) and moving principal component
analysis (Posenato et al., 2010); others, in contrary, focus on temperature-based
strategies, which seek solutions for characterizing thermal response (Kromanis and
Kripakaran, 2014; Yarnold and Moon, 2015).

Less complicated data processing can be accommodated by smartphones; however,
for more complicated and computationally expensive data analyses, cloud-based
computing could suffice.

14.3 Bridge monitoring with smartphones

When considering bridge monitoring with smartphones, they can be considered as

• contact sensors when they are attached to a bridge or bridge component,
• noncontact sensors when they face a bridge or bridge component and record videos or

capture images,
• part of a smartphone network or crowdsourcing (e.g., bridge data are obtained from citizen

smartphones), in which bridge dynamic parameters are collected.

A flowchart of smartphone applications in bridge monitoring is shown in Fig. 14.2.

Smartphone applications for
health monitoring of bridges

Contact
(Smartphone is attacted to a bridge
or its component with adhesive)
-  Bridge dynamic properties
-  Cable forces

Non-contact
(Smartphone is set to observe an
element of the bridge)
-  Bridge dynamic response 
-  Displacements of an element

Crowdsourcing
(Citizens participate in bridge
monitoring sharing their data)
-  Bridge dynamic response

Figure 14.2 Smartphone applications in bridge health monitoring.
These three main smartphone applications (smartphones as contact and noncontact sensors and
mobile sensor networks) for bridge health monitoring are further reviewed, discussed, and
presented in the following sections.
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14.3.1 Contact sensors

Smartphone-integrated accelerometer can be set to measure structural movements,
specifically dynamic response. High accuracies are achieved when phones are attached
(by adhesive or double-sided tape) to an element of the bridge. This approach has been
researched extensively for measuring accelerations. Morgenthal and H€opfner (2012),
and H€opfner et al. (2013) piloted applications for measuring structural displacements
with accelerometers and GPS. In motion monitoring tests, smartphones were attached
to a shaking rig. The maximum reliable oscillation frequency was determined to be
around 6 Hz. Although the actual acceleration range of smartphones was found to
be �2g resulting in slightly noisy spectral analysis, the physical frequency of the
shaking table was correctly computed.

With enhancements in smartphone accelerometers, the number of studies on their
applications has significantly increased since 2015. Yu et al. (2015) proposed a
Mobile-SHM method that uses gyroscope and accelerometer to obtain dynamic
response of structural elements. A pendulum test, in which an iPhone and an inclino-
meter were put on a swing, demonstrated that the iPhone’s gyroscope measures
accurately dynamic angles (inclinations). The natural frequency of the swing was accu-
rately calculated from smartphone inclination data. The drawback is that the swing
frequency was only 0.515 Hz, and higher frequency swing tests were not performed.

Short-term bridge monitoring (e.g., during the construction phase) is important for
quality assurance as demonstrated by Han et al. (2016). They proposed to employ
smartphones for girder hoisting monitoring. Hoisting is predominantly referred to
the positioning or placement of a deck/girder in suspension bridges. High-strength
slings connect a girder to cranes, which control its orientation and position along
the length of the main cable. The monitoring is required to ensure the girder leveled
correctly and prevent a drop of one of its ends. In this study, two iPhones
were used. One phone was placed on the girder to measure its rotation angle and
accelerations. The other controlled the monitoring process by communicating to the
phone that recorded angles and accelerations. Results show that this approach can
be implemented in hoisting monitoring and enhancing current practices.

Acceleration data can also be used to estimate the cable force. The cable force
can be computed using the vibration theory of a tensioned string, for which cable
geometric properties (i.e., linear mass and length) and frequency difference of the
frequency spectrum (obtained from power spectrum density [PSD] peaks) are needed.
Frequency difference of 4 Hz or less can be accurately measured. PSD plots of cables
with frequencies over 5 Hz are noisy. Orion-CC is a popular iPhone app for measuring
accelerations and frequently employed in bridge monitoring (Zhao et al., 2016b).
Overall, the fundamental frequencies obtained with industry standard accelerometers
and smartphones deviate by no more than 3%, thus making smartphones a
robust and reliable tool for estimating cable forces (Yu et al., 2015; Zhao et al.,
2015b; 2017a).

Attaching a smartphone to the deck has been practiced to measure frequencies
and mode shapes. Shrestha et al. (2018) used a remote trigger function to collect
simultaneously accelerations of multiple smartphones on a cable-stayed bridge.
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The error between smartphones and servo velocity sensors for the first vertical
frequency of the bridge was 0.36/0.38, i.e., 5%. In other studies, some success has
been achieved capturing mode shapes of reinforced concrete and timber bridges
with distributed smartphones (Elhattab et al., 2019; Hester and Keenan, 2017).
Guzman-Acevedo et al. (2019) compared frequencies collected with a GPS antenna,
accelerometer, and smartphone of a reinforced concrete bridge. All sensors were fused
into a “smart sensor” attached to the tripod, which is placed on a bridge to measure
accelerations. Only a single frequency (at 9.37 Hz) coincided with a high confidence
for all sensors. Ndong et al. (2019) found that error between smartphones and
professional accelerometers peaked up to 15.8% for ambient vibration test and 5.6%
for the impact hammer tests of concrete deck bridges. Besides, ambient excitation
was noisy with hardly distinguishable peaks.

Castellanos-Toro et al. (2018) have conducted an extensive study collecting
accelerations of 682 bridges using Vibsensor app. Data from 231 bridges were
discarded due to failing requirements of measurement resolution level. They initially
tested accelerometer performance of 25 smartphones from LG, Motorola, and Huawei.
Smartphones performed well in three sweeping tests. Frequency was changed from 0.3
to 30 Hz, for the period between 60 and 120 s. Smartphone performance on a test
footbridge was also evaluated. The frequency of the first five modes (ranging from
3.88 to 23.8 Hz) was accurately calculated from accelerations collected with all
smartphones. Frequencies obtained from 12 test bridges with seismic accelerometers
and smartphones in the worst case deviated only by 4%. Parameters such as span
length, natural frequency, material, and type of bridge (i.e., pedestrian or vehicular)
were compared. The collected data were used to carry out multivariate statistics
analysis (Mill�an et al., 2019).

The following conclusions are drawn from smartphone applications as contact
sensor:

• Smartphones can be considered as reliable and accurate tools for dynamic structural
monitoring of bridges and their components such as cables and decks.

• Smartphones (especially the latest versions) and apps can collect accurate acceleration,
especially below 20 Hz. The collection of higher frequencies remains a challenge.

So far, damage detection studies have been carried out only on laboratory
structures. Xie et al. (2019) used a three-dimensional steel frame. Smartphones were
attached at strategic locations. The structure was subjected to earthquake excitations
simulated on a shaking table. Several levels of damage were created by removing ridge
beams. Damages, which were exaggerated and unlikely to present realistic scenarios,
were detected using smartphone data.

14.3.2 Noncontact sensors

Smartphones, when they are used to obtain response without being physically
attached to the structure, are considered being noncontact sensors. In the majority of
applications, smartphone cameras are used; however, smartphone microphone and
speakers can also act as a sensor. H€opfner et al. (2013) tested if oscillations could
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be measured with the sonar distance measurement method, which records time for the
sound to reflect from a source. Smartphone speaker transmits the sound, whereas the
microphone receives it. The time for the sound reflection is equal to the distance. A
wooden plate subjected to harmonic oscillations served as the reflecting surface.
The excitation frequency was identified correctly. However, very few data points
were captured; hence, only two displacement distances (i.e., distance to the receiver)
were measured.

Smartphone cameras and video/image quality that they offer have developed signif-
icantly. Much of the research has been conducted using high-definition (HD) videos
(1920 � 1080) at 30 or 60 fps. However, many modern smartphones can record 4k
videos at 60 fps or 1280 � 720 videos at 240 fps. Computer vision in deformation
monitoring of structures has been well researched (Feng and Feng, 2018). The
fundamental concept is to follow the movement or displacement of a target, marker,
or object of interest such as a template or pattern with known dimensions, a bolt in
a structural joint and laser spot in a sequence of image frames or video. The pixel
information is translated (if needed) to engineering units such as millimeters. Dynamic
properties of the structure are obtained from high-frequency displacements, which
result from ambient or forced excitations.

Zhao et al. (2015a; 2017a, 2016a,b) have researched the application of an Android
app D-Viewer for calculations of cable force and bridge dynamic as well as static
response. Calculations for the cable force are exactly the same described in Section
14.3.1. One of the approaches to measure displacements is tracking a laser spot
(in a form of a blob) on the reflected surface. The setup requires a laser pointer,
reflection plate, and smartphone, which captures a single laser spot. Accurate
measurements of static and dynamic response as evaluated on a laboratory suspension
bridge can be obtained (Zhao et al., 2016a,b). Zhao et al. (2017c) also measured
distributed response using several setups on both laboratory and full-scale bridges.
Main drawbacks for this method are as follows:

• Need for a laser, which has to be fixed on an object that is not moving
• Installation of a plate at 30 degrees to the laser beam
• Single target in a smartphone field of view

Zhao et al. (2017b) compared cable forces calculated from (1) accelerations
measured with Orion-CC of a smartphone attached to a cable, (2) displacements of a
black circle target, which was printed on a white sheet attached to a cable, computed
with D-Viewer app from a video stream of a smartphone set on a tripod, and (3)
vibrations of a cable (no targets) recorded with a handheld smartphone and smartphone
set on a tripod. The latter approach had 3.4%e3.7% error in comparison with the
first approach. Wang et al. (2018) proposed to use D-Viewer to obtain 3D structural
displacement by tracking out-of-plane and horizontal as well as vertical displacements
of a black circle. A paper sheet with a black circle was placed on the deck at the midspan
of a scaled suspension bridge. A smartphone is attached to a supporting structure, which
is set on the laboratory floor, a few centimeters above the deck. This setup is unrealistic
for full-scale bridge monitoring. Another drawback in the app is that it tracks one or two
closely placed circles, i.e., no other object/shapes can be tracked.
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Another technique for monitoring column or deck movements is setting smart-
phones away from the structure or its component. Kalasapudi et al. (2016) collected
dynamic response of a reinforced concrete bridge column at 240 fps. They developed
an algorithm automatizing scour assessment. The video data were accurate enough to
compute the first two resonant frequencies of columns. Kromanis and Forbs (2019a)
validated the performance of the multiepoch location-independent measurement
collection approach, which initially proposed and validated on a laboratory structure
(Kromanis and Liang, 2018), on a full-scale pedestrian bridge. Two smartphones
recorded 4k videos from opposite river banks of forced bridge excitations. Bridge
deformations and first vertical frequency computed from the videos were in a good
agreement with GNSS results and previous studies. Vertical displacements at the
midspan were more than 15 mm, thus favoring the approach. Smaller displacements
would have been hard to detect. However, mounting a smartphone to a zoom lens
and focusing it at a very localized region of interest on the structure is a solution to
measure small and localized displacements (Kromanis and Al-Habaibeh, 2017).

In the past decade, many computationally intensive algorithms were made available
for real-time image processing. The computational speed and capacity have grown.
Smartphones are not yet powerful enough to replace proprietary PC software and
mature hardware (cameras). Being aware of current developments, there is no doubt
that these devices will become ubiquitous in all ways. However, there is still a
room for improvement as it can be seen from the studies mentioned previously:

• Measurements are accurate in a close range applications.
• Mainly, only a single target is tracked.
• High-resolution and frame rate videos, in which multiple targets are tracked, are not

processed in real time.

14.3.3 Mobile sensor networks

An activity when an individual, group, or company actively, with genuine intentions,
and voluntarily participate in data collection and share it is one way how to define data
crowdsourcing (Estellés-Arolas and Gonz�alez-Ladr�on-De-Guevara, 2012). Today,
almost all citizens have a smartphone in their pockets. The acquisition and inter-
pretation of data such as accelerations from citizen smartphones crossing a bridge
on foot or by car is termed crowdsensing. A crowdsensing approach, in which a
citizen’s device starts/stops recording accelerations, when the citizen approaches a
bridge (citizen’s location is tracked by GPS) and sends data to a server where it is
processed, sounds indeed attractive and could be a low-cost bridge-monitoring
solution. Large data sets could be processed using statistical and probabilistic big
data analysis tools assessing bridge performance and identifying anomaly events.

The first steps in applications of citizen sensors in bridge monitoring date back only
to 2015, when Feng et al. (2015) proposed the idea of collecting data from citizen
smartphones for acceleration measurements of structures. Similarly to studies, where
smartphones were used as contact sensors, acceleration tests were initially performed
in the laboratory and only then in on the Streicker Bridge in Princeton, United States.

Health monitoring of bridges 377



A smartphone was attached with a double-sided tape to the deck of the bridge. Natural
frequency of the bridge derived by smartphone and standard accelerometer data varied
by only 1%. Ozer et al. (2015) furthered research of Feng et al. (2015) and developed
iOS app Citizen Sensors for SHM. A pedestrian link bridge, which spans 11 m between
two buildings, was a test bed for the vibration-based SHM crowdsensing approach.
Bridge vibrations were measured with standard accelerometers and two crowdsourcing
strategies: (1) placing smartphones with different fixities in strategic locations
(modal nodes) and (2) obtaining data from 135 pedestrians crossing the bridge.
Collected bridge frequencies, in general, compared well, although a high dispersion
in crowdsourcing frequencies was observed. Other tests explored accelerations
collected when pedestrians are walking over or standing on the bridge (Ozer, 2018).
Bridge frequencies above 10 Hz were accurately identified. Furthermore, from
accelerations of

(i) walking pedestrians, bridge dynamics due to human activities were estimated;
(ii) standing pedestrians, human biomechanical models were developed and eliminated from

acceleration signals to obtain bridge dynamics.

Ozer and Feng (2016) collected smartphone geolocation data and accelerations of
the aforementioned pedestrian link bridge for its modal identification. Overall, modal
frequencies deviated by only 3% from the ones derived using specialized accelerom-
eters. Ozer and Feng (2017) also demonstrated how heterogeneous sensor (smartphone
accelerometer, magnetometer, gyroscope, and GPS) data can be converted to the
structure and then global coordinate system. This method can be encapsulated in
crowdsensing approach for bridge modal identification.

Drive-by approaches, in which measurements are collected from vehicles crossing a
bridge, are also widely studied. Departments for transportation keep close records of
traffic data, which, in conjunction with other statistical data records, can be used to
estimate smartphone trips over a bridge. For example, based on data collected in
2009, it was estimated that on average the Harvard Bridge, United States, has
18,000 smartphone daily trips (Matarazzo et al., 2017). Such data amount could
provide meaningful information about bridge conditions when correctly analyzed
and interpreted. Matarazzo and Pakzad (2018) introduced an extended structural
identification using expectation maximization algorithm for accurate modal identifica-
tion using a dynamic sensor network (e.g., moving vehicles). In an experimental setup,
a mobile sensor network provided accurate modal frequencies and high-resolution
mode shapes (with 248 mode shape points) for a 3.66-m-long laboratory bridge
specimen. Matarazzo et al. (2018) collected accelerations of the Harvard Bridge
from a moving vehicle. The first three modal frequencies of the bridge computed
from collected data were consistent with a fixed wired accelerometer network.
Their study confirms that bridge modal frequencies can be detected accurately using
smartphones from moving vehicles.

Crowdsensing can be implemented to monitor health of bridges using data from
crossing vehicles. Mei and G€ul (2018) proposed a framework for damage detection
of bridges using smartphones in moving vehicles. A laboratory bridge (platelike
beam) and an Arduino-controlled vehicle with a smartphone attached to it were
used for the framework evaluation. Damages and their extents were identified at
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various vehicle configurations (i.e., weight, suspension spring, and speed). Real-life
examples have not yet been employed for damage detection. McGetrick et al.
(2017) drove a van equipped with specialized equipment (accelerometers and GNSS
receivers) and smartphones along predetermined routes to study the feasibility of
smartphone applications for drive-by monitoring of transport infrastructure. Vehicle
accelerations were collected to identify bridge frequencies and expansion joints.
Results from specialized equipment and smartphones compared well. The low mass
of the vehicle as well as its excitations by expansion joint and short signal length
are listed as a few factors affecting measurement quality.

Another way to engage citizens in crowdsensing is using a smartphone to collect
data from low-cost sensor nodes. Morgenthal et al. (2018) proposed to employ off-
the-shelf electronic components such as Raspberry Pi and MPU-6050 accelerometer,
which costs V5, to build a low-cost WSN. Accurate cable dynamic properties
and forces as well as mode shapes of horizontal structures can be calculated from
accelerations collected with the Raspberry Pi-based monitoring system (Morgenthal
et al., 2018, 2019a). A single node in the system costs below V50.

Gibbs et al. (2019) suggest to involve citizens in rural areas to assess conditions of
bridges using a citizen sensing approach. The premise is that citizens in rural areas
deploy a low-cost, easy-to-install sensing system to establish database for dynamic
response of rural bridges. A data-enabled framework is employed to predict dynamic
properties of bridges at their conceptual design, thus improving their safety under
winds. The downside of this attractive method is that citizens performing tests need
the testing kit, which consists of smartphone(s) and/or the Vibration Sentry data
logger, USB cables, laptop, 10-m rope for plucking test, notebook and pen, wood
screws, screwdriver, and a timing device.

Smartphone crowdsourcing has a vast potential for bridge monitoring applications;
however, there are still grounds to cover. Besides, data privacy is an issue. The current
studies conclude that

• bridge drive-by data acquisition using smartphones is much cheaper than the conventional
system, which can cost around V26,000 (McGetrick et al., 2017);

• specialist training is not required in crowdsensing;
• crowdsourcing acceleration signals is a feasible solution for drive-by bridge monitoring;
• there is a need for a large population data from many smartphones to effectively evaluate

crowdsensing approaches for bridge monitoring;
• low-cost WSNs controlled with smartphones are accurate and accessible solution for

acquisition of dynamic properties.

14.3.4 Summary and discussion

Main applications of smartphones for bridge monitoring were discussed. Many case
studies provide useful insights in the technology and its application. Research gaps still
need filling, and solutions for fundamental problems/questions need addressing:

• Attaching smartphones to bridges is not much different from installing contact sensors,
which might involve working at height and cause traffic disruptions. Contact sensing also
does not support long-term monitoring. It can be carried out only during inspections.
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If multiple smartphones are considered for collection of dynamic properties, ideally measure-
ment collection should be made synchronous. This requires an app, which enables the control
smartphone operated by an engineer, to initiate synchronized measurement collection.

• Crowdsourcing provides useful information and proves to work well in laboratory
environments. However, not all users are willing to share their data or use their smartphones
to obtain bridge data or collect it themselves.

• Computer vision for bridge monitoring has gained large popularity in the field of SHM and
measurement collection. It needs further implementation in smartphones especially for
collecting real-time measurements.

• The majority of research is focused on measurement collection, especially when using smart-
phones as contact sensors; however, there is a gap of developing and implementing strategies
of data archiving, storage, and review for smartphone-driven bridge health monitoring.

Ozer et al. (2017) proposed a hybrid monitoring approach fusing dynamic measure-
ments from smartphone accelerometer and camera. Although measurements from both
sensors were in good agreement, imperfections were observed in the sampling rate.
There is much scope in fusing sensor data. For example, a smartphone can be attached
to the bridge or its element to record a video and collect accelerations, while the bridge
is excited. In such scenario, the smartphone is focused away from the bridge at a target
in the distance. Many smartphone cameras can record videos at 240 fps (with a boost
of up to 960 fps). This property is not yet explored in bridge health monitoring.
Another important consideration is equipping computer vision algorithms with
artificial intelligence (AI) tools. Today, smartphone processors might not be powerful
enough to analyze large data files; however, with the emerging 5G communication
technologies, large data files could be uploaded to the server where data analysis
can take place. The bridge monitoring community, which develops apps and
uses smartphones for measuring response, has to follow hardware and software devel-
opments. A few comments are provided in the following.

Software. The smartphone processing power limits the complexity of algorithms
that can analyze real-time data stream, thus demanding optimized algorithms capable
of coping with large data sets. The competition between app developers also creates
uncertainty when selecting the appropriate app for bridge SHM. Cahill et al. (2019)
explored the performance of 12 smartphone accelerometer apps using Motorola
Moto G (1st Generation); however, a commonly used iOS app Orion-CC was not
included in the comparison study. There is a need to thoroughly and critically study
many apps (and their compatibility with smartphones) to find and comment on
apps (and smartphones) that provide reliable measurement collection and inter-
pretation. Besides, some apps are only available for Android or iOS devices.

Hardware. An existing difference between low-cost smartphones and more
expensive ones needs to be understood and investigated. Expensive devices may
have more robust and reliable integrated sensors. The latest smartphones such as
Samsung Galaxy S10 Plus, Huawei Mate 30 Pro, and iPhone 11 Pro have multiple
rear cameras. This feature could be both an advantage and disadvantage when using
only the device to record videos of structures subjected to loading. It can get difficult
attaching a smartphone with multiple cameras to a telescope when monitoring small
displacements from far.
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14.4 Case studies

This section demonstrates smartphone applications for measuring bridge response
using a noncontact approach. The bridge and the monitoring system are introduced.
Image processing techniques, which measure vertical deflections of the bridge while
it was exposed to forced excitations, are discussed and explained. The bridge
fundamental frequency computed from smartphone videos and calculated from
GNSS data is in a good agreement.

14.4.1 Pedestrian suspension bridge

The Wilford Suspension Bridge (see Fig. 14.3), which has a status of Grade II listed
heritage buildings, is located in Nottingham, the United Kingdom. It is a pedestrian
bridge, which also serves as a water aqueduct. The suspended span is 69 m long,
crosses the River Trent, and links Nottingham and West Bridgford. The bridge has
two main cables, in which a steel structure covered with a timber deck is suspended.
The bridge was rebuilt/renovated between 2008 and 2010. The bridge dynamic
displacement and modal properties were studied using a multimode GNSS processing
(Yu et al., 2014) and combination of GPS and robotic total station (Psimoulis et al.,
2016). The natural vertical frequency of the bridge was found to be around 1.69 Hz.

In this study, Samsung S9 plus (S1) and Samsung S8 (S2) are selected to capture
dynamic properties of the bridge. Smartphones are positioned at slightly different loca-
tions approximately 45 m away from the bridge on the left bank of the river. Fig. 14.3
shows smartphone monitoring setup. Smartphones record 4k videos at 30 fps.
The experiment is organized by the University of Nottingham as a part of student
assignment. GNSS collects vertical displacements at the midspan and 1/3-span (or
23 m from the left end of the suspended superstructure) of the bridge. The bridge is

69m

45m

Smartphone
location

-

S1

S2

Figure 14.3 Smartphone monitoring setup for the Wilford Suspension Bridge.
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excited by 10 students jumping nearGNSS locations. In this example, the bridge dynamic
response is analyzed for a period when the jumping took place at the 1/3-span of the
bridge.

An image frame as recorded with S1 is shown in Fig. 14.4. Four reference points on
the structure are selected to derive a transformation matrix (see Fig. 14.4 (left)). The
matrix converts any given coordinate point to the defined coordinate system requiring
no additional scale factors. The bottom and top left points (bottom and top of
the hanger) are set to [0, 0] and [0, 6] x and y coordinates (in meters), respectively.
x coordinates for the bottom and top left points are 65 m, and y coordinates are kept
the same as for the points on the left side. A region of interest (ROI) includes
both GNSS antenna locations. Targets T-1 and T-2 are selected close to the antenna
locations. Mini eigenvalue algorithm is chosen to detect features in the targets.
Targets with their features and centers (calculated as an average value from feature
coordinates) are shown in Fig. 14.4 (right).

Vertical displacement histories of T-1 for the duration of excitations, which lasted
approximately 40 s, computed from the video recorded with S1 are plotted in
Fig. 14.5(a) The signal is preprocessed with a low-pass filter, and camera movements

ROI

- Reference point

T-1
T-2

- Target feature
- Target center

65 m

6 
m

Figure 14.4 Image processing approach. Selection of (left) reference points and ROI, and
(right) targets.
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Figure 14.5 The bridge dynamic response: T-1 vertical displacements form (a) S1 for the
duration of excitation and (b) both S1 and S2 for 13 s period; (c) PSD of T-1.
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are removed. The signal has either noise or human-induced vibrations before and after
forced excitations (see displacements before 10 s and after 55 s). Maximum peak-to-
peak displacements are around 14 mm, which are similar to GNSS measurements.
Fig. 14.5(b) gives a closer look at the period between 22 and 35.5 s for T-1 displace-
ments from S1 and S2. The plot shows that S1 provides a better quality video than S2,
resulting in smoother displacements. Measurement plots are synchronized/merged
manually. S2 T-1 oscillations between 27 and 32 s are lagging behind S1 T-2, resulting
in a high root mean square deviation (i.e., 2.5 mm for the period between 22 and
35.5 s). PSD is computed to find the first vertical frequency of the bridge. For both
smartphone signals, the fundamental frequency at T-1 location is 1.671 Hz
(see Fig. 14.5(c)). GNSS measured 1.675 Hz.

S1 video allows the computation of vertical displacements of the deck at hanger
connections along the length of the bridge. Fig. 14.6 depicts upward (positive) and
downward (negative) displacements at the 24th second. The deck displacement curve
for the first 48 m from the left side of the bridge (i.e., side that is closer to the camera) is
a parabolic and realistic. The part of the deck further away from the camera view has
large measurement discrepancies. The vertical distance between the selected reference
points (as shown in Fig. 14.4) is equal to 682 and 309 px on the left and right sides,
respectively, leading to larger measurement error.

The Wilford Suspension Bridge study demonstrates that accurate dynamic response
can be obtained using smartphone cameras. The difference between the first frequency
calculated from GNSS and smartphones measurements is only 0.2%. Small displace-
ments can be measured. In Fig. 14.6, the maximum peak-to-peak vertical displacement
of the first hanger from the right side is � 0.85 mm, which is
682½px�

6000½mm� � 0:85½mm�y 1
10 ½px�. With more sophisticated image processing algorithms,

accuracies smaller than 1/50 px can be achieved.

14.5 Current challenges and future perspectives and
directions

There is no best solution or approach using smartphones in bridge SHM. Attaching a
smartphone to an element of the bridge might seem as an unattractive option; however,
it provides useful information about cable forces and frequencies of bridge deck.
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Figure 14.6 Bridge vertical displacements at hanger connections to the deck.
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For these reasons, this still remains an option. Besides, attaching a smartphone is
practical and easy. Recording a video (with a smartphone) of a bridge subjected to
excitations and later analyzing it does not support real-time monitoring. With more
sophisticated and efficient algorithms and powerful processors, this, however,
measuring accurately real-time deformation, could be made possible. Crowdsensing
sounds as a fantastic solution for bridge SHM. However, data privacy and lack of large
data sets for evaluating crowdsensing capabilities on full-scale bridges, which is
beyond obtaining approximate dynamic response, are still challenging. Government
and local authorities should encourage citizens to share their data for good purposes.
This, however, could lead to a danger of hacking into such important data and
manipulating it. This topic is outside of this chapter’s scope.

Data sharing and upload permissions could be issued to practicing engineers or
responsible personnel involved in asset management. This consortium could use
crowdsensing applications and also upload images of structural defects to a specified
bridge inventory directory. However, today, a platform, where one with given
clearances would be able to contribute and share relevant data, does not exist. This
leads to another issue that needs addressingdcreation of a unified bridge management
platform/live database. Participants with granted access could share and upload
relevant data for selected bridges. The data would be automatically archived, reviewed,
and analyzed using some predefined deep learning tools.

Smartphones have not yet been extensively exploited in long-term monitoring
applications, although they are becoming ruggedized and waterproofed. Park et al.
(2015) employed two smartphones, which took an image every 10 min for a duration
of 2 weeks capturing thermal movements of a bridge at its bearings. Measured
displacements were only 3.11% different from those obtained with a displacement
transducer. Kromanis et al. (2019) captured temperature-induced strains from
time-lapse images (captured with Samsung A5) of a laboratory beam subjected to
accelerated temperature variations for more than a 26 h. Demonstrations of
long-term smartphone functionality are seen; however, they are very limited in bridge
monitoring studies.

Smartphones could be fixed to a zoom lens attached to a robotic platform, which
rotates and points the camera to a desired location and captures images or records
videos. Examples of robotic platforms for smartphones are seen for artistic video
montages, but not in bridge monitoring studies. Besides, they do not include a
zoom lens. The performance of a robotic system with a modified action camera was
evaluated on a laboratory structure (Kromanis and Forbes, 2019b). Its performance
was compared with a smartphone camera that captured the entire structure. Although
the robotic system outperformed smartphone in the measurement accuracy, if the
action camera were replaced with the smartphone, comparable results between two
camera systems could be achieved. The latest smartphones have two or more rear
cameras, which could improve or reduce the practicality of their application. No
studies have yet explored this new feature opening scope for further research.

Bridge inspections. Smartphones could support bridge visual inspections with
image-based data and augmented reality. Ideally, a 3D model of a bridge is
preferred. The model could be created with LiDAR or images from a drone
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(Morgenthal et al., 2019b). The digital replica of the bridge serves as a platform, on
which monitoring and visual information of bridge conditions are uploaded. It is
envisioned that an inspector would use a virtual reality (VR) tool. The location of
the smartphone is detected using GPS. From here, a camera can be used as a VR to
see information such as images and monitoring data collected in previous inspections.
Inspector can then place the smartphone on identified structural nodes and record
accelerations. Or an image of a location with a defect can be captured. Augmented
reality helps identify the locations of interest. The newly acquired data are uploaded
to the server/cloud, where (1) monitored parameters are analyzed and compared
with the baseline data using unsupervised and autonomous measurement interpretation
techniques, and (2) images of joints with defects are project over time, and, using
artificial intelligence and deep learning tools, their propagation/severity is characterized.
The acquired data supports bridge condition assessment.
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