
543619-L-os-Ghayoor543619-L-os-Ghayoor543619-L-os-Ghayoor543619-L-os-Ghayoor Processed on: 12-6-2020Processed on: 12-6-2020Processed on: 12-6-2020Processed on: 12-6-2020

G.A. Gillani

EXPLOITING ERROR RESILIENCE
FOR HARDWARE EFFICIENCY
TARGETING ITERATIVE AND ACCUMULATION BASED ALGORITHMS

EXPLOITING ERROR RESILIENCE FOR HARDW
ARE EFFICIENCY

TA
RG

ETIN
G

 ITERATIV
E A

N
D

 A
CCU

M
U

LATIO
N

 BA
SED

 A
LG

O
RITH

M
S

 G.A. Gillani

Exploiting Error Resilience
For Hardware Efficiency

Targeting Iterative and

Accumulation Based Algorithms

G.A. Gillani

Members of the graduation committee:

Dr. ir. A. B. J. Kokkeler University of Twente (promotor)
Dr. ing. D.M. Ziener University of Twente

Prof. dr. ir. G. J.M. Smit University of Twente
Prof. dr. ir. D. Stroobandt Ghent University

Prof. dr. H. Corporaal Eindhoven University of Technology
Prof. dr. J. Nurmi Tampere University
Dr. ir. A. J. Boonstra Astron (special expert)

Prof. dr. J.N. Kok University of Twente (chairman and secretary)

Faculty of Electrical Engineering, Mathematics and Computer
Science, Computer Architecture for Embedded Systems (CAES)
group.

DSI Ph.D. Thesis Series No. 20-004
Digital Society Institute
PO Box 217, 7500 AE Enschede, The Netherlands.

Promotiecommissie:

Prof. dr. ir. G. J.M. Smit Universiteit Twente (promotor)

Prof. dr. J. L. Hurink Universiteit Twente (promotor)

Prof. dr. ir. B. R.H.M.Haverkort Universiteit Twente

Prof. dr. A.H.M. E. Reinders Universiteit Twente

Prof. dr. ir. G. Deconinck Katholieke Universiteit Leuven

Prof. dr. I. G. Kamphuis Technische Universiteit Eindhoven

Dr. S. Nykamp Westnetz GmbH

Prof. dr. P.M.G. Apers Universiteit Twente (voorzitter en secretaris)

Faculty of Electrical Engineering, Mathematics and Computer

Science, Computer Architecture for Embedded Systems (CAES)

group and Discrete Mathematics and Mathematical Programming

(DMMP) group

CTIT
CTIT Ph.D. thesis Series No. 17-449

Centre for Telematics and Information Technology

PO Box 217, 7500 AE Enschede, The Netherlands

This work is part of the research programme Energy Autonomous

Smart Micro-grids (EASI) with project number 12700 which is

partly financed by the Netherlands Organisation for Scientific Re-

search (NWO) and partly financed by Alliander.

Copyright © 2017 Gerwin Hoogsteen, Enschede, The Netherlands.

This work is licensed under the Creative Commons Attribution-

NonCommercial 4.0 International License. To view a copy of this li-

cense, visit https://creativecommons.org/licenses/by-nc/
4.0/.

This thesis was typeset using LATEX, TikZ, and Kile. This thesis was

printed by Gildeprint Drukkerijen, The Netherlands.

ISBN 978-90-365-4432-0

ISSN 1381-3617; CTIT Ph.D. Thesis Series No. 17-449

DOI 10.3990/1.9789036544320

This work was supported in part by the Netherlands Institute of
Radio Astronomy (ASTRON) and IBM Joint Project, DOME,
funded by the Netherlands Organization for Scientific Research
(NWO), in part by the Dutch Ministry of Economic Affairs,
Agriculture and Innovation (EL&I), and in part by the Province
of Drenthe.

Copyright © 2020 G.A. Gillani, Enschede, The Netherlands.
This work is licensed under the Creative Commons Attribution-
NonCommercial 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/
by-nc/4.0/deed.en_US.

This thesis was typeset using LATEX,and TikZ. This thesis was
printed by Gildeprint Drukkerijen, The Netherlands.

ISBN 978-90-365-5011-6
ISSN 2589-7721; DSI Ph.D. Thesis Series No. 20-004
DOI 10.3990/1.9789036550116

http://www.utwente.nl/
http://caes.ewi.utwente.nl/
http://www.nwo.nl/
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US
http://www.fsc.nl/
http://www.gildeprint.nl/
http://opc4.kb.nl/DB=1/SET=2/TTL=1/CMD?ACT=SRCHA&IKT=1007&SRT=YOP&TRM=2589-7721
https://doi.org/10.3990/1.9789036550116

Exploiting Error Resilience For Hardware

Efficiency

Targeting Iterative and Accumulation Based Algorithms

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. T. T. M. Palstra,

on account of the decision of the Doctorate Board,
to be publicly defended

on Friday the 3rd of July 2020 at 14 : 45 hours

by

Syed Ghayoor Abbas Gillani

This dissertation has been approved by:

Dr. ir. A. B. J. Kokkeler (promotor)

Copyright © 2020 G.A. Gillani
ISBN 978-90-365-5011-6

To Zahra, Sarah, Sakeena, ...
easily

One of the best objectives
of life is to seek knowledge,
absorb it, and disseminate it.

vi

viiAbstract

Computing devices have been constantly challenged by resource-hungry appli-
cations such as scientific computing. These applications demand high hardware
efficiency and thus pose a challenge to reduce energy/power consumption, la-
tency, and chip-area to process a required task. Therefore, an increase in hard-
ware efficiency is one of the major goals to innovate computing devices. On
the other hand, improvements in process technology have played an important
role to tackle such challenges by increasing the performance and transistor den-
sity of integrated circuits while keeping their power density constant. In the
last couple of decades, however, the efficiency gains due to process technology
improvements are reaching the fundamental limits of computing. For instance,
the power density is not scaling as well as compared to the transistor density.
Hence, posing a further challenge to control the power-/thermal-budget of the
integrated circuits.

Keeping in view that many applications/algorithms are error-resilient, emerging
paradigms like approximate computing come to rescue by offering promising
efficiency gains especially in terms of power-efficiency. An application/algorithm
can be regarded as error-resilient or error-tolerant when it provides an outcome
with a required accuracy while utilizing processing-components that do not
always compute accurately. There can be multiple reasons that an algorithm
is tolerant of errors, for instance, an algorithm may have noisy or redundant
inputs and/or a range of acceptable outcomes. Examples of such applications
are machine learning, scientific computing, and search engines.

Approximate computing techniques exploit the intrinsic error tolerance of such
applications to optimize the computing systems at software-, architecture- and
circuit-level to achieve efficiency gains. However, the state-of-the-art approxi-
mate computing methodologies do not sufficiently address the accelerator de-
signs for iterative and accumulation based algorithms. Taking into account a
wide range of such algorithms in digital signal processing, this thesis investigates
approximationmethodologies to achieve high-efficiency accelerator architectures
for iterative and accumulation based algorithms.

Error resilience analysis tools assess an algorithm to determine if it is a promising
candidate for approximate computing. Statistical approximation (error) mod-
els are applied to an algorithm to quantify the intrinsic error resilience and to
identify promising approximate computing techniques. In the context of itera-
tive algorithms, we demonstrate that the state-of-the-art statistical model is not

viii

effective in revealing opportunities for approximate computing. We propose
an adaptive statistical approximation model, which provides a way to quantify
the number of iterations that can be processed using an approximate core while
complying with the quality constraints.

Moreover, Iterative algorithms generally apply a convergence criterion to in-
dicate an acceptable solution. The convergence criterion is a precision-based
quality function that provides a guarantee that the solution is precise enough
to terminate the iterative computations. We demonstrate, however, that the
precision-based quality function (the convergence criterion) is not necessarily
sufficient in the error resilience analysis of iterative algorithms. Therefore, an
additional accuracy-based quality function has to be defined to assess the viability
of the approximate computing techniques.

Targeting energy efficiency, we further propose an accelerator design for iterative
algorithms. Our design is based on a heterogeneous architecture, where hetero-
geneity is introduced by employing a combination of accurate and approximate
cores. Our proposed methodology exploits the intrinsic error resilience of an
iterative algorithm, wherein a number of initial iterations are run on the approx-
imate core and the rest on the accurate core to achieve a reduction in energy
consumption. Our proposed accelerator design does not increase the number
of iterations (that are necessary in the conventional accurate counterpart) and
provides sufficient precision to converge to an acceptable solution.

The conventional approximate designs follow error-restricted techniques. These
techniques restrict the approximations based on the error magnitudes and the
error rates they introduce to avoid an unbearable quality loss during process-
ing. On the other hand, however, the error-restricted techniques limit the
hardware efficiency benefits that can be exploited within error-resilient appli-
cations. In the context of accumulation based algorithms, we propose a Self-
Healing (SH) methodology for designing approximate accelerators like square-
accumulate (SAC), wherein the approximations are not restricted by error met-
rics but are provided with an opportunity to cancel out the errors within the
processing units. SAC refers to a hardware accelerator that computes an inner
product of a vector with itself, wherein the squares of the elements of a vector
are accumulated.

We employ the SH methodology, in which the squarer is regarded as an approxi-
mation stage and the accumulator as a healing stage. We propose to deploy an
approximate squarer mirror pair, such that the error introduced by one approxi-
mate squarermirrors the error introduced by the other, i.e., the errors generated
by the approximate squarers are approximately additive inverse of each other.
This helps the healing stage (accumulator) to automatically cancel out the er-
ror originated in the approximation stage, and thereby to minimize the quality
loss. Our quality-efficiency analysis of an approximate SAC shows that the pro-
posed SH methodology provides a more effective trade-off as compared to the
conventional error-restricted techniques.

ix

Nonetheless, the proposed SH methodology is limited to parallel implemen-
tations with similar modules (or parts of a datapath) in multiples of two to
achieve error cancellation. In an effort to overcome the aforesaid shortcoming,
we propose a methodology for Internal-Self-Healing (ISH) that allows exploiting
self-healing within a computing element internally without requiring a paired,
parallel module. We employ the ISH methodology to design an approximate
multiply-accumulate (MAC) accelerator, wherein the multiplier is regarded as
an approximation stage and the accumulator as a healing stage. We propose to
approximate a recursive multiplier in such a way that a near-to-zero average error
is achieved for a given input distribution to cancel out the errors at an accurate
accumulation stage. Our experiments show that the proposed ISHmethodology
relieves themultiples of two restriction for computing elements and enables error
cancellation within a single computing element.

As a case study of iterative and accumulation based algorithms, we apply our
proposed approximate computing methodologies to radio astronomy calibra-
tion processing which results in a more effective quality-efficiency trade-off as
compared to the state-of-the-art approximate computing methodologies.

x

xiSamenvatting

Computers worden voortdurend uitgedaagd door toepassingen, zoals bijvoor-
beeld wetenschappelijke rekentoepassingen, die veeleisend zijn. Dergelijke toe-
passingen vereisen een hoge hardware-efficiëntie en vormen dus een uitdaging
om het energie-/stroom-verbruik, de benodigde rekentijd en het chip-oppervlak
op een geïntegreerd circuit te verminderen om een vereiste taak te verwerken.
Daarom is een verbetering van de hardware-efficiëntie één van de belangrijkste
doelen bij de innovatie van computerapparatuur. Aan de andere kant hebben
verbeteringen in het productieproces van geïntegreerde circuits een belangrijke
rol gespeeld bij het aanpakken van dergelijke uitdagingen door de prestaties en
de dichtheid van transistoren in geïntegreerde schakelingen te verhogen terwijl
de vermogensdichtheid constant blijft. In de afgelopen decennia bereikten de
efficiëntiewinsten als gevolg van verbeteringen in het productieproces echter fun-
damentele grenzen. De vermogensdichtheid is bijvoorbeeld niet zo goed schaal-
baar als de dichtheid van transistoren. Het blijft daarom een uitdaging om het
vermogen/thermische budget van de geïntegreerde schakelingen te beheersen.

Omdat veel toepassingen/algoritmen foutbestendig zijn, komen nieuwe para-
digma’s zoals approximate computing te hulp door veelbelovende efficiëntiewin-
sten te bieden, vooral op het gebied van energie-efficiëntie. Een toepassing/algo-
ritme kan worden beschouwd als foutbestendig of fouttolerant wanneer het een
resultaat oplevert met de vereiste nauwkeurigheid, terwijl rekeneenheden wor-
den gebruikt die niet altijd nauwkeurig rekenen. Er kunnen meerdere redenen
zijn waarom een algoritme tolerant is voor fouten, een algoritme kan bijvoor-
beeld ingangssignalen met veel ruis of redundante ingangssignalen en/of een
reeks acceptabele resultaten hebben. Voorbeelden van dergelijke toepassingen
zijn machine learning, sommige wetenschappelijke toepassingen en zoekmachi-
nes.

Approximate computing maakt gebruik van de intrinsieke fouttolerantie van
dergelijke toepassingen om computersystemen op software-, architectuur- en
circuit-niveau te optimaliseren zodat efficiëntiewinsten behaald worden. Echter,
de huidige approximate computing technieken zijn niet voldoende gericht op het
ontwerpen van specifieke circuits (acceleratoren) voor iteratieve en op accumula-
tie gebaseerde algoritmen. Rekening houdend met een breed scala van dergelijke
algoritmen bij digitale signaalverwerking, worden in dit proefschrift benaderings-
methodologieën onderzocht om zeer efficiënte accelerator architecturen voor
iteratieve en op accumulatie gebaseerde algoritmen te realiseren.

xii

Hulpmiddelen voor de analyse van foutbestendigheid beoordelen of een (deel
van een) algoritme een veelbelovende kandidaat is voor approximate computing.
Statistische benaderingsmodellen (middels het introduceren van fouten) worden
toegepast op een algoritme om de intrinsieke foutbestendigheid te kwantificeren
en om veelbelovende approximate computing technieken te identificeren. In de
context van iteratieve algoritmen laten we zien dat het hedendaagse statistische
model niet effectief is in het blootleggen van mogelijkheden voor approximate
computing. We stellen een adaptief statistisch benaderingsmodel voor dat een
manier biedt om het aantal iteraties dat kan worden verwerkt met behulp van een
approximate core te kwantificeren terwijl wordt voldaan aan de kwaliteitseisen.

Bovendien passen iteratieve algoritmen in het algemeen een convergentiecrite-
rium toe om een aanvaardbare oplossing aan te geven. Het convergentiecriterium
is een op precisie (het verschil tussen opeenvolgende iteraties) gebaseerde kwa-
liteitsfunctie die een garantie biedt dat de oplossing nauwkeurig genoeg is om
de iteratieve berekeningen te beëindigen. We laten echter zien dat de op precisie
gebaseerde kwaliteitsfunctie (het convergentiecriterium) niet noodzakelijkerwijs
voldoende is in de foutbestendigheidsanalyse van iteratieve algoritmen. Daarom
moet een aanvullende, op nauwkeurigheid (het verschil met de ideale oplossing)
gebaseerde kwaliteitsfunctie worden gedefinieerd om de levensvatbaarheid van
de approximate computing technieken te beoordelen.

Met het oog op energie-efficiëntie, stellen we een accelerator ontwerp voor itera-
tieve algoritmen voor. Ons ontwerp is gebaseerd op een heterogene architectuur,
waar heterogeniteit wordt geïntroduceerd door een combinatie van accurate en
approximate cores te gebruiken. Onze voorgestelde methodologie maakt gebruik
van de intrinsieke foutbestendigheid van een iteratief algoritme, waarbij een aan-
tal initiële iteraties wordt uitgevoerd op de approximate core en de rest op de
accurate core om een vermindering van het energieverbruik te bereiken. Het
door ons voorgestelde ontwerp van de accelerator verhoogt het aantal iteraties
(die nodig zijn in de conventionele accurate tegenhanger) niet en biedt voldoende
precisie om te convergeren naar een acceptabele oplossing.

De conventionele approximate ontwerpen volgen ’fout-beperkte’ technieken.
Deze technieken beperken de benaderingen op basis van de foutgroottes en de
kans op het optreden van de fouten die ze introduceren om een onacceptabel kwa-
liteitsverlies tijdens verwerking te voorkomen. Aan de andere kant begrenzen
de fout-beperkte technieken de hardware-efficiëntievoordelen die kunnen wor-
den benut binnen foutbestendige applicaties. In het kader van op accumulatie
gebaseerde algoritmen introduceren we een Self-Healing (SH)methodologie voor
het ontwerpen van approximate acceleratoren zoals square-accumulate (SAC),
waarbij de benaderingen niet worden beperkt door grootte en frequentie van
individuele fouten maar de mogelijkheid krijgen om fouten op te heffen binnen
de verwerkingseenheden. SAC verwijst naar een hardware accelerator die met
zichzelf een inwendig product van een vector berekent, waarbij de kwadraten
van de elementen van een vector worden geaccumuleerd.

xiii

We gebruiken de SH-methodologie, waarbij de squarer (kwadrateereenheid)
wordt beschouwd als een benaderingsfase en de accumulator als een healing fase.
We stellen voor om een approximate squarer mirror pair in te zetten, zodat de
fout die door een approximate squarer wordt geïntroduceerd, de fout, geïntro-
duceerd door de andere, weerspiegelt, d.w.z. de fouten die door de approximate
squarers worden gegenereerd, heffen elkaar ongeveer op. Dit helpt de healing-
fase (accumulator) om automatisch de fout op te heffen die in de benaderingsfase
is ontstaan, en daardoor het kwaliteitsverlies te minimaliseren. Onze kwaliteit-
efficiëntieanalyse van een approximate SAC laat zien dat de voorgestelde SH
methodologie een effectievere afweging biedt in vergelijking met de conventio-
nele fout-beperkte technieken.

Desalniettemin is de voorgestelde SH methodologie beperkt tot parallelle imple-
mentaties met vergelijkbare modules (of delen van een datapad) in veelvouden
van twee om foutopheffing te bereiken. In een poging om de bovengenoemde
tekortkoming te verhelpen, stellen we een Internal-Self-Healing (ISH) metho-
dologie voor die het mogelijk maakt om self-healing binnen een accelerator te
exploiteren zonder een gepaarde, parallelle module te vereisen. We gebruiken de
ISHmethodologie om een approximatemultiply-accumulate (MAC) accelerator te
ontwerpen, waarbij de vermenigvuldiger wordt beschouwd als een benaderings-
fase en de accumulator als een healing-fase. We stellen voor om een recursieve
vermenigvuldiger zo te ontwerpen dat een gemiddelde fout van bijna nul wordt
bereikt voor een gegeven amplitude-verdeling van een ingangssignaal om de fou-
ten op te heffen in een accurate accumulatiefase. Onze experimenten tonen aan
dat de voorgestelde ISH methodologie de genoemde beperking tot veelvouden
van twee wegneemt en foutopheffing binnen een enkel rekenelement mogelijk
maakt.

Als case study van iteratieve en op accumulatie gebaseerde algoritmen, passen we
onze voorgestelde approximate computing methodologieën toe op de kalibratie
van een radiotelescoop, wat resulteert in een effectievere afweging van kwali-
teit en efficiëntie in vergelijking met de hedendaagse approximate computing
methodologieën.

xiv

xvAcknowledgements

It was a long journey, not only in terms of duration but also in terms of learning.
It was full of ups and downs, where you need a mentor to help you get through
the process. I would like to thank Dr. ir. André Kokkeler, my Ph.D. supervisor,
for his invaluable mentorship. He encouraged me when I was underestimating
my work and criticized me when I was over-estimating it. He knows very well
how to maintain a balance between providing guidance and allowing freedom-
of-decision to raise a student to the level of an independent researcher. I would
also like to thank Prof. dr. ir. Gerard Smit for his general guidance and for his
time to review this manuscript. Moreover, I would like to thank the graduation
committee members for their review and suggestions to improve this manuscript.

I would also like to thank Dr. ir. Sabih Gerez for his support and critical dis-
cussions about the research ideas and experimentation. I also want to thank
Prof. dr. ing. Muhammad Shafique (CARE-Tech, ECS group, TU Wien) for
his collaboration and guidance. I would like to thank the Astron team, espe-
cially Dr. ir. Albert-Jan Boonstra, for providing me all the support required
for the experimentation with radio astronomy calibration processing. I would
also like to thank my co-authors and the students I have supervised during my
Ph.D. tenure for helping me understand the subject better and to investigate it
in various research directions. Special thanks to Muhammad Abdullah (CARE-
Tech, ECS group, TU Wien) for helping me with the design space exploration
of approximate multipliers.

I would like to thank the secretaries, supporting/scientific staff, and researchers/-
students of the CAES group1 for their support from finding a house in Enschede
to finding a publisher for this manuscript. Thank you for the coffee breaks and
fruitful social and technical discussions, for providing a nice thesis-template, and
for helping me with the software tools, Dutch version of the Abstract (Samenvat-
ting) and the LATEXrelated problems. I am sure, it would not be possible to reach
this level at this point in time without your support. Moreover, I would like to
thank the teaching and management team (TI/ELT-LED Saxion) not only for

1Special thanks to Marlous Weghorst, Nicole Baveld, Thelma Nordholt, Jan Kuper, Bert Hel-
thuis, Bert Molenkamp, Daniel Ziener, Marco Gerards, Ghazanfar Ali, Rinse Wester, Jochem Rut-
gers, Christiaan Baaij, Ahmed Ibrahim, Jerrin Pathrose, Hendrik Folmer, Ali Asghar, Anuradha
Ranasinghe, Viktorio El Hakim, Luuk Oudshoorn, Arvid van den Brink, Vincent Smit, Alexan-
der Karpukhin, Emil Rijnbeek, Bart Verstoep, Mark Krone, Shing Long Lin, Koen Raben, Johan
Oedzes, Emil Kerimov, Masoud Abbasi, Mina Mikhael, Siavash Safapourhajari, Oguz Meteer, Guus
Kuiper, Gijs Goeijen, Gerwin Hoogsteen, and Robert de Groote.

xvi

their encouragement but also for providing me enough time to complete this
manuscript.

I would like to thank the Pakistani community in Enschede, especially PSA
(University of Twente), to help me & my family not to feel alone. Thank you
for organizing social and sports events during my stay in Enschede. I would also
like to thank the University of Twente management for providing on-campus
facilities like the sports centre and prayers room that increased my efficiency of
work during my stay here.

Life of a Ph.D. candidate is neither in-efficient nor complex, it’s simply tough,
especially when in a foreign country. One has to embrace an ambitious routine
to get through. However, that’s not possible without the support of life-partner.
I would like to thank my wife, Zainab, for being resilient and for her consistent
support from finding a suitable Ph.D. position to defending it. Furthermore,
I would like to thank my parents for their utmost efforts and encouragement
towards pursuing education sincemy childhood. I also want to thankmy brother,
sisters, other family members and friends for their support and well-wishes
throughout my Ph.D. tenure.

Ghayoor Gillani
Enschede, July 2020.

xviiContents

1 Introduction 1

1.1 Approximate Computing and Hardware Efficiency 2

1.1.1 Approximate Computing . 2

1.1.2 Error Resilience . 2

1.1.3 Hardware Efficiency . 3

1.2 Problem Statement . 3

1.3 Research Objective . 4

1.4 Radio Astronomy Processing . 4

1.5 Contributions . 5

1.6 Thesis Outline and Organization 7

2 Background 9

2.1 Inexact Computing . 9

2.1.1 Stochastic Computing . 10

2.1.2 Probabilistic Computing . 10

2.1.3 Approximate Computing . 11

2.2 Terminology . 12

2.2.1 Efficiency . 12

2.2.2 Performance . 12

2.2.3 Quality . 12

2.2.4 Accuracy and Precision . 13

2.2.5 Quality-Efficiency Trade-off . 13

2.2.6 Pareto Optimal Designs and Pareto Front 13

2.3 Error Resilience Analysis . 14

2.3.1 Quality of Service Profiler . 14

2.3.2 Intel’s Approximate Computing Toolkit 15

2.3.3 Automatic Sensitivity Analysis for Data 15

2.3.4 Statistical Error Resilience Analysis 16

2.4 Approximate Computing Techniques 18

2.4.1 Software Level Techniques . 18

2.4.2 Architecture Level Techniques 18

xviii

C
o
n
t
e
n
t
s

2.4.3 Hardware-/Circuit-Level Techniques 19

2.5 Approximate Recursive Multipliers 26

2.6 Evaluation . 29

3 Exploiting Error Resilience of Iterative Algorithms 31

3.1 Related Work . 33

3.1.1 Adaptive Accuracy Techniques 33

3.1.2 Error Resilience Analysis Techniques 34

3.2 Error Resilience Analysis of Iterative Algorithms 35

3.2.1 Adaptive Statistical Approximation Model (Adaptive-SAM) . . . 35

3.2.2 High-level Error Resilience Analysis 37

3.2.3 Significance of Quality Function Reconsideration 41

3.3 Energy Efficient Accelerator Design for Iterative Algorithms . 42

3.3.1 Design of a Heterogeneous Least Squares Accelerator 43

3.3.2 Experimental Results . 46

3.4 Conclusions . 52

4 Error Cancellation in Accumulation Based Approxi-

mate Accelerators 55

4.1 Related Work . 58

4.2 Self-Healing Methodology for Approximate Square-accumulate
(SAC) . 59

4.2.1 Terminology . 59

4.2.2 Employing Self-Healing for Approximate SAC Architecture . . . 60

4.3 Analysis of Approximate SAC Composed of Truncated Squarer 61

4.3.1 Mathematical Analysis of Truncated Squaring 61

4.3.2 Quality Analysis of Various Truncation Alternatives 63

4.4 Absolute Approximate Squarer Mirror Pair (AASMP) 66

4.4.1 Design of 2× 2 Absolute Approximate Mirror Pairs 68

4.4.2 8× 8 AASMP Design . 69

4.4.3 n× n AASMP Design . 70

4.5 Designing an Optimal Approximate SAC Accelerator 70

4.6 Experimental Setup and Results . 77

4.6.1 Experimental Setup for Quality-efficiency Trade-off Study 77

4.6.2 Quality-efficiency Trade-off of 8×8 Squarer Pairs in a SAC Accel-
erator . 77

4.6.3 Radio Astronomy Calibration Processing – A Case Study 80

4.6.4 Discussion and Future Work . 80

4.7 Conclusions . 81

xix

C
o
n
t
e
n
t
s

5 Internal-Self-HealingMethodology forAccumulation

Based Approximate Accelerators 85

5.1 Related Work . 87

5.2 Designing an Approximate MAC with the Internal-Self-Healing
(ISH) Methodology . 90

5.2.1 Approximate Multiplier for MAC 91

5.2.2 Overflow Handling . 91

5.2.3 Comparison of the proposed ISH with the conventional approxi-
mate computing methodology 95

5.3 Experimental Results . 97

5.3.1 Experimental Setup . 97

5.3.2 Design Space Exploration of the Proposed ISH methodology . . . 98

5.3.3 Scalability and Comparison of the ISH with the Conventional
Methodology . 99

5.3.4 Case Study: Radio Astronomy Calibration Processing 104

5.3.5 Synthesis based comparison . 105

5.3.6 Discussion and Future Work . 108

5.4 Conclusions . 109

6 Conclusions and Recommendations 113

6.1 Contributions . 113

6.1.1 Error Resilience Analysis Of Iterative Algorithms 113

6.1.2 Exploiting Error Resilience Of Iterative Algorithms 114

6.1.3 Designing Approximate Accelerators For Accumulation Based Al-
gorithms . 114

6.1.4 Radio Astronomy Calibration Processing – A Case Study 116

6.2 Recommendations for future work 116

A 8× 8 Squarer Construction 121

B Quality Evaluation for Approximate Squarers 125

C Design Space Exploration of Approximate Multipliers

for MAC 131

C.1 Huge Design Space - A Challenge 131

C.2 Design Space Exploration . 132

C.3 Viability of our approach . 137

xx

C
o
n
t
e
n
t
s

Acronyms 141

Bibliography 143

List of Publications 155

xxi

xxii

11
Introduction

Abstract – While the efficiency gains due to process technology improve-
ments are reaching the fundamental limits of computing, emerging paradigms
like approximate computing provide promising efficiency gains for error re-
silient applications. However, the state-of-the-art approximate computing
methodologies do not sufficiently address the accelerator designs for iterative
and accumulation based algorithms. Keeping in view a wide range of such
algorithms in digital signal processing, this thesis investigates systematic ap-
proximation methodologies to design high-efficiency accelerator architectures
for iterative and accumulation based algorithms. As a case study of such algo-
rithms, we have applied our proposed approximate computing methodologies
to a radio astronomy calibration application.

Increasing hardware efficiency is one of the major targets to innovate computing
devices. This includes the following, (1) reducing the size/chip-area of a transis-
tor, i.e., increasing the number of transistors per unit area (transistor density),
(2) reducing the power consumption of a transistor to keep the power density
constant while the transistor density is increased, (3) increasing the speed, i.e.,
increasing the performance. The increase in hardware efficiency is generally
achieved by the advancements in Very Large Scale Integration (VLSI) technol-
ogy. The improvements in transistor density are more or less following Moore’s
law [84]. The law states that the transistor density doubles every 1.5 years. For
that matter, we have been witnessing smaller sizes of devices that have gradually
brought gadgets in our hands. In the last century, the advancements in VLSI
technology were also following Dennard’s scaling of keeping the power density
constant [28].

However, there are physical limitations to the increase in efficiency of computing
devices [10, 73]. One of the biggest challenges faced by designers today is power-
/energy-consumption (Dennard’s scaling) [34]. The power density is not scaling
as well as compared to the transistor density [13, 73]. The consequence is that

2

C
h
a
p
t
e
r
1–

I
n
t
r
o
d
u
c
t
i
o
n

a part of an integrated circuit (IC) has to be turned-off to control the power
budget, bringing us to the era of dark silicon [33, 73, 113]. While architectural
power management techniques like Dynamic Voltage and Frequency Scaling
(DVFS) and clock-/power-gating are not enough to meet the power challenges
[115], new computing paradigms have to be explored. One of the paradigm shifts
is to move from conventional ’always correct’ processing to processing where
controlled errors are allowed. In this thesis, computing techniques that are based
on the latter paradigm are called approximate computing techniques or in short
approximate computing.

1.1 Approximate Computing and Hardware Efficiency

1.1.1 Approximate Computing

Approximate computing can be regarded as an aggressive optimization because
it allows controlled inexactness and provides results with the bare minimum
accuracy to increase computing efficiency. An increase in computing efficiency
or simply efficiency1 means reduction in computing costs like run-time, chip-area,
and power/energy consumption. The introduction of inexactness brings errors
in the intermediate and/or the final outcomes of the processing compromising
output quality, or simply the quality of processing. Approximate computing
has shown high-efficiency gains for error-resilient applications like multimedia
processing, machine learning and search engines [128, 132]. Such applications
tolerate a quantified error within the computation while producing an acceptable
output.

1.1.2 Error Resilience

An application/algorithm can be regarded as error-resilient or error-tolerantwhen
it provides an outcome with required accuracy while utilizing processing com-
ponents that do not always compute accurately. There are several reasons why
an application is tolerant of errors as discussed in [26]. These include noisy or
redundant inputs of the algorithm, approximate or probabilistic computations
within the algorithm, and a range of acceptable outcomes.

Image processing and search engines are among the prominent examples of error-
resilient applications. The outcome of image processing is generally observed
by humans who have perceptional limits, therefore, the outcome is acceptable
as far as the observer cannot differentiate between the quality of an accurately
computed image and an approximately computed image. In the case of search
engines, a similarity rank is computed between a vector in the search space with
that of the objective vector. A high similarity rankmeans a bettermatching of the
search objective. While computing the similarity ranks, accurate computations

1See Section 2.2 for definitions.

3

1.
1.
3
–
H
a
r
d
w
a
r
e
E
ffi

c
i
e
n
c
y

are not required as far as the similarity ranking of the search vectors remains the
same.

The quantification of error tolerance is achieved by utilizing error resilience
analysis tools [26, 41, 78, 80]. Approximate computing techniques exploit this
error tolerance to optimize the computing systems at software-, architecture-
and circuit-level to achieve efficiency gains [50, 81, 115].

1.1.3 Hardware Efficiency

An increase in hardware efficiency means a reduction in computing costs at the
circuit-/hardware-level, e.g., latencywithin circuits, chip-area, and power/energy
requirements of the circuit to compute an algorithm.

At the hardware level, the prominent approximation techniques are transistor-
level pruning and logic-level pruning. Pruning refers to the elimination of the
parts of a circuit that have a low contribution towards the final output. In this
regard, approximate adders and multipliers have been researched for their indis-
pensable role in digital signal processing [39, 63, 101, 114]. For instance, Kulkarni
et al present an approximate multiplier that provides 32% to 45% power reduc-
tion with an average error of 1.4% to 3.3%. For an image filtering application,
they demonstrate an average power reduction of 41%with a signal-to-noise ratio
(SNR) of 20.4 dB [63].

1.2 Problem Statement

While the state-of-the-art approximate computing techniques have shown highly-
efficient adders and multipliers, they do not sufficiently address accelerator de-
signs for iterative and accumulation based algorithms. Iterative algorithms are
mathematical methods that utilize an initial guess to compute a sequence of
approximate solutions until the outcome converges to an acceptable solution.
An accumulation based algorithm accumulates the outcome of its component-
process, e.g., a multiplication, to compute an overall outcome. For example, to
compute an inner product of two vectors, products of corresponding elements
of the vectors are accumulated. Such an algorithm can be implemented as a
multiply-accumulate (MAC) unit/accelerator. Similarly, to compute an inner
product of a vector, squares of the elements of the vector are accumulated. Such
an algorithm can be implemented as a square-accumulate (SAC) unit/accelerator.

The state-of-the-art approximate computing methodologies apply approxima-
tions by restricting the error rates and/or error magnitudes. This ensures an
acceptable outcome when applied to general error-resilient algorithms. However,
when applied to iterative and accumulation based algorithms, these techniques
limit the achievable efficiency gains due to limited approximations.

4

C
h
a
p
t
e
r
1–

I
n
t
r
o
d
u
c
t
i
o
n

1.3 Research Objective

Keeping in view a wide range of iterative and accumulation based algorithms
[26, 76, 104, 107], the research objective for this thesis is the following,

Investigating high-efficiency approximate accelerator designs for iterative and
accumulation based algorithms.

We further decompose our research objective into the following research ques-
tions,

» How to analyze iterative algorithms for error resilience? and how trust-
worthy is a precision-based quality metric (convergence) in the error
resilience analysis process?

» How to exploit intrinsic error resilience of iterative algorithms effectively,
i.e., how to design approximate accelerators for such algorithms?

» How to design high-efficiency approximate accelerators for accumulation
based algorithms? In accumulation based algorithms like MAC (or SAC),
there is an accumulation stage after multiplication (or squaring). If the
multiplier (or squarer) is approximated, the accumulator accumulates
the error. Is it possible to design such approximate multipliers (or squar-
ers) that bring an opportunity to cancel out errors within accumulation
without the overhead of error correction circuitry?

» Considering a case study of radio astronomy processing, how do the
proposed approximate computing methodologies affect the quality and
efficiency of the processing? Moreover, what are the opportunities and
challenges to embrace approximate computing principles for radio astron-
omy processing?

In view of the above, we have investigated error resilience analysis techniques
and approximate computing elements targeted for the iterative and accumula-
tion based algorithms. We have performed a case study of a radio astronomy
processing application, namely the calibration processing, which is an iterative
algorithm with underlying accumulation based computations.

1.4 Radio Astronomy Processing

Radio astronomy studies celestial objects by utilizing radio telescopes. Modern
radio telescopes like the Square Kilometer Array (SKA) aim to increase our
understanding of the universe like creation and evolution of galaxies, cosmic
magnetism, and the possibility of life beyond earth [1]. To investigate such
phenomena, a radio telescope has to offer very high sensitivity, resolution, and
survey speed [19]. This brings terabytes of raw data per second to be processed.
Consequently, radio astronomy processing is an energy-/power-hungry applica-
tion.

5

1.
5
–
C
o
n
t
r
i
b
u
t
i
o
n
s

Imaging in radio astronomy is mainly composed of the following steps [14, 126]:
correlation of digitized input signals acquired from pairs of distinct stations to
obtain visibilities, calibrating the instrument gains for environmental effects, and
converting the corrected visibilities to sky images. The Science Data Processing
(SDP) pipeline of radio astronomy processing acquires the visibilities as input
and generates a radio image of the sky as output. It consists of an instrument
calibrator, gridder, and FFTs [51, 124, 126] and is dominated by iterative and
accumulation based algorithms like least squares [107]. An estimation of power
consumption was made for the SKA in 2014, which predicts a power consump-
tion of 7.2MW for the fused multiply-add operations within the SDP pipeline
of the medium frequency array SKA1-Mid [51].

The input signal received at a radio telescope has a low signal-to-noise ratio (SNR)
and can be regarded as Gaussian noise [21]. The signal processing pipeline in
radio astronomy can be considered as an error-resilient application because it re-
flects the following attributes: noisy/redundant data input, and approximate/sta-
tistical computation patterns. An example is the calibration algorithm, StEFCal
[107]. It computes antenna gains of a radio telescope, iteratively, by processing
the model and measured visibilities. It utilizes a least squares algorithm that is
approximate in nature.

In this thesis, the calibration processing (StEFCal) is utilized as a case study to
analyze and develop promising approximate computing methodologies for itera-
tive and accumulation based algorithms. In Chapter 3, we discuss the StEFCal
algorithm in detail and present its error analysis. Continuing with Chapter 3,
and also in Chapter 4 and Chapter 5, we present the quality-efficiency advantages
for StEFCal based on proposed accelerator designs. Our approximate accelerator
designs provide efficiency benefits for Application Specific Integrated Circuits
(ASICs). On the other hand, Field Programmable Gate Arrays (FPGAs) based
acceleration is also common in radio astronomy processing [46, 93, 131]. It is to
be noted that our designs may require modifications for optimized FPGA based
acceleration as the approximate computing techniques do not directly translate
into efficiency benefits for FPGA based architectures, see Section 2.4.3. Finally,
in Chapter 6, we discuss overall opportunities and future directions for energy-
/power-efficient radio astronomy processing from the perspective of approximate
computing techniques (based on [G:5]).

1.5 Contributions

This thesis contributes to approximate computing methodologies for iterative
and accumulation based algorithms by providing several improvements, such as;

We contribute to improving the error resilience analysis of iterative algorithms
that utilize a convergence criterion to indicate an acceptable solution. The con-
vergence criterion is a precision-based quality function that provides a guarantee
that the solution is precise enough to terminate the iterative computations. We

6

C
h
a
p
t
e
r
1–

I
n
t
r
o
d
u
c
t
i
o
n

propose an adaptive statistical approximation model for error resilience analy-
sis, which provides an opportunity to divide an iterative algorithm into exact
and approximate iterations. This improves the existing error resilience analysis
methodology by quantifying the number of approximate iterations in addition to
other parameters used in the state-of-the-art techniques. Moreover, we demon-
strate that the precision-based quality function (the convergence criterion) is
not necessarily sufficient in the error resilience analysis of iterative algorithms.
Therefore, an additional accuracy-based quality function has to be defined to
assess the viability of the approximate computing techniques.

We propose an energy-efficient accelerator design for iterative algorithms. Our
design is based on a heterogeneous architecture, where the heterogeneity is in-
troduced using accurate and approximate processing modules. Our proposed
methodology exploits the intrinsic error resilience of an iterative algorithm by
processing the initial iterations on approximate modules while the later ones are
processed on accurate modules. Our accelerator design does not increase the
number of iterations (as compared to the conventional accurate counterpart)
and provides sufficient precision to converge to an acceptable solution.

We propose an error-cancellation based design methodology for accumulation
based approximate accelerators like square-accumulate (SAC). We employ a self-
healing2 (SH) methodology, wherein the squarer is regarded as an approximation
stage and the accumulator as a healing stage. We propose to deploy an approx-
imate squarer mirror pair, such that the error introduced by one approximate
squarer mirrors the error introduced by the other, i.e., the errors generated by
the approximate squarers are approximately additive inverse of each other. This
helps the healing stage (accumulator) to automatically cancel out the error orig-
inated in the approximation stage, and thereby to minimize the quality loss.
Our case study shows that the proposed SH methodology provides a more ef-
fective quality-efficiency trade-off as compared to the conventional approximate
computing methodology.

Nevertheless, the SH methodology is constrained to parallel implementations
with similar modules (or parts of a datapath) in multiples of two to achieve error
cancellation. Therefore, we propose a methodology for Internal-Self-Healing
(ISH) that allows exploiting self-healing within a computing element internally
without requiring a paired, parallel module. We employ our ISH methodology
to design an approximate multiply-accumulate (xMAC), wherein the multiplier
is regarded as an approximation stage and the accumulator as a healing stage. We
propose to approximate a recursive multiplier in such a way that a near-to-zero
average error is achieved for a given input distribution to cancel out the error at
an accurate accumulation stage.

The above contributions address our research objective to design approximate
accelerators for iterative and accumulation based algorithms that bring a more

2In this thesis, the term self-healing differs from that of [59], see Chapter 4 for details.

7

1.
6
–
T
h
e
s
i
s
O
u
t
l
i
n
e
a
n
d
O
r
g
a
n
i
z
a
t
i
o
n

effective quality-efficiency trade-off as compared to the state-of-the-art approxi-
mate computing methodologies. It is to be noted that quantitative results very
much depend on specific synthesis technology, tooling, and settings. Therefore,
we have performed quantitative comparisons between designs that belong to
the proposed and the state-of-the-art approximate computing methodologies by
implementing them using the same technology, tooling, and settings.

1.6 Thesis Outline and Organization

Following this introductory chapter, we provide a brief background of the ap-
proximate computing field in Chapter 2. The background discusses in-exact
computing in general and approximate computing techniques in particular. In
Chapter 3, we discuss our error resilience analysis methodology for iterative algo-
rithms and propose an energy-efficient approximate least squares accelerator de-
sign for iterative algorithms. Chapter 4 and Chapter 5 propose error-cancellation
based approximate accelerators for SAC and MAC processing. Finally, Chap-
ter 6 discusses the overall conclusions of our research and indicates the further
line of action towards high-efficiency approximate accelerators for iterative and
accumulation based algorithms.

While Chapter 2 provides a basic understanding of approximate computing tech-
niques, the related work of each contribution is discussed in the specific chapter.
The references are provided in the Bibliography section. However, references
to our own publications are provided in the List of Publications section. Own
publications are cited as [G:<number>], e.g., [G:4].

8

92
Background

Abstract – When an algorithm is resilient to the effects of noise in its compu-
tation or tolerates a relaxation in its specifications, deviations from accurate
behavior can be traded by software and hardware to achieve a higher comput-
ing efficiency. This chapter discusses such computing paradigms like stochastic,
probabilistic and approximate computing. Moreover, we discuss the approxi-
mate computing concepts that help the readability of the subsequent chapters.

2.1 Inexact Computing

Inexact computing allows controlled errors in computing to increase efficiency.
Efficiency gains have been demonstrated for error-resilient applications such
as multimedia digital signal processing, search engines, radio communication,
machine learning, and scientific computing [3, 4, 81, 132]. The design target in
inexact computing is to achieve the best possible computing efficiency for a given
quality-constraint of the algorithm, or to achieve the best quality output for a
given cost constraint. In literature, inexact computing is also coined as best-effort
computing, as it executes an algorithm without guaranteeing a correct output,
i.e., an algorithm is executed on best-effort bases [18, 76]. Another related term
is error-efficient computing, originating from the notion that it prevents as many
errors as necessary to execute an algorithm [119].

In literature, inexact design techniques are mainly divided into three categories,
namely: stochastic computing, probabilistic computing, and approximate com-
puting.

This chapter is partly based on [G:7].

10

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

2.1.1 Stochastic Computing

In stochastic computing, data is represented with randomized bit-streams. In
contrast to normal binary computation, there is no significance in the order
of 1’s and 0’s [4, 5]. For instance, both (1,1,0,1,1,1,0,1) and (1,0,1,1,1,0,1,1)
mean 0.75 in stochastic computing as the probability of having a 1 at an arbitrary
position is 0.75. The advantage is that the computations become simple, e.g.,
a simple AND operation provides the multiplication computation. Consider
an example of multiplying two numbers x and y, which are numbers between
0 and 1. Their product can be given as: P = x ∗ y. By applying the stochastic
computing principle,

P ′ = x ′ ∧ y ′ (2.1)

where∧ is the bit-wise ANDoperation. x ′ and y ′ are the randomized bit (stochas-
tic) representations of x and y. Let x = 4/8 and y = 6/8 and the randomized bit
representations of x and y are (0,1,1,0,1,0,1,0) and (1,0,1,1,1,0,1,1) respec-
tively. Therefore,

P ′ = (0,1,1,0,1,0,1,0)∧ (1,0,1,1,1,0,1,1) = (0,0,1,0,1,0,1,0) (2.2)

where (0,0,1,0,1,0,1,0) represents 3/8, the expected result of the multiplication
operation.

Nevertheless, stochastic computing implies computing on probabilities and there
is a chance of error due to various possible randomized bit streams. For in-
stance, it is equally possible that x = 4/8 and y = 6/8 are represented by
the following randomized bit representations: x ′ = (0,1,0,1,1,1,0,0) and y ′ =
(1,1,1,0,1,0,1,1) [4]. In such a case,

P ′ = (0,1,0,1,1,1,0,0)∧ (1,1,1,0,1,0,1,1) = (0,1,0,0,1,0,0,0) (2.3)

where (0,1,0,0,1,0,0,0) represents 2/8, which is an approximation of the ex-
pected result.

Formally introduced in 1960 [36], stochastic computing was an attractive choice
of computing for its simple arithmetic operations like multiplication, especially
when the transistors were expensive. However, as the transistors became cheaper,
its advantages were dominated by its disadvantages like slow speed and limited
precision [4]. Keeping in view the disadvantages of stochastic computing, it has
a limited application range, a few examples are specific control systems [122] and
neural networks [29, 58].

2.1.2 Probabilistic Computing

Probabilistic computing refers to a circuit (or fundamentally a CMOS switch)
operating at such a low-voltage that its intrinsic noise affects its behavior. The
consequence is that a trade-off is introduced between energy consumption (E)
and the probability of correct output (p). In his pioneering research [90, 91],

11

2
.
1.
3
–
A
p
p
r
o
x
i
m
a
t
e
C
o
m
p
u
t
i
n
g

Krishna V. Palem showed that the potential energy saving of a probabilistic
switch (as compared to a deterministic switch) is kBT ln(1/p) Joules. Here T
and kB refer to temperature and the Boltzmann constant respectively. This shows
that decreasing the probability of correctness (p) results in an increase in energy
savings and vice versa.

By employing probabilistic computing, an improvement in energy efficiency has
been shown for probabilistic algorithms like probabilistic cellular automata in
[22]. It is to be noted that a probabilistic algorithm requires a random source
while being processed by deterministic hardware. On the other hand, when
using a randomized (probabilistic) switch as a basic building block, an explicit
random source is not required [91]. Moreover, energy efficiency improvements
have also been demonstrated for digital signal processing algorithms (other than
probabilistic algorithms) that can tolerate quantified noise in computations [37,
57].

Probabilistic computing is referred to as a non-deterministic inexact computing
paradigm, i.e., if a specific input is provided for several times, a specific output
is not guaranteed. Only the probability of correct output (p) is guaranteed for
which noise-based models have been formulated in [24, 66, 91]. These models
provide probability of correctness (p) as a function of noise RMS [24]. In the
context of multi-stage probabilistic circuits (e.g., a ripple carry adder), these
models assume error propagation based on the probability of incorrectness (1−
p) of each stage only [66]. We have contributed to identifying the impact of
delay propagation in probabilistic multi-stage circuits. The delay introduced due
to low-voltage operation also adds to the error that is propagated through a multi-
stage circuit. Our results highlight a need to improve the existing probabilistic
computingmodels to include the effects of gate-width and frequency of operation
[G:6].

Featuring a low-voltage scheme, probabilistic computing gained a lot of interest
in its beginning for its high energy efficiency. However, it proved to be less effec-
tive as compared to deterministic inexact computing, especially for the algorithms
that do not have probabilistic nature. In [71], Palem and his co-authors show
that removing some parts of a circuit based on their low probability of usage in-
troduces deterministic inexact computing that provides a more effective trade-off
as compared to probabilistic computing. Moreover, probabilistic computing is
only valid for the voltage of operation nearly equivalent to the CMOS intrinsic
noise level. As this is not true for any CMOS technology at present, probabilistic
computing is not an attractive approach for inexact computing nowadays [110].

2.1.3 Approximate Computing

Besides bringing a different representation of signals (stochastic computing) or
bringing a circuit to operate in the probabilistic region (probabilistic computing),
there is plenty of research named under approximate computing. This emerging
paradigm introduces approximations at software-, architecture-, and hardware-

12

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

level to achieve efficiency benefits. Loop perforation, reducing refresh rate of
Dynamic Random Access Memory (DRAM), and circuit pruning are among
the prominent examples of approximate computing.

In this thesis, we mainly focus on the approximate computing paradigm and
develop methodologies for iterative and accumulation based algorithms. A brief
survey of approximate computing techniques is provided in Section 2.4 along
with the explanation of the designs that serve to ease the readability of the
following chapters. We first provide the terminology to introduce the terms that
are used throughout the thesis.

2.2 Terminology

2.2.1 Efficiency

In computing systems, the term computing efficiency (or simply efficiency) is used
in contradiction of computing resource usage or computing costs for executing a
specific task. It is defined as the output of a computing system per unit resource
input, e.g., energy efficiency of a floating-point processor is defined as floating-
point operations per Joule or floating-point operations per second per Watt.
An increase in efficiency is referred to as a reduction in computing costs like
chip-area, runtime, and/or power/energy consumption. In this thesis, following
the literature, an increase in computing efficiency or a decrease in computing
costs means the same; and a decrease in computing efficiency or an increase in
computing costs means the same.

2.2.2 Performance

Performance is the reciprocal of execution time [44]. Let t1 be the execution
time of a process, its performance can be given as 1/t1. Performance can also be
defined as the output of a computing system per unit time, e.g., performance of
a floating-point processor can be given as floating-point operations per second
(FLOPS). In general, and also in this thesis, performance is referred to as the speed
of the computation. Therefore, an increase in performance means decreasing
runtime to execute a specific task. For instance, an increase in performance
is achieved by reducing the latency of a circuit or by reducing the number of
iterations that utilize a specific circuit.

2.2.3 Quality

The term output quality (or simply quality) is defined in contradiction to devia-
tion from exact behavior or error. In this thesis, unless explicitly mentioned, the
terms exact and accurate refer to a specified precision where there is no approx-
imation involved with reference to the specified precision. For instance, if the
specified precision is 8-bit, the 8-bit design (e.g., an 8-bit multiplier) is consid-
ered as accurate or exact design. Any approximations, e.g., in terms of data (e.g.,

13

2
.
2
.
4
–
A
c
c
u
r
a
c
y
a
n
d
P
r
e
c
i
s
i
o
n

reducing the precision of inputs to 7-bit) or circuit (e.g., removing parts of 8-bit
multiplier circuit), brings an inexact or in-accurate or approximate entity, where
the entity is referred to as circuit and/or data. Moreover, an increase in quality is
referred to as a reduction in error. In literature, both terms (quality and error)
have been used to indicate the output quality. Also in this thesis, an increase in
output quality or a decrease in output error means the same; and a decrease in
output quality or an increase in output error means the same.

2.2.4 Accuracy and Precision

Accuracy defines how close the output of a system is to that of the exact behavior.
In this thesis, we define exact behavior as the theoretical behavior of a computing
system for a specified precision. For instance, an 8-bit multiplier has an exact
behavior when 8-bit inputs are multiplied without any approximation. On the
other hand, precision is referred to as the amount of detail utilized in representing
the output [2]. Therefore, it provides a measure of how close the outputs of a
specific system are to each other. In the context of iterative algorithms, where
the iteration process is terminated based on convergence, the precision of an
approximate computing system is also important. In Chapter 3, we elaborate on
this difference based on our analysis of an iterative algorithm.

2.2.5 Quality-Efficiency Trade-off

While approximate computing aims to increase the efficiency of a computing
system, some errors may be introduced that degrade the quality of the output.
Systematically increasing the level of approximations, e.g., gradually decreasing
the bit-width of operands in a multiplier, generally increases the efficiency of a
computing system and decreases the output quality. This introduces a trade-off
between the quality of output and the efficiency and is referred to as quality-
efficiency trade-off. For illustration, Fig. 2.1 shows the area and mean error of
several design alternatives of an 8-bit squarer with different quality (or conversely
error) and efficiency (or conversely resource usage) levels. In literature, another
term is also used: quality-cost trade-off, which is merely an alternate term.

2.2.6 Pareto Optimal Designs and Pareto Front

In approximate computing, only those design alternatives are interesting that
provide the best efficiency for a given quality constraint or provide the best
quality for a given efficiency target. Such design alternatives are called pareto
optimal designs or pareto optimal configurations and are represented as pareto
optimal points in the trade-off plot as shown in Fig. 2.1. All the other design
alternatives are referred to as sub-optimal designs or sub-optimal configurations
and are represented as sub-optimal points in the trade-off plot. The line joining
the pareto-optimal points is referred to as pareto front. While comparing two
approximate computing methodologies, their pareto fronts can be compared to

14

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

50 55 60 65 70 75

Area [m2]

10
-4

10
-2

10
0

M
E

 [
n

o
rm

a
liz

e
d

]

Sub-optimal Points

Pareto Front

Pareto-optimal Points

Figure 2.1: An illustration of quality-efficiency trade-off of an approximate 8-
bit squarer for uniformly distributed input. ME stands for mean error. The
chip-area (Area) values are estimated for TSMC 40nm Low Power (TCBN40LP)
technology synthesized at 1.43GHz. Pareto-optimal points are chosen that pro-
vide the best efficiency designs for a given quality constraint and vice versa.

find which one provides a more effective trade-off, see Chapter 4 (Fig. 4.12) for
an example.

2.3 Error Resilience Analysis

Error resilience is inherent to an application due to its possibly redundant/noisy
real-time inputs, probabilistic or self-healing computational patterns, and a range
of acceptable outputs [26]. However, in general, there are error-sensitive parts
or kernels within every error-resilient application. Therefore, it is important
to analyze applications for error resilience to separate the error-sensitive parts
from that of error-tolerant parts and to get insights into promising approxima-
tion techniques before employing the implementation efforts [26, 108]. In this
section, we discuss some of the important works that analyze the error resilience
of applications.

2.3.1 Quality of Service Profiler

The quality of service (QoS) profiler indicates the resilient parts of an application
that can be replaced with approximate computations to gain performance with
a low error introduction [78]. It transforms loops within an application to
perform a reduced number of iterations to generate a quality-efficiency trade-
off. This technique is called loop perforation in literature. The QoS profiler
utilizes a user-provided quality metric to quantify the resilience within the sub-

15

2
.
3.
2
–
I
n
t
e
l
’
s
A
p
p
r
o
x
i
m
a
t
e
C
o
m
p
u
t
i
n
g
T
o
o
l
k
i
t

computations. The authors applied their technique to several applications and
demonstrated an increase in performance (two to three times) with a less than
10% of quality degradation.

2.3.2 Intel’s Approximate Computing Toolkit

The intel’s approximate computing toolkit (iACT) is an open-source tool that
analyzes the error resilience of an algorithm by applying approximations to
user annotated pragmas [80]. Similar to QoS, the iACT toolkit offers resilience
analysis based on a quality function provided by the user. However, unlike QoS,
the sub-computations to be considered for the error resilience analysis are also
identified by the user.

Specifically, the user identifies the parts of the code, say functions, with pragmas.
The pragma_axc simulates the noisy hardware behavior, i.e., noisy load and store
effects in memory operations, and noisy computation effects in floating point
arithmetic instructions. The pragma axc_memoize applies approximate memoiza-
tion to the annotated sub-computation, where memoization refers to creating a
table of outputs based on the ranges of inputs. Instead of executing an expensive
floating-point operation, the related approximate output is selected from the
table by just looking at the input range. The pragma axc_precision_reduce re-
duces the precision range of floating-point operations to fixed-point operations.
The authors applied their tool to sobel filtering, bodytracking and classification
algorithms and demonstrated up to 22% of energy reductions with a maximum
of 10% quality degradation.

2.3.3 Automatic Sensitivity Analysis for Data

Unlike iACT, the automatic sensitivity analysis for approximate computing
(ASAC) tool, analyzes the data sensitivity only and in an automatic fashion,
without the user annotation [105]. In this error resilience analysis technique,
the variables of a program are systematically perturbed to assess their effect on
the output quality. The variables are ranked based on their contribution to
the output error. Given the overall ranking of the variables, they are classified
as approximable and non-approximable. To demonstrate the viability of their
approach, the authors applied ASAC to a set of benchmark applications and
identified approximable and non-approximable variables. Afterwards, they ap-
plied bit-flip error behavior in their identified approximable variables for the
FFT algorithm and showed that a less than 4% quality degradation is observed.
However, applying the same error behavior to their identified non-approximable
variables, they showed that the output becomes simply unacceptable.

Nevertheless, ASAC is a dynamic tool that requires computationally expensive
runs of the target algorithm [106]. On the other hand, the program analysis
for the approximation-aware compilation (PAC) tool introduces a static analysis
method that has a significantly less runtime as compared to dynamic tools like

16

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 0111

(a) Truth table of M1 [63].

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0000 0010 0010
10 0000 0010 0100 0110
11 0000 0010 0110 1001

(b) Truth table of M2 [101].

Figure 2.2: Truth tables of two approximate multiplier (2× 2) designs discussed
in [115]. M1 has a lower error rate and higher error magnitude as compared to
that of M2.

ASAC [106]. In addition to distinguishing the variables as approximable and
non-approximable, PAC quantifies the Degree of Approximation (DoA) for
each variable. The DoA guides the level of approximation that can be applied
to the data, e.g., the number of least significant bits of a variable that can be
approximated.

2.3.4 Statistical Error Resilience Analysis

A Motivational Example

Consider two approximate multiplier designs (AxMul1 and AxMul2) as discussed
in [115]. Here we refer to them as M1 and M2. These multipliers have a size of
2× 2 (input size= 2-bit for each operand) and can be used to construct higher-
order multipliers, e.g., 4×4, 8×8, and so on. M1 has better area and power costs
as compared to the accurate design with one error case (error magnitude=2)
out of sixteen possible cases, see Fig. 2.2a for the truth table where the error
case is marked in black. M2 is even more energy-efficient as compared to M1.
However, the error rate for M2 is three out of the sixteen possible cases (error
magnitude=1), see Fig. 2.2b for the truth table. Therefore, M2 has a higher
error rate and a lower error magnitude as compared to M1 while offering better
energy efficiency.

The selection from such design choices is based on an algorithm’s error resilience
characteristics depending on whether the target algorithm can tolerate a higher
error rate or higher error magnitude. Moreover, this design space (number of
alternatives) becomes larger for higher-order multipliers that can have a number
of such multipliers (approximate or accurate) and a number of adders (approxi-
mate or accurate) for the adder tree to compute the final higher-order product
[101]. For that matter, it is important to analyze an algorithm for statistical error
resilience, which is referred to as high-level error resilience.

17

2
.
3.
4
–
S
t
a
t
i
s
t
i
c
a
l
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
A
n
a
l
y
s
i
s

16/05/2017

ERROR RESILIENCE ANALYSIS

Vinay K. Chippa et al “Analysis and Characterization of Inherent Application Resilience for Approximate Computing” DAC 2013

CF’17 9

Profiling • Distinguish Dominant
Kernels

Identify Error
Resilience

• Inject errors at outputs of Dominant Kernels

• Validate with relaxed quality function

Characterize Error
Resilience

• SAM analysis
• TSAM analysis
• Actual quality function validation

METHODOLOGY

Figure 2.3: Error resilience analysis methodology based on the application re-
silience characterization framework [26]. The dominant parts of the application
are distinguished in the profiling phase and tested for error resilience by injecting
errors. The identified error resilient parts are then characterized by applying the
statistical approximation model (SAM) and technique specific approximation
model (TSAM).

ARC Framework

The Application Resilience Characterization (ARC) framework [26] includes
the statistically distributed error injection model to generate the statistical error
resilience profile of an algorithm. That is, it quantifies the error resilience of an
application based on statistical parameters: errormean (EM), error predictability
(EP) and error rate (ER). EM determines the mean of the normally distributed
error. EP corresponds to the standard deviation of the normally distributed
error [26]. Noteworthy, referring standard deviation to error predictability is
nonintuitive because when the standard deviation is increased the predictability
of error does not increase. However, to maintain the convention of the authors
in [26], we also use EP to indicate the standard deviation of the error. ER
defines the rate at which errors are injected in the approximation analysis. The
statistical error resilience profile helps to reduce the available design space in
order to choose the best possible quality-cost design alternative.

An overview of the ARC methodology is shown in Fig. 2.3. The first step is to
identify the dominant kernels based on their run-time share in the profiling phase.
The kernels that run for at least 1% of the total execution time are selected to
perform analysis. Secondly, the error resilience is identified by injecting random
errors in the outputs of the dominant kernels and the overall output of the
application is compared with a relaxed quality function to distinguish potentially
resilient kernels from that of the sensitive ones. Relaxed quality function means
that the application behavior is only checked for relatively bigger errors (e.g., if
the application crashes or hangs) rather than the actual quality required by the
application.

18

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

Finally, the high-level approximation model (SAM) and the Technique Specific
ApproximationModel (TSAM) are applied to characterize the resilience by using
the actual quality function. The high-level approximation model is also termed
as Statistical Approximation Model (SAM) because it injects errors based on the
statistical (Gaussian) distribution. This defines a high-level approximation space
of an application by providing a quality profile based on statistical parameters
and can help to narrow down technique-specific approximation choices such as
arithmetic operations, data representation and algorithm level approximations
[26]; for instance, choosing M1 or M2 as discussed in the motivational example
earlier.

2.4 Approximate Computing Techniques

Approximate computing techniques can be broadly divided into three main cat-
egories, namely: software-level, architectural-level, and circuit-level techniques.
In this section, we provide a brief survey of such techniques and and their un-
derlying concepts.

2.4.1 Software Level Techniques

These techniques tend to reduce the complexity of software to gain efficiency
benefits such as reducing run-time of the target application. The prominent
software-level techniques include code perforation, loop perforation and relaxed
synchronization.

A simple form of a software-level approximate computing technique is code
perforation, wherein error-resilient parts are automatically identified within the
target code. These parts are then skipped during execution to save resource
usage [45]. A relevant technique is to skip loop iterations selectively as the
loops contribute largely to the overall resource usage [117]. Such a technique is
known as loop perforation. For some applications like recognition and mining,
synchronization is also an expensive part. Research in [79, 102] shows that a
relaxed synchronization criterion can lead to resource savings while having a
low impact on the output quality.

For machine learning classifiers, based on the observation that some instances
are easier to classify than others, the work in [25, 129] demonstrates that utilizing
different complexity classifiers for different instances provides resource reduction.
For the HEVC video encoder application, Palomino et. al. demonstrate that
adaptively varying the approximation levels—based on the video properties—can
lead to an improved thermal profile of the application [92].

2.4.2 Architecture Level Techniques

At architecture-level, the approximate computing techniques mainly focus on
memory and Input/Output (I/O) communication. One way to decrease mem-

19

2
.
4
.
3
–
H
a
r
d
w
a
r
e
-
/
C
i
r
c
u
i
t
-
L
e
v
e
l
T
e
c
h
n
i
q
u
e
s

ory latency and to increase the overall performance of an architecture is to avoid
reading the memory while predicting its values. For instance, load value approx-
imation (LVA) predicts data values on an event of a cache miss [109, 121]. LVA
may result in a wrong value provided to the processor but reduces average mem-
ory access time by hiding cache miss latency. Meanwhile, the predictor can be
trained by accessing the memory location.

Ranjan et al. introduced the accuracy configurable memory load and store mech-
anism for increased energy efficiency. Considering recognition and vision appli-
cations, the authors demonstrated a 19.5% energy reduction while introducing
less than 0.5% of quality degradation [100]. In the case of Dynamic Random
Access Memories (DRAMs), energy savings can be achieved by reducing the
refresh rate required to maintain the data reliably. Flikker [72] introduces this
scheme by dividing the memory into sensitive and error-resilient portions. They
proposed to store critical data in the sensitive portion and the non-critical data
in the error-resilient portion of the DRAM. The refresh rate of the sensitive
portion was proposed to be unchanged while a reduction in the same was pro-
posed for the resilient portion of the DRAM. Utilizing this scheme, the authors
demonstrated up to 25% of power savings in a mobile device while running
typical smart-phone applications like mpeg2, c4, rayshade, vpr and parser [72].

In computing architectures, communication between a source and a destination
causes energy dissipation and latency. Sources and destinations can be multiple
processors on a board, multiple cores in a chip, processors and caches or I/O
devices. Based on the observation that the energy consumption is directly depen-
dent on switching activity at wires, i.e., ’1’ to ’0’ and ’0’ to ’1’ transitions, the
research in [103, 118] proposed a value-deviation-bounded serial (VDBS) commu-
nication scheme. As a case study, the VDBS scheme demonstrated the switching
activity reduction by 54% for a pedometer, while limiting the step-count error
within 5%. Moreover, in the case of a network-on-chip, APPROX-noc [17] intro-
duces a data-type aware approximation utilizing approximate matching between
recently sent data and the data to be sent. Based on approximate matching, the
data is compressed to reduce the overall data communication. For a case study
of the graph processing algorithm, the authors demonstrated a 36.7% of latency
reduction as compared to the state-of-the-art compression schemes.

2.4.3 Hardware-/Circuit-Level Techniques

Hardware-/circuit-level techniques include transistor-level and gate-level tech-
niques. Transistors are the basic building block of contemporary computing
systems. Their organization forms analog circuits and gates. The organization
of gates forms digital circuits. Therefore, the organization of transistors and
gates can be altered to increase computing efficiency at the expense of quality.
Voltage-overscaling and circuit-pruning are the major approximate computing
techniques at the hardware level.

20

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

Voltage-overscaling

The quadratic relation of supply voltage (Vdd) with dynamic power consumption
(Eq. 2.4) substantiates the viability for low voltage design to save energy. Let f
and C be the frequency of operation and effective capacitance respectively. The
dynamic power consumption P is given as [98],

P ∝CVdd
2 f (2.4)

Different levels of low-voltage designs have been explored in literature; namely:
ultra-low or sub-threshold voltage, near-threshold voltage (NTV), and super-
threshold or nominal-voltage range [30, 47]. Energy efficiency decreases and
performance increases as we go from ultra-low voltage to nominal-voltage. More-
over, dynamic voltage and frequency scaling (DVFS) techniques have also been
explored to achieve a better energy-delay product [112]. The design methodol-
ogy for low-voltage design is to reduce the Vdd to a minimum viable/optimum
level (Vopt) and compensate for the performance loss by exploiting parallelism
within the applications while running the parallel threads on additional cores.
Vopt depends on the technology size, frequency of operation and intrinsic char-
acteristics of the target application like architectural and Amdahl’s overhead
[95]. A recent analysis of low-voltage designs [96] suggests that the NTV oper-
ation is a promising technique to attain higher energy benefits with reasonable
performance for error-free computing.

Energy consumption can be saved further by operating a circuit at a lower volt-
age than is typically assumed safe for a given frequency of operation. As a
consequence, this introduces circuit delays, and in turn, leads to timing errors.
Such a computing technique is referred to as voltage-overscaling in literature. It
has attracted researchers over the last decade to trade-off accuracy of results for
increased energy gains. As an example, adaptive voltage over-scaling without
error correction saves more power than its error-free low-voltage design equiva-
lent [61]. Other examples of voltage-overscaling techniques/applications include
adaptive quality tuning [55, 82], discrete cosine transform (DCT) [7, 43], motion
estimation using error correction [125], and power-efficient static random access
memories (SRAMs) [16, 23].

Nevertheless, the timing errors introduced by voltage-overscaling affect the criti-
cal paths of the circuit, which may also introduce errors in the higher significant
bits of the computation. In [77] and [71], it is demonstrated that removing
some parts of a circuit that have a low probability of usage or they contribute
to the lower significant part of the circuit, can provide a better quality-efficiency
trade-off as compared to the voltage-overscaling techniques. Such a technique is
referred to as circuit-/logic-/gate-level pruning or simply circuit pruning.

Circuit Pruning

Pruning enhances the efficiency of circuits without introducing the overheads
related to voltage-overscaling [71, 110, 116]. Here we discuss some of the promi-

21

2
.
4
.
3
–
H
a
r
d
w
a
r
e
-
/
C
i
r
c
u
i
t
-
L
e
v
e
l
T
e
c
h
n
i
q
u
e
s

nent approximate adder and multiplier circuits to show how pruning is applied
for achieving high-efficiency gains.

Approximate Adder Circuits

Gupta et al. [39] presented transistor-level pruning for approximate full adder
circuits, which can be utilized to design multi-bit adders. Considering a case
study of digital signal processing applications (DCT and FIR filter), they demon-
strated up to 69% power savings as compared to accurate adders. Moreover,
the authors showed that the error-mean and error-variance of their approximate
adder designs are smaller than that of the truncation approach, especially when
the number of approximate (least significant) bits exceed 2.

Another technique for approximate adder circuits is the carry propagation chain
simplification or reduction of the critical path to reach the overall sum of two
inputs [32, 77, 130, 134]. Reducing the number of carry propagation bits also
reduces power consumption related to the glitches produced during the carry
propagation [134].

Consider for example the Error Tolerant Adder (ETA) [134], wherein an addi-
tion operation is divided into two parts, a Higher Significance Part (HSP) and
a Lower Significance Part (LSP). The HSP produces the most significant bits
of the result and the LSP produces the least significant bits of the result. The
carry propagation path in the LSP is avoided by using half adders that do not
produce a carry output. However, to reduce the overall error of the adder, the
following scheme is utilized (shown in Fig. 2.4). The LSP adds bits from left
to right (MSB to LSB), a normal addition of the bits is performed if both the
input bits are different or 0. On the other hand, if both inputs are 1, the addition
process is stopped and all the remaining LSB outputs are assigned to 1. In the
addition operation shown in Fig. 2.4, half of the carry propagation is removed
which results in reducing latency and power consumption of the adder circuit.

Another approach to reducing the overall latency of an adder circuit is to use a
variable latency adder [130]. This adder utilizes an almost correct adder (ACA),
which provides an addition output with a low error rate while reducing the
latency of the circuit. An error correction circuit is also introduced that provides
a correct result in a rare case of error occurrence. Although the latency of the
error-corrected output is higher than that of the normal addition, the overall
performance (considering a large number of additions) is increased because of
the low error rate introduced by the ACA.

Similar to variable latency, the idea of variable accuracy has also been explored
in literature, such as: accuracy configurable adder (AcCA1), gracefully degrading
adder (GDA), and generic accuracy configurable adder (GeAr) [53, 114, 133].
The AcCA provides a run-time knob to vary the accuracy of the circuit to

1both designs (accuracy configurable adder [53] and almost correct adder [130]) have been
abbreviated with ACA in literature. To make a clear distinction, we abbreviate accuracy configurable
adder as AcCA in this thesis.

22

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0

Sum

Higher Significance
Part

+
Input
Operands0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1

Lower Significance
Part

1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1

starting
point

operation
direction

operation
direction

LSBMSB

all LSBs set to ‘1’normal addition

Figure 2.4: An illustration of ETA methodology using a 16-bit addition opera-
tion. The carry chain propagation is reduced by avoiding the carry outputs in
the lower significance part of the adder [134].

improve latency and power consumption. Similarly, GeAr is an open-source
adder model that utilizes different accuracy sub-adders to provide a wide-range
of approximation levels, or in other words accuracy configurability, for an overall
addition operation.

Approximate Multiplier Circuits

Amultiplication operation includes generating partial products and adding them
in a specific shift-order to achieve the overall product of two input numbers
(operands). The approximation techniques for a multiplier include input trun-
cation, partial product truncation, simplified addition of partial products, or
simplified partial product generation.

Consider a 4×4 multiplication operation as shown in Fig. 2.5a, where two 4-bit
numbers are multiplied to get an 8-bit product. One way to simplify the multipli-
cation operation is to truncate the input operands for a specified number of bits.
For example, 1-bit (LSB) truncation is employed in Fig. 2.5b. The consequence
of 1-bit truncation is the removal of the corresponding partial products. On the
other hand, in the case of the partial products truncation method, any partial
product can be removed to simplify the multiplication operation., see Fig. 2.5c
for an example of six partial products truncation.

A clever technique related to truncation is proposed by Hashemi et al [42]. They
introduced a Dynamic Range Unbiased Multiplier (DRUM) that truncates the
input operands to a smaller bit-width and then apply an accurate multiplier. As
an example, they showed a 16-bit multiplication (n = 16) executed by a 6-bit
multiplier (k = 6). However, the truncation of inputs is based on the sequence
of 1s and 0s, which renders an overhead of detecting 1s in the sequence. The

23

2
.
4
.
3
–
H
a
r
d
w
a
r
e
-
/
C
i
r
c
u
i
t
-
L
e
v
e
l
T
e
c
h
n
i
q
u
e
s

o o o o
o o o o *

Partial
Products

Final Product

o o o o
o o o o

o o o o
o o o o +

Input
Operands

(a) 4× 4 Multiplication.

o o o o
o o o o *

Final Product

o o o o
o o o o

o o o o
o o o o +

✗
✗
✗✗✗✗

✗
✗

✗

(b) 1-bit truncation of inputs.

o o o o
o o o o *

Partial
Products

Final Product

o o o o
o o o o

o o o o
o o o o +

Input
Operands

✗✗
✗
✗
✗

✗

(c) Partial products truncation.

Figure 2.5: Illustration of a 4-bit multiplication using input truncation and par-
tial products truncation methods; (a) accurate version; (b) 1-bit truncation of
input operands; (c) truncating six partial products corresponding to the lower
significance part of the product.

obtained 2k-bit product is shifted, depending upon the number of bits truncated,
to obtain the final product. An advantage in their scheme is a potential un-biasing
of the multiplier. A normal truncated multiplication always provides a negative
bias, i.e., the approximated output is either less or equal to the accurate output.
However, the proposed truncation in DRUM sets the least significant bits of
the input operands to 1 (for approximate un-biasing), before applying a k bit
multiply operation [42].

Another approximation approach is to use approximate Full Adders (FAs) while
adding the partial products of a multiplier [39, 101]. In [101], several designs of
a FA have been demonstrated that show a better efficiency as compared to the
accurate FA. Two of such FA designs (FAx1 and FAx2) along with the accurate
FA are shown in Fig. 2.6. FAx1 provides better efficiency in terms of area,
latency and power as compared to that of the accurate FA. On the other hand,
it introduces two error cases out of eight possible cases, see Fig. 2.6d where

24

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

Sum

Cout

A
B

Cin

(a) An accurate full adder (FA).

Sum

Cout

A
B

Cin

(b) FAx1 [101].

Sum

Cout

A

B

Cin

(c) FAx2 [101].

CIN 0 1
A B
00 00 01
01 01
10 01
11 11

A B Cin Cout Sum Cout Sum Cout Sum
0 0 0 0 0 0 1 0 1
0 0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 1 0
0 1 1 1 0 1 0 1 0
1 0 0 0 1 0 1 0 1
1 0 1 1 0 1 0 1 0
1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 0 1 0

Accurate FAx1 FAx2

(d) Truth Tables of accurate and approximate full adders.

Figure 2.6: Full Adder (FA) circuits. FAx1 and FAx2 are approximate versions
proposed in [101], which are more efficient (at the cost of a quality loss) as
compared to that of the accurate counterpart.

the error cases are marked in black. FAx2 is even more efficient than that of
FAx1 but brings an additional error case, see Fig. 2.6d. These FA designs can be
utilized for adding partial products generated by the sub-multipliers (e.g., 2× 2
sub-multipliers) to compute the overall result of a given n×n multiplier. Several
promising FA and sub-multiplier designs are considered to explore the design
space of a given n× n multiplier for achieving pareto-optimal designs [101].

Targeting power efficiency, gate-level pruning is applied to design a 2× 2 multi-
plier in [63]. Such multipliers can be used recursively together with adder trees
to form a higher-order (n × n) multiplier. An advantage of such multipliers
is that they are scalable and provide flexibility in the design process. For that
matter, these multipliers can be optimized based on input distribution to achieve
an effective quality-efficiency trade-off based on the target application [101], see
Section 2.5 for details.

25

2
.
4
.
3
–
H
a
r
d
w
a
r
e
-
/
C
i
r
c
u
i
t
-
L
e
v
e
l
T
e
c
h
n
i
q
u
e
s

FPGA Based Optimization

Although circuit pruning brings remarkable area, power, and latency benefits for
Application Specific Integrated Circuits (ASICs), it does not provide the same
extent of benefits for Field Programmable Gate Arrays (FPGAs) because of their
underlying architecture [32, 97]. For instance, if we want to implement a full
adder in a Look-Up Table (LUT) based FPGA, where a LUT provides more than
three inputs that are required for a full adder, the unused inputs (and/or other
unused resources) do not allow achieving high-efficiency benefits. To this end,
FPGA specific techniques have been presented in literature, e.g., [32, 97].

In the context of FPGAs, approximate circuits in general and adders, in partic-
ular, can utilize the unused resources to increase efficiency for a given quality
constraint or to increase quality for given resource usage. In case of an implemen-
tation of a full-adder in a LUT based FPGA, the unused inputs can be utilized
to share information between the lower significant part and the higher signifi-
cant part of the adder to improve the quality of the output without increasing
the resource usage [32]. Moreover, DeMAS presents a generic methodology for
designing approximate adders based on the resources and architectural features
of the target FPGA [97].

Automatic Generation of Approximate Circuits

Approximate circuits have been discussed above, which provide a means to trade
accuracy of results for improved hardware efficiency. However, utilizing these
approximate circuits in designing relatively larger accelerators with an optimal
quality-efficiency trade-off is challenging. To this end, automatic tools have been
presented in literature that generate approximate circuits based on their behav-
ioral specifications, i.e., register-transfer level (RTL) descriptions [87, 127]. For
example, systematic logic synthesis of approximate circuits (SALSA) automates
the approximate design process by considering the quality-constraint and RTL
descriptions of a circuit as input and providing an ASIC net-list of an optimal
approximate circuit as an output [127].

When the approximate combinational circuits are utilized to design a sequential
circuit, the output quality is required to be assessed after multiple cycles of ex-
ecution instead of a single computational cycle [99]. Therefore, approximate
sequential circuits pose a challenge tomodel the generation and propagation of er-
rors introduced by the embedded approximate combinational blocks to multiple
cycles. To this end, a methodology for automatic sequential logic approximation
(ASLAN) [99] has been proposed by Ranjan et. al. ASLAN provides a system-
atic framework that takes the sequential circuit and the related quality-constraint
as inputs and generates an energy-efficient approximate circuit as an output.

A recent automation approach introduces approximations at the gate-level stan-
dard cells (ASIC library) and employs such cells to automatically generate pareto-
optimal approximate circuits for a given quality constraint [27]. In the context
of high level synthesis, approximate high-level synthesis (AHLS) has been in-

26

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

troduced for the direct conversion of a high-level C code (accurate) to an RTL
description of an optimal approximate circuit [67, 70].

2.5 Approximate Recursive Multipliers

Approximate recursive multipliers prune the recursive multiplication structure
to reduce the number of gates and the critical path of the circuit. Such multi-
pliers are (especially) known for their power efficiency benefits [63]. Moreover,
such multiplier structures are scalable and provide a huge number of possible
approximation choices that help in their optimization process based on the input
distribution [75, 101]. In the context of providing guarantees for approximate
multiplication, the worst-case error of approximate recursive multipliers has
been demonstrated to be better than the worst-case error of some of the other
approximate approaches like truncation [85]. Keeping in view the benefits of the
approximate recursive multipliers, we have utilized them to demonstrate some
of our approximate computing methodologies (see Chapter 4 and Chapter 5).
Therefore, in this section, we provide the basic knowledge to help the readability
of the later chapters.

An n×n recursive multiplier is constructed using four n/2×n/2 sub-multipliers,
where n is the bit-width of input operands, n ∈ {4,8,16,32, ...}. For example, a
4× 4 multiplier contains four 2× 2 multipliers. Fig. 2.7 illustrates the concept
of recursive multipliers using an example of an 8× 8 multiplier. Considering a
2×2 multiplier as an elementary module/multiplier, an n×n multiplier requires
(n/2)2 of them. These 2×2 multipliers generate partial products. Summation of
the bit-shifted partial products produces the overall output of an n×n recursive
multiplier.

Any number out of the set of 2× 2 multipliers and/or adders (used for the sum-
mation of the partial products) can be approximated to achieve an approximate
n× n multiplier [63, 101]. Kulkarni et al. [63] introduced an approximate 2× 2
multiplier shown as M1 in Fig. 2.8d. The truth table of M1 shows an approxi-
mation of one out of the sixteen possible outputs, see Fig. 2.8c. Therefore, the
error rate of M1 is 1/16, where the magnitude of the error is 2.

Themotivation behind this approximation is the reduction of output-bits that are
to be computed, i.e., from four to three. The overall effect is that the critical path
and number of gates of the circuit have been reduced. This brings an increase in
computing efficiency in terms of power, chip-area, and performance. Utilizing
accurate 2× 2 multipliers (M) and their proposed (M1) multipliers, the authors
constructed higher-order multipliers (4×4, 8×8, and 16×16) and showed power
savings of 32%−45% with an average error of 1.4%−3.3%. While assessing the
mean error vs power reduction trade-offs, they draw two important conclusions
[63, 64]: (1) The quality-efficiency trade-off of the multiplier designs utilizing
M1 is more effective than that of the conventional truncation technique. (2) The
quality-efficiency trade-off of the multiplier designs utilizing M1 and accurate

27

2
.
5
–
A
p
p
r
o
x
i
m
a
t
e
R
e
c
u
r
s
i
v
e
M
u
l
t
i
p
l
i
e
r
s

a 7
a 6

a 5
a 4

a 3
a 2

a 1
a 0

c 7
c 6

c 5
c 4

c 3
c 2

c 1
c 0

*

a 3
a 2

a 1
a 0

*
c 3

c 2
c 1

c 0

a 7
a 6

a 5
a 4

*
c 3

c 2
c 1

c 0

a 3
a 2

a 1
a 0

*
c 7

c 6
c 5

c 4

a 7
a 6

a 5
a 4

*
c 7

c 6
c 5

c 4

Sh
ift

 o
f 4

-b
its

Sh
ift

 o
f 4

-b
its

Sh
ift

 o
f 8

-b
its

a 3
a 2

a 1
a 0

c 3
c 2

c 1
c 0

*

a 1
a 0

*
c 1

c 0

a 3
a 2

*
c 1

c 0

a 1
a 0

*
c 3

c 2

a 3
a 2

*
c 3

c 2
Sh

ift
 o

f 4
-b

its

Sh
ift

 o
f

2-
bi

ts

8-
bi

t P
ro

du
ct

16
-b

it
Pr

od
uc

t

Fi
gu
re

2
.7
:A

n
ex
am

pl
e
of

a
re
cu
rs
iv
e
m
ul
tip

lic
at
io
n
(a

an
d
c
ar
e

8-
bi
to

pe
ra
nd

s)
.A

n
8
×

8
re
cu
rs
iv
e
m
ul
tip

lie
r
ut
ili
ze
sf
ou

r
4
×

4
su
b-
m
ul
tip

lie
rs
(l
ef
t)
,w

he
re

ea
ch

4
×

4
m
ul
tip

lie
rr

eq
ui
re
sf
ou

r2
×

2
su
b-
m
ul
tip

lie
rs
(r
ig
ht
).

28

C
h
a
p
t
e
r
2
–
B
a
c
k
g
r
o
u
n
d

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 10111001

(a) Truth table of accurate multiplier (M).

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(b) M: 3 ∗ 3 7→ 9.

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 0111

(c) Truth table of M1 [63].

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(d) M1: 3 ∗ 3 7→ 7 [63].

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0000 0010 0010
10 0000 0010 0100 0110
11 0000 0010 0110 1001

(e) Truth table of M2 [101].

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(f) M2 [101].

Figure 2.8: 2× 2 Multiplier designs. M is an accurate version, M1 [63] and
M2 [101] are approximate versions that provide a higher power efficiency as
compared to that of M. However, M1 and M2 produce errors, as shown in (c)
and (e).

adders (for summation of partial products) is more effective than using accurate
2× 2 multipliers (M) and approximate adders.

An even more power-efficient approximate 2×2 multiplier has been proposed in
[101]. Building on the observation that the LSB and the MSB of the product are
equal for thirteen out of the total sixteen cases, see Fig. 2.8a, the LSB and MSB
have been equated. Therefore, producing an error rate of 3/16. Fig. 2.8e and
Fig. 2.8f show the truth table and the circuit design of the aforesaid multiplier,
shown as M2. Although M2 has a higher error rate as compared to that of
M1, its error magnitude (based on each error case) is less than that of M1. In
[101], it is demonstrated that M2 requires 28% less power as compared to M1.
Secondly, when M2 is utilized in a circuit where error detection and correction
is supported, the only requirement is to invert the LSB to get the correct output.
On the other hand, however, its latency and area consumption are higher than

29

2
.
6
–
E
v
a
l
u
a
t
i
o
n

that of M1.

2.6 Evaluation

In this chapter, we have discussed stochastic computing, probabilistic comput-
ing, and approximate computing that trade determinism and/or accuracy of
computation with efficiency gains. In the context of approximate computing,
we have discussed various techniques that span from software-level to hardware-
/circuit-level abstraction layers. In this thesis, we focus on hardware efficiency
and propose methodologies for high-efficiency accelerator designs for iterative
and accumulation based algorithms. Therefore, here we evaluate the related
techniques to clarify their context with the rest of the thesis.

As discussed in Section 2.1, stochastic computing provides efficiency benefits
due to its low-complexity arithmetic operations. However, its disadvantages
include slow-speed and low-precision operations [4]. Secondly, probabilistic
computing offers energy efficiency due to its low-voltage operation. On the
other hand, it is noted that the (deterministic) circuit pruning technique brings
a more effective quality-efficiency trade-off as compared to probabilistic comput-
ing, especially for the algorithms that are not probabilistic in nature [71, 110].
Similarly, voltage-overscaling also proposes a low-voltage operation to offer effi-
ciency benefits. Again, circuit pruning brings a more effective quality-efficiency
trade-off as it does not introduce overheads related to voltage-overscaling, and
it does not (generally) affect the critical paths or most significant parts of the
computation [71, 77, 110, 116].

In view of the above, we utilize circuit pruning techniques to demonstrate our
proposed approximate computing methodologies for high-efficiency accelerator
designs. In Chapter 3, we utilize a truncated multiplier concept based on input
truncation to design a heterogeneous accelerator for iterative algorithms. In
Chapter 4 and Chapter 5 we utilize approximate recursive multiplier concepts
to present our approximate computing methodologies for accumulation based
algorithms.

30

313
Exploiting Error Resilience

of Iterative Algorithms

Abstract – Iterative algorithms are widely used in digital signal processing
applications. With the case study of radio astronomy calibration processing,
this chapter contributes towards revealing and exploiting the intrinsic error
resilience of iterative algorithms for efficiency benefits. Our contributions
for improving the error resilience analysis are focused primarily on iterative
methods that use a convergence criterion as a quality metric to terminate the
iterative computations. We propose an adaptive statistical approximation
model for high-level resilience analysis that provides an opportunity to divide
an iterative algorithm into exact and approximate iterations. We realize
an energy-efficient accelerator based on a heterogeneous architecture, where
the heterogeneity is introduced using accurate and approximate processing
cores. Our proposed methodology exploits the error-resilience of the algorithm,
where initial iterations are processed on approximate modules while the later
ones on accurate modules. The proposed accelerator design does not increase
the number of iterations as compared to that of an accurate counterpart and
provides sufficient precision to converge to an acceptable solution.

Assessing error resilience inherent to an algorithm provides application-specific
insights towards approximate computing strategies. The error resilience analysis
is performed by applying approximations while monitoring the quality func-
tion to verify that the approximations produce acceptable results. In this way,
approximate computing techniques are substantiated for an algorithm that can
be employed in the implementation phase to achieve the desired benefits.

With the advent of accuracy-configurable architectures like adaptive voltage over-
scaling [61] and adaptive processors comprised of configurable adder/multiplier

This chapter is based on [G:1] and [G:2].

32

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

blocks [115], where the quality-cost trade-off can be controlled at run time, it is
of remarkable importance to analyse an algorithm for Adaptive Error Resilience
(AER) as well. AERhas the potential to reveal approximation opportunities even
in strict quality function (relatively less error-resilient) algorithms, where they
can be processed adaptively for varying approximation levels to gain hardware
efficiency benefits.

Moreover, heterogeneous architectures have the ability to handle various work-
loads/algorithms efficiently while using different power and performance trade-
off computing nodes, e.g., ARM’s big.LITTLE architecture [54]. In the con-
text of approximate computing, the definition of a heterogeneous architecture
extends further to include exact and inexact computing units, where control
instructions and sensitive computational parts run at precise cores while the
error-resilient parts run at the error-prone cores to achieve the overall efficiency
in speed and energy [56, 108].

Iterative methods are common candidates of approximate computing like K-
means [76], GLVQ training [26], and model predictive control [104]. Therefore,
we propose an Adaptive Statistical Approximation Model (Adaptive-SAM) to
perform the high-level error resilience analysis of iterative algorithms. The high-
level error resilience analysis refers to applying the statistical error based on a
Gaussian distribution and assessing the output-quality for a relaxed quality func-
tion, see Section 2.3.4 for details. Adaptive-SAM performs better than the Statis-
tical Approximation Model (SAM) [26] by quantifying the number of approxi-
mate iterations (Nax) in addition to the statistical parameters: EM, EP, and ER
(see Section 2.3.4). Therefore, it can better exploit the heterogeneous/accuracy-
configurable architectures by assigning resilient iterations to the approximate
computing cores/modes and the sensitive iterations to the exact counterparts.

Being pivotal building blocks of DSP architectures, approximate multipliers and
adders have been extensively researched for increased hardware efficiency [42, 50,
77, 85, 94, 97]. However, approximate accelerator designs for relatively bigger
algorithms have been of less attention yet. The Least Squares (LS) algorithm is
widely utilized in digital signal processing applications like image reconstruction
in radio astronomy [86, 107], medical [89], and synthetic aperture radar [20]
domains. Despite its importance, no approximate least squares accelerator design
has been investigated to the best of our knowledge.

As discussed in Chapter 1, modern radio telescopes like Square Kilometer Array
(SKA) [51] require highly energy-efficient processing architectures to process ter-
abytes of raw data per second. For instance, double-precision fused multiply-add
operations will require 7.2MW of power consumption in the medium-frequency
array of SKA if contemporary1 technology would be used [51]. In this regard, we
investigate an energy-efficient LS accelerator architecture based on a case study
of radio astronomy calibration processing. The aforesaid processing employs an

1This estimation is based on the technology in 2014.

33

3.
1
–
R
e
l
a
t
e
d
W
o
r
k

iterative LS algorithm to compute sensors’ gains for a certain configuration of a
radio telescope.

The primary contribution of this work is an effective way of exploiting the error
resilience of iterative algorithms for achieving energy efficiency benefits. In this
regard, the following is presented in this chapter,

» An adaptive statistical approximation model (Adaptive-SAM) for error
resilience analysis of iterative algorithms (Section 3.2.1).

» Error resilience analysis of a radio astronomy calibration algorithm (case
study) by performing the state-of-the-art statistical approximation model
(SAM) analysis and our proposed Adaptive-SAM analysis (Section 3.2.2).

» An assessment of utilizing convergence criterion as a quality metric for
the error resilience analysis of iterative algorithms (Section 3.2.3). We
demonstrate the importance of quality function reconsideration for con-
vergence based iterative processes as the original quality function (the
convergence criterion) is not necessarily sufficient in the error resilience
analysis phase.

» An energy-efficient heterogeneous architecture for iterative algorithms
with a case study of an approximate least squares (LS) accelerator design
for radio astronomy calibration processing (Section 3.3).

3.1 Related Work

This section reviews some state-of-the-art approximate computing architectures
that motivate statistical and adaptive-statistical error resilience analysis. More-
over, we discuss contemporary analysis methodologies/tools and the need of
Adaptive-SAM analysis.

3.1.1 Adaptive Accuracy Techniques

Approximate computing utilizing adaptive accuracy techniques have been dis-
cussed in [115] and [61]. The adaptive voltage over-scaling (AVOS) [61] has
shown improvements in power efficiency (25% to 30%) at a negligible quality
loss for texture decompression application. The aforesaid scheme reduces the
supply voltage until a specific number of errors are introduced and can increase
the voltage again to attain error-free operation. Therefore, AVOS can adjust the
quality-cost trade-off during run time.

Nevertheless, as discussed in Chapter 2, circuit pruning based schemes out-
perform voltage-overscaling based schemes. Therefore, the idea of accuracy-
configurable architectures composed of approximate accelerators has been pro-
posed in [115]. These architectures contain accuracy-configurable operators, such
as multipliers and adders, which can change the computation mode from accu-
rate to approximate and vice-versa during the run-time. This helps in run-time

34

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

adjustment of the quality-cost trade-off based on the algorithm’s error resilience.
In this context, we argue that the aforementioned adaptive accuracy architectures
can be better exploited provided that the error resilience profile of an iterative
algorithm quantifies the number of approximate iterations in addition to the
insights of promising approximations. This allows an adaptive employment of
approximations during the run-time to gain target benefits.

3.1.2 Error Resilience Analysis Techniques

Based on literature study, various error resilience analysis techniques have been
discussed in Chapter 2 (Section 2.3). Here we summarize them in the context
of related work to our proposed technique.

Quality of service (QoS) profiling utilized loop perforation as a compiler pass
in order to identify sub-computations that can be replaced with less accurate
counterparts [78]. Intel’s open-source approximate computing toolkit (iACT)
assesses the scope of approximations within the applications using programmer
annotated pragmas to analyse the programmer guided parts of the code [80].
iACT has the ability to apply static approximate transformations such as preci-
sion scaling and run-time approximations like memoization2 during the error
resilience analysis.

Automatic sensitivity analysis for approximate computing (ASAC) applies per-
turbation of program data to study the overall effects on the output quality [105].
Program analysis for approximation-aware compilation (PAC) provides a rela-
tively faster way to study the accuracy requirement of each component in an
algorithm [106]. Approximate C compiler for energy and performance trade-
offs (ACCEPT) is another open-source tool that applies a conservative approach
to perform safe approximate relaxation analysis within an algorithm [108]. The
aforesaid tools are limited in assessing the error-resilience of an algorithm as they
do not cover all the approximation strategies and they do not provide a statisti-
cal error resilience profile to reduce the available design space (alternatives) as
discussed in Section 2.3.2.

On the other hand, the application resilience characterization (ARC) frame-
work [26] includes a statistically distributed error injection model to generate
the statistical profile of an algorithm. The aforesaid model is known as Statistical
Approximation Model (SAM) and is utilized to perform the so-called high-level
error resilience analysis. However, in order to better utilize the adaptive accu-
racy architectures, we need Adaptive-SAM analysis of iterative algorithms that
can quantify the adaptive resilience by identifying the number of approximate
iterations in addition to the statistical parameters.

2See Section 2.3.2.

35

3.
2
–
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
A
n
a
l
y
s
i
s
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

3.2 Error Resilience Analysis of Iterative Algorithms

In this section, we elaborate on the Adaptive-SAM analysis methodology and
present its significance with a case study of the radio astronomy calibration appli-
cation. In practice, the error resilience of an application is quantified by injecting
the errors defined by the approximation models (statistical or technique-specific)
and monitoring the overall output of the application in compliance with the
quality function. The range of error injection within an approximation model
for which the quality function is satisfied can be regarded as the approximation
space of an application. Therefore, defining a quality function is a very deliberate
task in the approximate computing domain. In Section 3.2.3, we demonstrate
that the original (precision-based) quality function of an iterative process is not
necessarily sufficient in the error resilience analysis procedure, which requires
defining an additional (accuracy-based) quality function to serve the purpose.

3.2.1 Adaptive Statistical Approximation Model (Adaptive-SAM)

As discussed earlier, our aim is to improve the high-level error resilience analysis
of iterative algorithms to better exploit accuracy configurable and heterogeneous
architectures. In this regard, we present Adaptive-SAM that can replace SAM in
the error resilience analysis methodology to provide the number of approximate
iterations (Nax) in addition to statistical parameters of the approximation space
(EM, EP and ER).

To elaborate on the Adaptive-SAM methodology, consider a template of an iter-
ative algorithm shown in Algorithm 1. The algorithm has inputs (x1, x2, x3, ...)
and an output (K_op). It iterates to improve the output by utilizing the inputs
and previously computed result (last iteration), where i is the current iteration
and N is the maximum number of iterations. The algorithm also uses an in-
termediate variable (im_var) that is computed by calling a kernel: function_im,
having input arguments as x1, x2, x3, ... and the computed output of the previous
iteration K_op(i − 1). Then the output is computed by calling another kernel:
function_Kop that has input arguments x1, x2, x3, ... and im_var.

Subsequently, the convergence metric (convergence_met) is computed by call-
ing function_conv kernel that considers the current output K_op(i) and the
previously computed output K_op(i−1). Iterative algorithms may use different
arithmetic operations within function_conv, but the aim is generally to compute
the improvement in result within two consecutive iterations. Finally, Algorithm
1 checks the convergence metric for the allowed tolerance limit (tol) based on
the quality function of the iterative algorithm. If the convergence is reached, the
iterative process is terminated to provide the final outcome.

As discussed in Section 2.3.4, the error resilience methodology identifies the
dominant kernels in the first place. These kernels are selected based on the
percentage of their run-time or floating point operations (FLOPs) relative to
the overall algorithm. The kernels that have the higher share are regarded as

36

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

Algorithm 1 An Iterative Algorithm Template.
Input: x1, x2, x3, ...
Output: K_op
1: Initialize K_op(0)
2: for i = 1,2, ...,N do
3: im_var= function_im(x1, x2, x3, ...,K_op(i − 1));
4: K_op(i) = function_Kop(im_var, x1, x2, x3, ...);
5: convergence_met= function_conv(K_op(i),K_op(i − 1));
6: if (convergence_met≤ tol) then
7: break; // convergence reached
8: end if
9: end for

dominant kernels as it is likely to attain desired benefits (area, power or latency)
while approximating them. In Algorithm 1, we assume that function_Kop is a
dominant kernel to explain Adaptive-SAM analysis.

Fig. 3.1 shows the signal flow of Adaptive-SAM. We assume N number of itera-
tions where i is the current iteration (1≤ i ≤N). The output of iteration i of
the dominant kernel (K_op(i)) is added to an error (εi) if the randomized error
(ER_rand(i)) and approximate iterations flag (ax_iter_flag) allow error injection
to this stage. This flag is controlled via a parameter: Nax , which is the number
of initial iterations to be instrumented with errors. It is important to note that
εi is a Gaussian randomness that is generated in a relative manner, i.e., relative to
the kernel output (K_op(i)). This ensures that unsuitably big/small magnitudes
of errors are not inserted into the kernel output. Also note that εg is a function
of the EP and EM as given in Eq. (3.1),

εg =
(EP× randn(i)+EM)

100
(3.1)

where randn(i) generates a random number with the standard normal distribu-
tion (µ= 0 and σ = 1). As an example, let EM= 10 and EP= 0.2, the probabil-
ity is approximately>99.7% that εi lies between 9% to 11% of the K_op(i). The
approximate kernel output is assessed for quality function compliance to test
the validity of the approximation space. Therefore, Adaptive-SAM quantifies
the high-level error resilience of an application based on the acceptable range of
a Gaussian randomness for the quantified approximate iterations. This helps to
assign the number of approximate iterations to the inexact cores (fast and/or
energy efficient) with the specified approximation space while running the exact
iterations on the exact cores to better exploit the heterogeneous architectures.
Similarly, in case of accuracy configurable architectures, the approximate itera-
tions can run in approximate (error prone) hardware modes at higher energy
efficiency and/or speed.

37

3.
2
.
2
–
H
i
g
h
-
l
e
v
e
l
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
A
n
a
l
y
s
i
s

Kernel
Computation K_op(i)

Ax
K_op(i)

Approximate
Kernel	Output

ϵg

ER_rand(i)
&&

ax_iter_flag

ϵi
Yes

No

Exact
Output

Error	Injected
Output

K_op(i)	+	ϵi

Figure 3.1: Proposed high-level error resilience analysis model – Adaptive-SAM.

3.2.2 High-level Error Resilience Analysis

We have applied SAM and Adaptive-SAM on an iterative algorithm, which is the
radio astronomy calibration algorithm (StEFCal) [107]. The said algorithm has
been instrumented with the run-time statistical error injection in Matlab. The
quality function compliance has also been checked at run-time to determine the
statistical error tolerance limits. In this way, we have quantified the high-level
error resilience for StEFCal by using SAM and Adaptive-SAM models.

Radio Astronomy Calibration Processing

In radio telescopes, gain calibration improves the quality of sky images and
reinforces the signal processing techniques against interference and spatial effects
[15]. Calibration processing computes complex antenna gains in a radio telescope.
The gains are estimated by minimizing the following [107],

∥V−GMGH∥2F (3.2)

where M and V represent the model and the measured visibilities, respectively
(M, V ∈ C). G = diag(g) represents complex antenna gains (G ∈ C). In this
work, we assume 124 antennas. Therefore, the gains are 124 complex numbers,
so the matrix G has a size of 124× 124 with gains on the diagonal and zeros at
other entries.

The calibration algorithm, also known as StEFCal (statistically efficient and fast
calibration) [107], is a strict quality-of-service method that estimates complex an-
tenna gains (gp) for the P sensors in a radio telescope. The algorithm computes a
g vector (representing P gains) based on a measured signal/array covariance ma-
trix (V) and the model covariance matrix (M), where each iteration (i) computes
P independent linear least squares problems,

g [i]p =
VH

:, p .Z[i−1]
:, p

(Z[i−1]
:, p)H .Z[i−1]

:, p

(3.3)

where VH
:, p is the hermitian transpose of array covariance matrix’s pth column.

Z[i−1]
:, p is the element-wise product of g[i−1] and the model covariance matrix’s

38

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

pth column (M:, p),

Z[i−1]
:, p = (M:, p ⊙ g

[i−1]) (3.4)

It should be noted that g[i−1] is the antenna gains vector computed in the previous
iteration. In our experiments, representative input data (V and M matrices) of
the LOFAR facility [124] has been utilized (for P = 124).

The convergence criterion of StEFCal is based on the relative length of the
difference of consecutive iterations’ solution vectors in the Euclidean space [107],

Convergence=
∥g[i]− g[i−1]∥F
∥g[i]∥F

≤ 1.10−6 (3.5)

In our initial experiments, we defined our quality function solely based on the
convergence criterion. However, this proved to be insufficient in the error re-
silience analysis process as will be explained in Section 3.2.3. Therefore, we have
defined an additional quality metric: Diff_rel, which is the relative difference in
length between the exact (ex) and approximate (ax) solution vectors,

Diff_rel=
∥g[i]e x − g

[i]
ax ∥F

∥g[i]e x ∥F
≤ 1.10−5 (3.6)

We assume that the quality acceptance is achieved, if and only if both the conver-
gence (Eq. 3.5) and Diff_rel (Eq. 3.6) criteria are satisfied.

Simulation Results of SAM and Adaptive-SAM

To apply SAM and Adaptive-SAM, the initial steps are the same as elaborated
in Section 2.3.4, i.e., distinguishing dominant kernels that run at least 1% of
the total execution time and identifying error resilience by injecting the random
errors in the outputs of the dominant kernels. Three dominant kernels have been
identified in StEFCal by using profiling [40]. One of them is Z computation
(Eq. 3.4), which brings 27% of the computational load. The other two are
the dot products (Eq. 3.3), which bring 72% of the computational load. We
have analysed the aforesaid three kernels for high-level error resilience. As the
response of the dot products is almost similar to Z computation, we only present
the simulation results forZ computation here. They are sufficient to demonstrate
the comparison between SAM and Adaptive-SAM outcomes.

Fig. 3.2 shows an illustrative example of StEFCal response for SAM analysis.
The figure presents the effect of error mean (EM), error predictability (EP) and
error rate (ER) on the considered quality metric: Diff_rel (Eq. 3.6). It can be
seen that Diff_rel is increased as we increase the EM and ER, while it has no
remarkable effect due to changes in EP. However, the convergence limit is only
achieved at minimum EP and maximum ER, see Fig. 3.3. The iteration count

39

3.
2
.
2
–
H
i
g
h
-
l
e
v
e
l
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
A
n
a
l
y
s
i
s0

1

0.05

D
if
f_

re
l

0.1

EP

0.5 20

EM

15
100 5

20%

40%

60%

80%

100%

ER

Figure 3.2: StEFCal response for SAM analysis.

in Fig. 3.3 is based on even3 iterations, which means that the total iterations are
two times the number of iterations shown in the figure. It is to be noted that the
convergence criterion (Eq. 3.5) does not allow a random selection of iterations
for error injection because this reduces the precision of the computation among
consecutive iterations. Therefore, our SAM analysis shows that the convergence
is achieved either at ER= 0% (no error injection at all), or at ER= 100% (error
injection for all iterations without random skipping) with suitable EM and EP
values, see Fig. 3.3. Likewise, high values of EP also reduce the precision of
computation among consecutive iterations, and therefore, do not satisfy the
convergence criterion.

In practice, there can be some cases where the benefits of energy efficiency/per-
formance are achieved even if the approximate computation runs for more iter-
ations than the exact computation [104]. However, for the sake of simplicity,
we assume that the convergence limit is satisfied when the number of iterations
required to converge for error-injected computation is less or equal to that of
the exact computing counterpart. To quantify the error resilience intrinsic to
StEFCal based on the SAM analysis, extensive simulations have been performed
by varying EM, EP, and ER values. The quality acceptance has been achieved
for EM≤ 0.002, EP≤ 2.10−4 at ER= 100%. This implies that the algorithm is
resilient to an error (Gaussian randomness) that has the following maximum
values: EM= 0.002, EP= 2.10−4, and that the error is employed in every iter-
ation. This shows a very small approximation space that does not appreciate
employing approximate computing techniques to gain efficiency benefits.

An illustrative example of Adaptive-SAM analysis of StEFCal is shown in Fig. 3.4.
In this case, the simulations are performed for various number of approximate

3At every even iteration in StEFCal, the gain solution is replaced by the average of the previous
(odd) iteration and the current (even) iteration to help fast convergence [107].

40

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

0 10 20 30 40 50
Iteration Count

10-6

10-4

10-2

100

C
on

ve
rg

en
ce

 (
lo

ga
rit

hm
ic

 s
ca

le
)

ER=20%
ER=40%
ER=60%
ER=80%
ER=100%

(a) EP= 0 and EM= 10.

0 10 20 30 40 50
Iteration Count

10-6

10-4

10-2

100

C
on

ve
rg

en
ce

 (
lo

ga
rit

hm
ic

 s
ca

le
)

ER=20%
ER=40%
ER=60%
ER=80%
ER=100%

(b) EP= 0 and EM=20.

0 10 20 30 40 50

Iteration Count

10-5

10-4

10-3

10-2

10-1

100

C
on

ve
rg

en
ce

 (
lo

ga
rit

hm
ic

 s
ca

le
)

ER=100%

(c) EP=0.1, EM= 5 : 5 : 20, ER= 20 : 20 : 100

Figure 3.3: Convergence (logarthmic scale) w.r.t the number of iterations; the
algorithm converges at ER= 100% when EP= 0 (a) and (b). The algorithm does
not converge when EP is raised to 0.1 (c). For the simulations regarding EP= 0.1
(c), EM has been varied from 5 to 20 with a step size of 5 and ER has been varied
from 20% to 100% with a step size of 20%.

41

3.
2
.
3
–
S
i
g
n
i
fi
c
a
n
c
e
o
f
Q
u
a
l
i
t
y
F
u
n
c
t
i
o
n
R
e
c
o
n
s
i
d
e
r
a
t
i
o
n

0
80

2

D
iff
_r
el

60 100

4

10-5

80

diff_relative as function of EM and Ax Iter at er=100%

6

Nax

40 60

EM

8

4020
20

0 0

Figure 3.4: StEFCal response for Adaptive-SAM analysis.

iterations (Nax) and error mean (EM) values. However, error predictability and
error rate are fixed to the values that allow the solution to converge (EP=0 and
ER=100%). This means that in every approximate iteration an error of EM% of
the output value is injected. As expected, the Diff_rel decreases with the decrease
in Nax and EM, see Fig 3.4. This suggests that the higher the number of exact
computing iterations, the better the quality of output and vice versa.

To quantify the error resilience intrinsic to StEFCal based on the Adaptive-SAM
analysis, extensive simulations have been performed by varying Nax , EM, EP,
and ER values. The quality acceptance is achieved for Nax ≤ 23%, EM ≤ 12,
EP≤ 0.2 at ER= 100%. This implies that if the initial (up to) 23% of iterations
are approximated, the algorithm is resilient to an error (Gaussian randomness)
that has the following maximum values: EM= 12, EP= 0.2, and that the error
is employed in all the initial (23%) iterations. This shows the availability of an
approximation space for up to 23% of the initial iterations. Therefore, Adaptive-
SAM reveals additional error resilience opportunities by quantifying the number
of approximate iterations in addition to EM, EP and ER for iterative algorithms.

3.2.3 Significance of Quality Function Reconsideration

During the error resilience analysis, the statistical and technique-specific approx-
imation models are applied offline4 and are validated using the quality function5.
This makes the selection of a quality function very crucial as it decides whether

4Error resilience analysis is performed before the deployment of the application for real use.
5The quality function is either given within an application/algorithm or has to be defined for

error resilience analysis.

42

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

to reject or accept an approximation technique. Therefore, in order to utilize the
original quality metric of an iterative application (convergence criterion) in the
approximate computing domain, it has to be reconsidered rigorously to attain
reliable insights about the approximation space.

In our case study of an iterative algorithm (StEFCal), the convergence criterion
is utilized for the exact computing case. It computes the relative distance in
Euclidean space between the current and previous solution vectors. The con-
vergence is assumed to be satisfied if the improvement within two consecutive
iterations is less or equal to 1.10−6, which means that the solution has already
been converged and no further precision can be achieved by computing more iter-
ations. However, in the error resilience analysis process, it cannot be guaranteed
that the acceptable solution is achieved when it satisfies convergence. Perhaps,
the solution is converged in the wrong plane, which is very distant from that of
acceptable solution plane.

We have observed this phenomenon during the error-resilience identification
phase. As discussed in Section 3.1, random errors are injected into the resilience
identification analysis while using a relaxed quality function. Two cases are
shown in Fig. 3.5 to illustrate the problem. The first case is randomly skipping
computations (Fig. 3.5a and Fig. 3.5b), while the second case is an arbitrary
error injection in the first element of each column of the Z, i.e., Z:, p (Fig. 3.5c
and Fig. 3.5d).

For the first case, we can see a comparable response of approximate and exact
computing for gains outputs, albeit with no quality improvement beyond a
specific number of iterations for the convergence metric. However in the second
case, although the approximate solution converges quickly (Fig. 3.5c), it produces
unacceptable gains (Fig. 3.5d). This shows that the original quality metric of
StEFCal (the convergence criterion) is not sufficient in the resilience analysis
process. For that matter, we introduced an additional quality parameter: Diff_rel
(Eq. 3.6) that can ensure the convergence of an approximate solution within an
acceptable distance to that of an exact solution in the Euclidean space. Therefore
in Section 3.2.2, we assume that the quality acceptance is achieved if and only if
both the convergence and Diff_rel criteria are satisfied.

3.3 Energy Efficient Accelerator Design for Iterative

Algorithms

So far we have discussed that the statistical approximation models can be applied
to evaluate a target algorithm for error resilience. These models inject errors
during the execution of the algorithm on statistical bases to quantify the bear-
able error profile. For iterative applications, our analysis suggests that a certain
number of initial iterations can be approximated while producing an acceptable
outcome. Therefore, in this section, we present our hardware realization of an
accelerator that utilizes a heterogeneous architecture composed of two process-

43

3.
3.
1
–
D
e
s
i
g
n
o
f
a
H
e
t
e
r
o
g
e
n
e
o
u
s
L
e
a
s
t
S
q
u
a
r
e
s
A
c
c
e
l
e
r
a
t
o
r

0 10 20 30 40 50
Iteration Count

10-6

10-4

10-2

100

C
on

ve
rg

en
ce

 (
lo

ga
rit

hm
ic

 s
ca

le
)

Exact Computing
Approximate Computing

(a) Case 1: Convergence.

-100 -50 0 50 100
Real

-100

-50

0

50

100

Im
ag

in
ar

y

Exact Computing
Approximate Computing

(b) Case 1: Complex sensor gains (P = 124).

0 5 10 15 20 25 30 35
Iteration Count

10-6

10-4

10-2

100

C
on

ve
rg

en
ce

 (
lo

ga
rit

hm
ic

 s
ca

le
) Exact Computing

Approximate Computing

(c) Case 2: Convergence.

-100 -50 0 50 100
Real

-100

-50

0

50

100

Im
ag

in
ar

y

Exact Computing
Approximate Computing

(d) Case 2: Complex sensor gains (P = 124).

Figure 3.5: Error resilience identification; convergence (logarthmic scale) w.r.t
the number of iterations (a) and (c); complex sensor gains for P = 124 (b) and
(d). Case 1 and Case 2 represent a random skipping of a computation and an
arbitrary error injection, respectively, in each iteration. Similar to Fig. 3.3 the
iteration count is based on even iterations.

ing cores. The two cores differ in their precision of computation, namely an
accurate core and an approximate core. We show how a set of initial iterations
can be processed in an approximate core, while the rest of the iterations are
processed in an accurate core to achieve an overall energy-efficiency increase.

3.3.1 Design of a Heterogeneous Least Squares Accelerator

Our design methodology for an approximate Least Squares (LS) accelerator is
shown in Fig. 3.6. The accelerator architecture is composed of two cores that
differ in computation precision, introducing heterogeneity in the architecture.
The accurate core is optimized for the required precision for the LS algorithm.
However, the approximate core introduces a reduced-precision computation to
provide energy efficiency. In the proposed LS accelerator, the initial iterations
are run on the approximate core, while the rest of the iterations on the accurate

44

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

Heterogenous Accelerator
Architecture

Data Bus
CPU

Accurate Core
(Optimized)

Approximate Core
(Reduced
Precision)

Control

Figure 3.6: Our design methodology for an approximate Least Squares (LS)
accelerator enables initial iterations to be processed on an approximate core
(while the rest on an accurate core) to achieve an overall energy-efficiency.

core. This brings an overall energy efficiency when a central processing unit
(CPU) switches off the unused core.

Nevertheless, using two cores instead of one brings area overhead. However, if
the CPU can utilize both cores simultaneously for parallel processing of indepen-
dent processes, this area overhead can be translated into increased throughput. In
any case, the energy efficiency can be increased for processing the LS algorithm
with or without area penalty.

Overall Energy Savings

Consider an accurate LS accelerator that utilizes only an accurate core. Let Ea be
the total energy consumption of an accurate LS accelerator for processing Nacc
iterations to solve a given LS problem. Therefore,

Ea = Eacc ×Nacc (3.7)

where Eacc is the energy consumption of the accurate core for processing one
iteration. Now consider our proposed LS accelerator design that processes Nax
iterations utilizing the approximate core while the rest (Nacc −Nax) is utilizing
the accurate core. The energy consumption (Eh) of such an accelerator is given
as,

Eh = Eax ×Nax + Eacc × (Nacc −Nax) (3.8)

where Eax refers to the energy consumption of the approximate core for one
iteration. For our proposed architecture, we assume that the total number of
iterations (running on accurate and approximate cores) remain the same as Nacc .

45

3.
3.
1
–
D
e
s
i
g
n
o
f
a
H
e
t
e
r
o
g
e
n
e
o
u
s
L
e
a
s
t
S
q
u
a
r
e
s
A
c
c
e
l
e
r
a
t
o
r

PE
G[i]

÷
M

V

element­wise
product

G[i-1] square­accumulate

multiply­accumulate

Z

Figure 3.7: Least Squares (LS) algorithm for radio astronomy calibration pro-
cessing.

The overall energy savings (SE) while utilizing our proposed accelerator design
can be given as,

SE =
(Ea − Eh)

Ea
(3.9)

Using Eq. 3.7 and Eq. 3.8, SE is given as,

SE =
(Eacc − Eax)×Nax

Eacc ×Nacc
(3.10)

Eacc and Nacc are constant terms as they correspond to the reference accurate
architecture. On the other hand, reducing Eax or increasing Nax would increase
energy benefits (SE). However, lowering Eax means introducing more coarse
approximations in the approximate core and this results in practice in a decrease
in the number of iterations (Nax) that can survive this approximation level.
Therefore, there is a trade-off between Eax and Nax and the goal is to find an
optimal balance where SE is maximized.

Radio Astronomy Calibration Algorithm (StEFCal)

We consider a case study of radio astronomy calibration processing that em-
ploys a Least Squares (LS) algorithm, StEFCal, as discussed in Section 3.2.2. We
demonstrate how to design an LS accelerator using the proposed methodology,
wherein the accurate LS core and the approximate LS core are optimized to
achieve energy-efficient LS processing. We consider complex data as utilized by
StEFCal.

Fig. 3.7 shows the four stages of the algorithm. The PE block computes the
element-wise product. Square-accumulate (SAC) computes the inner product
of Z with itself. Multiply-accumulate (MAC) computes the inner product of V
and Z. Finally, a division operation is performed to compute the gain values.
Considering complex inputs, Fig. 3.8 illustrates the signal flow of the algorithm.

46

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

Noteworthy, four multiplications are required (along with an addition and a
subtraction) to multiply two complex numbers, i.e.,

(a+ i b)(c + i d) = ac − b d + i(ad + b c) (3.11)

and two squaring operations are required (along with an addition) to find the
square of a complex number, i.e.,

(e + i f)(e + i f) = e2+ f 2 (3.12)

It is to be noted that m, v, z and g correspond to the respective elements of M,
V, Z, and G matrices.

3.3.2 Experimental Results

Here we compare the accurate and the proposed LS accelerator designs as dis-
cussed in Section 3.3.1. We assume an equal frequency of operation for both
designs, which means an equal processing time for executing a single iteration.
Therefore, Eq. (3.10) is reduced to power (P) consumption values only, as in Eq.
(3.13).

SE =
(Eacc − Eax)×Nax

Eacc ×Nacc
=
(Pacc − Pax)×Nax

Pacc ×Nacc
(3.13)

Power consumption and chip-area estimates have been obtained by synthesizing
the designs in Synopsys ASIC flow (Design Compiler and Power Compiler)
for the TSMC 40nm Low Power (TCBN40LP) technology library at 50MHz.
Our experimental setup is shown in Fig. 3.9. Questasim has been utilized to
verify the functionality of the synthesized designs (gate-level netlists) and to
generate the related SAIF (Switching Activity Interchange Format) files based
on the respective standard delay file (.sdf) and test data. The aforesaid SAIF
files and gate-level-netlists are utilized by Synopsys Power Compiler for power
estimation.

Output-quality assessment has been performed in Matlab, where the radio as-
tronomy calibration was performed. Here, the Test Data (see Fig. 3.9) refers
to the radio astronomy calibration data of the LOFAR facility [124]. Similar to
Section 3.2.2, it is assumed that the quality acceptance is achieved, if and only if
both the convergence (Eq. 3.5) and the Diff_rel (Eq. 3.14) criteria are satisfied.

Diff_rel=
∥gfloat− gfixed∥F
∥gfloat∥F

≤ 10−5 (3.14)

where gfloat and gfixed refer to the gains obtained using double-precision floating-
point and fixed-point computations, respectively.

We assume the accurate core as the optimized fixed-point design of StEFCal
[12, 60], wherein the word length of each signal (shown in Fig. 3.8) remains

47

3.
3.
2
–
E
x
p
e
r
i
m
e
n
t
a
l
R
e
s
u
l
t
s

 +
c
=
re
al
(m
)

d
=
im
ag
(m
)

b
=
im
ag
(g
)

 +

e_
m
ac
 =
 re
al
(z
)

M
ul
tip

ly
­a
cc
um

ul
at
e
(M

A
C
)

h
=
re
al
(v
)

t =
 im

ag
(v
)

f_
m
ac
 =
 im

ag
(z
)

 +

e_
sa
c
=
re
al
(z
)

Sq
ua
re
­a
cc
um

ul
at
e
(S
A
C
)

es
q fs
q

f_
sa
c
=
im
ag
(z
)

 +
sa
c

 +
m
ac
_r
ea
l

 +
m
ac
_i
m
ag

eh

ft et fh

sa
c

m
ac
_r
ea
l

m
ac
_i
m
ag

R
eg
is
te
rs

g
 ÷

E
le
m
en
t­
w
is
e
Pr
od
uc
t (
PE

)
a
=
re
al
(g
)

ac

bd

ad bc

Fi
gu
re

3.
8
:S

ig
na
lfl

ow
of

le
as
ts
qu

ar
es

al
go
ri
th
m

in
ra
di
o
as
tr
on

om
y
ca
lib

ra
tio

n
pr
oc
es
sin

g.

48

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

Test D
ata

L
ogic Synthesis

(Synopsys D
esign C

om
piler)

V
H
D
L M

odels
M
atlab M

odels

A
rea R

eport
Pow

er R
eport

Q
uality R

eport

Standard D
elay

File (.sdf)

G
ate­level N

etlist

Technology Library
TSM

C
 40nm

(TC
B
N
40LP)

L
ogic Sim

ulation
(Q
uestasim

)

SA
IF File

Pow
er E

stim
ation

(Synopsys Pow
er C

om
piler)

B
ehavioral Sim

ulation
(M

AT
L
A
B
)

Verification

Figure
3.9:O

ur
experim

entalsetup
to

assesschip-area
and

pow
er

consum
ption

ofthe
considered

designsalong
w
ith

their
output-

quality.

49

3.
3.
2
–
E
x
p
e
r
i
m
e
n
t
a
l
R
e
s
u
l
t
s

Table 3.1: Bit widths of the StEFCal algorithm for accurate LS core and the
truncation levels to achieve an optimal approximate LS core.

Signal name Accurate Core
(bit-width)

Approximate Core
(bits truncated)

h 18 0

t 18 0

e_sac 21 8

f_sac 20 8

e_mac 23 8

f_mac 24 12

less or equal to 28 bits. Fig. 3.10 shows the comparison between the optimized
fixed-point (fixed) and double-precision floating point (float) computation of the
StEFCal algorithm. As shown in Fig. 3.10a, both computations converge in 92
iterations. Fig. 3.10b illustrates the behavior of norm(delta)= ∥V−GMGH∥F ,
which shows that the minimization of the difference is also achieved for the
accurate core (fixed). The gain values are shown in Fig. 3.11. As the gain values
of the accurate core also satisfy Eq. 3.14, quality acceptance is achieved for the
accurate core.

As discussed in Section 3.3.1, our proposed LS accelerator design utilizes an
approximate core additionally and the overall energy savings can be maximized
by optimizing the approximate core in such a way that Eq. 3.13 is maximized.
This means that a design space exploration is to be carried out to find a trade-off
point where Pax and Nax values maximize Eq. 3.13. We consider truncation
of inputs as a means of approximation in the approximate core, wherein four
multipliers of the MAC and two squarers of the SAC have been approximated
(see Fig. 3.8). Based on our design space exploration, the number of truncated
bits to obtain the optimized approximate core are shown in Table 3.1, where the
resulted Nax = 52. The corresponding input widths of the accurate core are also
shown as a reference.

Fig. 3.12 shows the output-quality comparison of our proposed methodology
with that of the accurate core. The quality acceptance is achieved as we process the
first 52 iterations on the approximate core, and the rest of the iterations (40) on
the accurate core. After switching to the accurate core, two phenomena can be
noticed: (1) the precision-oriented metric, i.e., convergence, experiences jumps
because of the increase (change) in computation precision, see Fig. 3.12-left. (2)
the deviation from the accurate solution gradually decreases, see Fig. 3.12-right.
Overall, the solution converges to an acceptable value in the same number of
iterations, i.e., 92.

50

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

0 20 40 60 80 100

Iteration Count

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o
n
v
e
rg

e
n
c
e
 (

lo
g
a
ri
th

m
ic

 s
c
a
le

)

float

fixed

1

1.5

10
-6

(a)

0 20 40 60 80 100

Iteration Count

53.36

53.365

53.37

53.375

53.38

53.385

53.39

53.395

n
o
rm

(d
e
lt
a
)

float

fixed

53.364666

53.364668

53.36467

(b)

Figure 3.10: Comparison between the double-precision floating-point (float) and
optimized fixed-point (fixed) StEFCal processing, the latter is referred to as the
accurate core.

Energy Efficiency Improvements

Table 3.2 shows the chip-area and power consumption of the accurate and approx-
imate cores. It can be seen that the approximate core offers 41% power reduction
as compared to that of accurate core (Pax = 2.08mW and Pacc = 3.55mW). As

51

3.
3.
2
–
E
x
p
e
r
i
m
e
n
t
a
l
R
e
s
u
l
t
s

-120 -100 -80 -60 -40 -20 0 20 40 60 80

Real

-100

-80

-60

-40

-20

0

20

40

60

80

Im
a

g
in

a
ry

Complex antenna gains for 124 sensors in a radio telescope

float

fixed

Figure 3.11: Gains computed by double-precision floating-point (float) and opti-
mized fixed-point (fixed) processing.

0 20 40 60 80 100

Iteration Count

10
-6

10
-4

10
-2

10
0

C
o

n
v
e

rg
e

n
c
e

 (
lo

g
a

ri
th

m
ic

 s
c
a

le
)

Accurate Core
Proposed Methodology

0 20 40 60 80 100

Iteration Count

53.36

53.365

53.37

53.375

53.38

53.385

53.39

53.395

n
o

rm
(d

e
lt
a

)

Accurate Core

Proposed Methodology

switching from approximate

to accurate core

switching from

approximate

to accurate core

Figure 3.12: StEFCal processing based on our proposed heterogeneous method-
ology as compared to that of an accurate design. Our proposed methodology
processes the first 52 iterations on the approximate core and the rest on the
accurate core.

Nax = 52 and Nacc = 92, the overall energy saving using Eq. 3.13 for our pro-
posed LS accelerator design is 23.4%. The aforesaid energy saving is obtained
while comparing the accurate single-core design with our proposed two-core
design assuming that only one core is switched on at a certain period of time.

52

C
h
a
p
t
e
r
3
–
E
x
p
l
o
i
t
i
n
g
E
r
r
o
r
R
e
s
i
l
i
e
n
c
e
o
f
I
t
e
r
a
t
i
v
e
A
l
g
o
r
i
t
h
m
s

Table 3.2: Area and Power comparison of the accurate and approximate LS cores
for TSMC 40nm Low Power (TCBN40LP) technology.

LS Core Type Area (µm2) Power (mW)
Accurate Core 27023 3.55
Approximate Core 20604 2.08

Discussion and Future work

While comparing the chip-area of our proposed accelerator design (a two-core
architecture) with that of an accurate accelerator design (a single-core architec-
ture), the area overhead is 76%. This area overhead is due to the addition of
the approximate core. However, if a CPU (see Fig. 3.6) can utilize both cores
simultaneously for independent processes, the area overhead can be translated
into throughput increase while having the same energy efficiency benefits for
each process.

A case study of radio astronomy calibration (StEFCal) processing has been dis-
cussed to show how to employ the proposed heterogeneous accelerator by using a
single time slot of LOFAR [124] data. Nevertheless, an increased data set would
better provide the allowable number of iterations to run on an approximate
core, therefore, a better estimate of energy savings that can be achieved using the
proposed accelerator architecture.

3.4 Conclusions

The proposed adaptive statistical approximation model (Adaptive-SAM) has
shown improvements in the error resilience analysis of iterative algorithms. It
quantifies the number of resilient iterations in addition to statistical analysis
parameters. Moreover, we have shown that the quality function must be recon-
sidered in the error resilience analysis process as the original quality metric of an
iterative algorithm (convergence criterion) might not be necessarily sufficient.
In which case, an additional quality metric has to be defined for reliable quality
assessment to establish the promising approximate computing strategies.

A heterogeneous architecture for Least Squares (LS) acceleration has been pre-
sented targeting energy-efficiency. We have shown how a combination of optimi-
zed-precision (accurate) and reduced-precision (approximate) computing cores
can be utilized to provide acceptable quality output while reducing energy con-
sumption as compared to that of an accurate optimized architecture. Our design
methodology exploits the inherent error-resilience of an iterative workload to
leverage an approximate computing core for processing the initial iterations of
the LS algorithm. A case study of radio astronomy calibration processing has
shown 23.4% of energy savings as compared to that of the accurate counterpart.
However, it is to be noted that the proposed methodology is independent of
the application, provided that the computation pattern is iterative in nature.

53

3.
4
–
C
o
n
c
l
u
s
i
o
n
s

We have utilized input truncation as the means of approximations within an
approximate core. However, our methodology can utilize any approximation
technique that is promising for the target application.

54

554
Error Cancellation in

Accumulation Based

Approximate Accelerators

Abstract – The conventional approximate computing methodology restricts
the introduction of errors to avoid a high loss in quality. However, this limits
the computing efficiency and the number of pareto-optimal design alterna-
tives for a quality-efficiency trade-off. This chapter presents a Self-Healing (SH)
methodology for an accumulation based approximate accelerator, namely:
Square-Accumulate (SAC). SAC refers to a hardware architecture that com-
putes the inner product of a vector with itself. SH exploits the algorithmic
error resilience of the SAC structure to ensure an effective quality-efficiency
trade-off, wherein the squarer is regarded as an approximation stage and the
accumulator as a healing stage. We propose to deploy an approximate squarer
mirror pair, such that the error introduced by one approximate squarer mir-
rors the error introduced by the other, i.e., the errors generated by the ap-
proximate squarers are approximately additive inverse of each other. This
helps the healing stage (accumulator) to automatically average out the error
originated in the approximation stage, and thereby to minimize the quality
loss. Our experiments corroborate that the proposed SHmethodology provides
a more effective quality-efficiency trade-off as compared to the conventional
approximate computing methodology.

Approximate computing strives to achieve the highest performance, area-, and
power-/energy-efficiency for a given quality constraint and vice versa. The state-
of-the-art approximate design methodologies suggest utilizing fail-rare, fail-small,
and fail-moderate approaches, where the approximations are restricted in terms
of introducing errors and thereby limiting the computing efficiency. The fail-rare

This chapter is based on [G:3].

56

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

strategy suggests that an approximation technique should result in a low error
rate but may exhibit high error magnitudes [26]. On the other hand, fail-small
refers to introducing low error magnitudes with possibly high error rates [26].
Fail-moderate suggests to utilize an additional design space of approximations,
wherein the errors introduced may also exhibit moderate error rates and mod-
erate error magnitudes [88]. It is important to note that the aforesaid strategies
limit the design space as they do not allow approximations that introduce high
error rates with high error magnitudes. The reason is obvious that this threatens
the quality hugely in case of general algorithms, and if employed naively.

However, for accumulation based algorithms like square-accumulate (SAC) and
multiply-accumulate (MAC), the approximations introducing simultaneous high
error magnitudes and high error rates can also be utilized provided that the errors
originated in various sub-components are potentially canceled out. We refer to
this is as a fail-balanced approach that helps to minimize the overall quality loss
while achieving a high computing efficiency. This also increases the design space
by introducing a high number of pareto-optimal approximate design alternatives
to help effectively exploit the quality-efficiency trade-off.

This chapter presents a Self-Healing1 (SH) methodology that exploits the fail-
balanced approach for an accumulation based approximate accelerator. Specifi-
cally, the analysis and design of an approximate square-accumulate (SAC) archi-
tecture is discussed. SAC refers to a hardware architecture that computes the
inner product of a vector with itself. Therefore, it is a special case of a multiply-
accumulate (MAC), where both inputs of the multiplier are equal. It is one of the
computationally expensive components of the Least Squares (LS) algorithm in
general and radio astronomy calibration [107] in particular. LS is also employed
in other Digital Signal Processing (DSP) applications like medical [89], synthetic
aperture radar [20] and radioastronomical [86, 107] image-reconstruction.

Consider an example of a parallel computing architecture, Fig. 4.1a, where the
input stream is processed by L homogeneous (identical) hardware blocks to
generate the output stream. Each hardware block consists of two processing
elements, P1 and P2. The processing elements can be considered as arithmetic
elements like multipliers and adders. The conventional way of approximating
such an architecture is to employ approximate circuits for P1 and P2 in such a way
that the error magnitudes and error rates are restricted to avoid an unacceptable
loss in quality as shown in Fig. 4.1b.

The primary contribution of this chapter is a Self-Healing (SH) methodology
that aims to utilize a fail-balanced approach wherein an architecture is divided
into two types of stages, namely an approximation stage and a healing stage. Ap-
proximations are employed at the approximation stage in such a way that the

1In this thesis, the term self-healing differs from that of [59]. In [59], in-circuit error detection
and correction are targeted. However, in our self-healing methodology, we introduce approximations
in a circuit in such a way that their effects are canceled out to minimize the quality-degradation.

57

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

P21P11

P1L P2L

P12 P22

... ...

L	homogenous
hardware	blocks

Input Output

(a) An example of a parallel computing architecture.

P21

ϵp1 ϵo
P11

P1L P2L

P12 P22

... ...

L	homogenous
hardware	blocks

Controlled	error	rate	and	error
magnitude	approximations

ϵp1

ϵp1

Input
Approximate

Output

ϵp1 and ϵo
are the errors

ϵo

ϵo

(b) Conventional approximate computing methodology.

ϵ1
ϵoP11

ϵ2
P12

Approximation
	Stage

Healing
Stage

... ...

L/2	homogenous
hardware	blocks

ϵ1
ϵoP1L/2-1

ϵ2

P2L/2-1, L/2

P1L/2

Input
Approximate

Output

P21, 2

ϵ1+ϵ2 ≈ 0
OR
ϵ1/ϵ2 ≈ 1

ϵ1+ϵ2 ≈ 0
OR
ϵ1/ϵ2 ≈ 1

ϵ1, ϵ2 and ϵo
are the errors,

where ϵo
approaches
zero ideally

(c) Proposed approximate computing methodology.

Figure 4.1: An overview of the conventional and the proposed approximate
computing methodologies for parallel architectures. The proposed Self-Healing
(SH) methodology does not restrict the approximations based on an error profile
but provides the opportunity for error cancellation to achieve an effective quality-
efficiency trade-off.

58

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

resulting errors have the potential to be healed up at the healing stage. There-
fore, we propose to approximate P1 elements in pairs, such that each P1 in a pair
generates an error that is the mirror (approximately additive or multiplicative
inverse) of the other, see Fig. 4.1c. This minimizes the output error ε0 to zero in
some cases and to a lower value (as compared to the conventional methodology)
in other cases and provides an effective quality-efficiency trade-off. The hardware
cost of a pair is considered to be twice as that of a single P1 element, but the
overall hardware cost of a parallel architecture remains the same as we require
L/2 hardware blocks instead of L for the same throughput. To elaborate on the
SH concept, this chapter presents the following:

» Related terminology and application of SH for an approximate square-
accumulate (SAC) design (Section 4.2).

» Analysis of an approximate SAC design utilizing a truncated squarer that
establishes the foundation for the SH methodology (Section 4.3).

» An n × n approximate-squarer (AxSq) mirror pair, wherein the error
introduced by one AxSq (εS1) is an additive inverse of the error introduced
by the other (εS2), i.e., εS1 =−εS2 (Section 4.4).

» Design methodology for building an optimal SAC accelerator that utilizes
the pareto-optimal AxSq mirror pairs (Section 4.5).

» Quality-efficiency trade-off comparison of the proposed self-healing and
conventional methodologies for random input data and radio astronomy
calibration processing (Sections 4.5 and 4.6).

4.1 Related Work

Approximate designs for adders [6, 38, 39, 53, 74, 97, 114, 130] and multipliers [11,
48, 49, 63, 65, 69, 75, 83, 101, 120, 123] have been researched for their indispensable
role in Digital Signal Processing (DSP). Kulkarni et al. presented a low power
approximate 2 × 2 multiplier and showed its efficacy in constructing higher-
order (n×n) multipliers, which can trade a bearable quality loss with improved
computing efficiency [63]. In Fig. 4.2, the approximate 2×2 multiplier is shown
as M1. It outputs only one error case (3*3 becomes 7 instead of 9) out of sixteen
possible cases. M1 is referred to as a conventional approximate design in this
chapter because it follows the fail-rare technique.

Another approximate 2×2 multiplier (M2) is discussed in Chapter 2. M2 follows
the conventional fail-small technique as it brings three error cases with a small
error magnitude (error magnitude= 1). In this chapter, we will not use the M2

design to demonstrate and compare our proposed fail-balanced technique. How-
ever, this design will be used in Chapter 5 for comparison purposes. To achieve
pareto-optimality, a design space exploration of n× n approximate multipliers
is presented in [101], which considers various 2× 2 approximate multipliers to
search for an optimized design.

59

4
.
2
–
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
p
p
r
o
x
i
m
a
t
e
S
q
u
a
r
e
-
a
c
c
u
m
u
l
a
t
e
(
S
A
C
)

P0

P1

P2

P3

A0

A1

B0

B1

(a) Accurate: 3*3 7→ 9

P0

P1

P2

P3

A0

A1

B0

B1

(b) M1: 3*3 7→ 7

Figure 4.2: Logic diagrams of 2× 2 multipliers; (a) accurate design; (b) an ap-
proximate design M1 [63].

Deploying truncated multiplication in a MAC architecture attracted researchers
in the last decade, where the objective was to limit the bit-width of multipliers
and lower the error introduced due to truncations [62, 94]. Recent design ap-
proaches for approximate MAC present the introduction of an offset to compen-
sate the inaccuracies of the approximate multiplier stage [35] and the utilization
of hybrid redundant adders [31]. The aforesaid works presented techniques to
approximate the MAC architecture. However, no exploitation of the self-healing
approach has been studied to the best of our knowledge. Moreover, despite the
importance of the SAC architecture in DSP, approximate SAC designs have not
been researched yet.

The key limitation of conventional approximate computing techniques deals
with its restricted design space, which does not allow employing approximate
design alternatives (circuit-, architectural-, algorithm-level) that produce high
error rates and high error magnitudes simultaneously. This restriction on de-
sign alternatives limits the achievable computing efficiency gains, hindering the
exploitation of the quality-efficiency trade-off effectively.

4.2 Self-Healing Methodology for Approximate Square-

accumulate (SAC)

This section explains the Self-Healing (SH) concept by discussing its utilization
for an approximate SAC architecture, wherein the squarer stage is regarded as
approximation stage, and the accumulator as a healing stage. First, we define the
terminology related to SH that will be used in the subsequent sections.

4.2.1 Terminology

We define the Mirror Error Effect (MEE) as an introduction of errors (ε1, ε2) in
a pair of approximate components that has the potential of cancellation (com-
pletely or partially) at a subsequent healing stage. For instance, ε1 and ε2 have
opposite signs (healing stage: adder) or a common factor (healing stage: divider).
Such a pair of components is (proposed to be) called absolute approximate mirror

60

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

pair provided that ε1 = −ε2 or ε1/ε2 = 1, otherwise approximate mirror pair
where the errors are canceled out partially.

It is to be noted that the word "absolute" is used in the term absolute approximate
mirror pair to provide a notion that the errors are canceled out completely
instead of partially. Moreover, each module (approximate component) in an
absolute approximate mirror pair is referred to as an absolute approximate mirror
of the other.

In case of the SAC architecture where an accumulator is regarded as a healing
stage, a pair of approximate multipliers complying to theMEE is referred to as an
Absolute Approximate Multiplier Mirror Pair (AAMMP) if it exhibits ε1 =−ε2,
otherwise it is called an approximate multiplier mirror pair. Similarly, a pair
of approximate squarers complying to the MEE is referred to as an Absolute
Approximate Squarer Mirror Pair (AASMP) if it exhibits ε1 =−ε2, otherwise it
is called an approximate squarer mirror pair.

4.2.2 Employing Self-Healing for Approximate SAC Architecture

With reference to Fig. 4.1a, consider a parallel architecture that computes a
Square-Accumulate (SAC) operation where each hardware block is referred to
as a SAC architecture. Now P1 can be regarded as a squarer and P2 as an accu-
mulator, illustrated in Fig. 4.3a. Let a be an input vector of length N and Ai be
the i t h element of a. The SAC operation computes:

N
∑

i=1

(Ai ∗Ai) (4.1)

we consider an even number of elements in the input vector to ease the discussion,
i.e., N ∈ 2Z>0. To design an approximate SAC in a self-healing fashion, we
propose to approximate the squarer by deploying a pair of approximate squarers
(e.g., AASMP) that introduce errors, +δ and −δ at Sq1 and Sq2 respectively,
and utilize an accurate accumulator to cancel out the errors introduced in the
squarer stage (Fig. 4.3b).

Eq. (4.1) can be re-written as,

N/2
∑

j=1

{(A2 j−1 ∗A2 j−1)+ (A2 j ∗A2 j)} (4.2)

Eq. (4.2) shows a pair of squarers that can be regarded as Sq1 and Sq2 as illustrated
in Fig. 4.3b. Given the same input distribution for Sq1 and Sq2 (ideal case), the
error at the approximate SAC output will approach zero for an infinite number
of inputs. However, for non-ideal (real-world) cases, the error is minimized
due to partial cancellation. It can be noted that the proposed approximate SAC
hardware block (Fig. 4.3b) doubles the circuit area as compared to a reference

61

4
.
3
–
A
n
a
l
y
s
i
s
o
f
A
p
p
r
o
x
i
m
a
t
e
S
A
C
C
o
m
p
o
s
e
d
o
f
T
r
u
n
c
a
t
e
d
S
q
u
a
r
e
r

P2: Accumulator

Sq +
Ai
Ai

SAC
output

P1: Squarer

(a)

Approximation Stage
(AASMP)

Sq1

+

A2j-1

Approximate
SAC output+

Sq2
A2j
A2j

Sq1 + �

Sq2 ­ �

Sq1 + Sq2

Healing Stage
(error cancelation)

A2j-1

(b)

Figure 4.3: Square-accumulate (SAC) architectures; (a) accurate; (b) proposed
approximate SAC utilizing an Absolute Approximate Squarer Mirror Pair
(AASMP). Given the same input distribution for Sq1 and Sq2, the errors (+δ
and −δ) originated at the approximation stage are canceled out at the healing
stage.

SAC hardware block (Fig. 4.3a), however, the overall circuit area of a parallel
architecture remains the same for the proposed architecture as we require L/2
SAC hardware blocks instead of L for the same throughput.

4.3 Analysis of Approximate SAC Composed of Truncated

Squarer

This section presents the mathematical analysis, and simulation of various trun-
cated SAC alternatives that establish the basis for Self-Healing (SH). For a pair of
approximate squarers, we present two ways by which the MEE can be achieved.
In this section we discuss truncated squaring and in Section 4.4 we discuss logic
pruning (reducing the number of logic gates) as a means of approximation.

4.3.1 Mathematical Analysis of Truncated Squaring

We consider the SAC operation executed on n bit words and the t Least Signifi-
cant Bits (LSBs) are truncated. Here we consider the signed numbers represented
in 2’s complement. Let A be defined as a random number,

−2n−1 ≤A< 2n−1 A∈Z

62

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

For the input pairs (A,A), we can describe all numbers except the number 0 (zero)
in the n-bit range by either having (+a,+a) for a positive input and (−a,−a) for
a negative input, where a = |A|. We have two possible cases for the SAC input
pairs,

(A,A) = (+a,+a) and
(A,A) = (−a,−a)

Let αt represent the input number with the t LSBs truncated. Truncation of t
LSBs means that t LSBs are removed from an n-bit number. Therefore, αt is an
n− t bit number and its value is given as:

αt =A−m 0≤ m < 2t , m ∈Z

where m is the truncation error. For the input pair (+a,+a) the product of the
truncated factors is given by:

αt ·αt = (a−m1)(a−m1) 0≤ m1 < 2t , m1 ∈Z
= aa− 2am1+m1m1 (4.3)

In Eq. (4.3) the product aa is the accurate result of the squaring. The terms
2am1 and m1m1 are errors introduced by the truncation.

Let’s assume: m1≪ a, i.e., the truncation error is much smaller than the original
value of the number that was truncated. The product can now be approximated
by:

αt ·αt ≈ aa− 2am1 (4.4)

For the input pair (−a,−a),

αt ·αt = (−a−m2)(−a−m2) 0≤ m2 < 2t , m2 ∈Z
= aa+ 2am2+m2m2

≈ aa+ 2am2 (4.5)

Eq. (4.4) and Eq. (4.5) show that one case introduces a negative error (approxi-
mately −2am1) and the second case introduces a positive error (approximately
+2am2). Assuming that these two cases have equal probability and m1 ≈ m2, we
can conclude that the error of the first case approximately cancels the error of
the second case at the accumulation stage.

This is an interesting property of the truncated squarer in a SAC architecture,
for squaring signed numbers, where the errors higher and lower than zero have
a potential to be canceled out at the healing stage (accumulator).

63

4
.
3.
2
–
Q
u
a
l
i
t
y
A
n
a
l
y
s
i
s
o
f
V
a
r
i
o
u
s
T
r
u
n
c
a
t
i
o
n
A
l
t
e
r
n
a
t
i
v
e
s

4.3.2 Quality Analysis of Various Truncation Alternatives

In case of squaring, the product is always a positive number. Therefore, we
have a choice to invert the signs of inputs (multiplicands) without affecting the
output. The MEE can be achieved by utilizing an approximate squarer pair (Sq1
and Sq2), where Sq1 squares the truncated input numbers that are made positive
(before truncation) while Sq2 squares the truncated input numbers that are made
negative (before truncation) to form a mirror pair as,

Sq1: A→ ((|A|)t)2

Sq2: A→ ((−|A|)t)2

where A is an input, and the subscript t denotes a truncation operation. The
motivation behind this proposal is that on average the amount of positive number
squarings equals the amount of negative number squarings which provides an
opportunity to cancel out the truncation error.

A motivational example of 1-bit truncated squaring of an 8-bit integer (n = 8,
t = 1) is shown in Fig. 4.4, where the errors are shown for squaring the integer
as a positive ((+25)10) and a negative ((−25)10) number after truncation. The
truncated squaring produces the output as a 14-bit integer that is shifted left
(2-bit) to achieve a 16-bit output. The errors (ε1 = −49 and ε2 = 51) show
the mirror effect that have a potential to be approximately canceled out at the
accumulator.

In the above example, (00)2 is appended to the least significant position after
squaring in order to produce the 16-bit output. However, any 2-bit combination
can be hard-wired to the least significant position targeting the lowest error
output. Below we consider design alternatives for these least significant positions
in case of 1-bit truncated squaring of 8-bit input integers (n = 8, t = 1) and
compare their output quality in a SAC architecture.

Actual_s: A conventional approximate design that squares the truncated opera-
nds as they are originally fed (without changing sign) and appends 00 to form a
16-bit output.

Pos_xx: A design alternative that makes every input a positive integer before
truncating and computing the square operation. The example (Fig. 4.4) illus-
trates that truncated squaring of positive integers produces an output smaller
than (or in some cases equal to) the exact result. For appending two bits to the 14-
bit squarer output, five options are considered: Pos_00, Pos_01, Pos_10, Pos_11,
and Pos_LL that append (00)2, (01)2, (10)2, (11)2 and (LL)2 respectively to pro-
duce a 16-bit output. Here (LL)2 is the two times repetition of the truncated
1-bit.

Neg_00: A design alternative that makes every input a negative integer before
truncating, and appends 00 to produce the 16-bit output. As the example (Fig.
4.4) shows that truncated squaring of negative integers produces an output larger

64

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Figure 4.4: Truncated squaring of a number as a positive integer and as a negative
integer demonstrates the Mirror Error Effect (MEE). The subsequent accumula-
tion can cancel out the errors partially and improves the overall output quality.

than (or in some cases equal to) the exact result, we do not consider appending
01, 10, 11, and LL because it will increase the error.

MEEx: Mirror error effect designs (MEE1 and MEE2) square the truncated
operand in the proposed self-healing fashion, where half of the inputs are made
positive integers and the other half are made negative integers before truncating
and squaring. It is to be noted that Sq1 and Sq2 in MEEx designs provide errors
in opposite signs but not in equal magnitudes. Therefore, swapping Sq1 with Sq2
brings different quality for finite-length input vectors. For that reason, we con-
sider both design alternatives, MEE1: odd-indexed elements of an input vector
are considered as positive and even-indexed as negative integers, MEE2: odd-
indexed elements of an input vector are considered as negative and even-indexed
as positive integers.

Fig. 4.5 shows a quality comparison for the above design choices in a SAC
architecture. Inputs are considered as signed numbers represented in 2’s com-
plement. Two input distributions have been assessed: uniform (Uniform) and
normal (Norm_x). Each distribution has 1000 vectors (v=1000) of 10,000 ele-
ments each. We have utilized the Mean Square Error (MSE) metric2 [62, 94] to
compute the error in dB as in [9],

MSE (dB)= 10 ∗ log10[
v
∑

i=1

(E xi −Axi)
2/v] (4.6)

where E xi is the exact SAC output and Axi is the approximate counterpart for
the i t h vector; and v is the number of test vectors. The normal distribution has
been analyzed with standard deviation of 15.9 and various mean values: 0, 10,

2We assume that several SAC outputs are independent of each other, i.e., several inner products
are independent of each other. Therefore, we use MSE for quality comparison.

65

4
.
3.
2
–
Q
u
a
l
i
t
y
A
n
a
l
y
s
i
s
o
f
V
a
r
i
o
u
s
T
r
u
n
c
a
t
i
o
n
A
l
t
e
r
n
a
t
i
v
e
s

74.77
74.47

81.12
78.11

 60

 70

 80

 90

 100

 110

 120

Actu
al_

s

Neg_
00

Pos_
00

Pos_
01

Pos_
10

Pos_
11

Pos_
LL

MEE1
MEE2

M
SE

 (d
B

)

Norm_0

Norm_10
Norm_20
Norm_30
Uniform

Figure 4.5: Quality analysis for approximate SAC utilizing various truncated
squaring strategies. For every considered input distribution, MEE designs are
outperforming because of error cancellation at the accumulator stage.

20 and 30. For instance, Norm_0 refers to a normal distribution with 0 mean
and Norm_30 to a mean of 30 in Fig. 4.5.

It can be noted that self-healing based designs utilizing the MEE (MEE1 and
MEE2) bring the best quality for all considered input distributions. In case
of a Norm_0 input, MEEx designs have slightly better quality as compared to
Actual_s design. However, as the mean is shifted away from zero (Norm_10,
Norm_20, Norm_30), the advantage of MEEx designs is quite significant. This
is because, a normal distribution with 0 mean (ideal case) is more likely to have
an equal number of positive and negative integers which inherently produces the
mirror error effectwithin a conventional design. However in general cases, where
input distributions of variousmean values can be possible, only self-healing based
designs like MEE1 and MEE2 ensure efficient error cancellation to provide the
best quality output.

The above analysis provides the foundation of the self-healing methodology that
shows a better quality output as compared to the conventional way of applying
approximations. However, it is important to note that for truncated designs,
the MEE is achieved in the sign of errors, i.e., the errors have opposite signs,
while the magnitudes are still unequal. Therefore, an approximate mirror pair
can be formed that only partially cancels out the error. Secondly, inverting
signs of input operands may render hardware costs depending upon the data
representation. In the following section, we discuss how to achieve the MEE for
logic-pruned (approximate) n× n squarers that utilize 2× 2 squarers and 2× 2
multipliers to produce absolute approximate mirror pairs, which cancel out the
error originated within the pairs completely.

66

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

4.4 Absolute Approximate Squarer Mirror Pair (AASMP)

As discussed in Chapter 2, an n × n recursive multiplier can be constructed
from (n/2)2 elementary (2×2) multipliers, where n indicates the width of input
operands A and B in bits, n ∈ {4,8,16,32, ...}. These 2×2 elementary multipliers
form the partial products and summing the bit-shifted partial products produces
the overall product by utilizing adder trees. Any number out of the 2×2 partial
products and/or adders can be approximated to achieve an approximate n× n
multiplier [101].

In case of an n× n squarer, the number of required elementary (2× 2) modules
is less than (n/2)2 due to the repetition of a few partial products with the same
inputs. The only exception is a 2×2 squarer (n = 2). Without loss of generality,
here we consider an 8× 8 unsigned squarer (Sq8x8) to design an approximate
mirror pair, wherein the error introduced by one approximate squarer is additive
inverse (opposite in sign and equal in magnitude) of the other. Therefore, the
pair is called AASMP. To achieve an approximate Sq8x8, we have employed
approximations in 2×2 partial products constructs only, not for the adder trees.

First we discuss the construction of an accurate Sq8x8 module based on elemen-
tary (2×2) modules. Let Sq8x8 = A*A, where A= a7a6 a5a4 a3a2 a1a0 is an 8-bit
unsigned number and a7 and a0 are the most significant and least significant bits
respectively. Fig. 4.6 illustrates the Sq8x8 computation, which shows that a total
of four 4× 4 partial products is required. Out of the four 4× 4 partial prod-
ucts, two compute 4-bit square (Sq4x4) operations and the other two compute
4-bit multiply (P4x4) operations. However, the two P4x4 operations multiply
the same (equal) inputs as shown in Fig. 4.6 (left). Therefore, an Sq8x8 block
requires a P4x4 and two Sq4x4 blocks along with an adder tree.

Similarly, each 4× 4 partial product can be computed by utilizing four 2× 2
partial products as shown in Fig. 4.6 (right). In case of an Sq4x4 operation, two
out of the four 2× 2 partial products compute 2-bit square (Sq2x2) operations
and the other two compute 2-bit multiply (P2x2) operations. However, both
P2x2 multiply the same (equal) inputs, Fig. 4.6 (right). Therefore, an Sq4x4
hardware block requires one P2x2 and two Sq2x2 elementary modules along
with an adder tree. On the other hand, a P4x4 hardware block requires four P2x2
elementary modules along with the adder tree. This explains why we require
less number of elementary (2× 2) modules for an n× n squarer as compared to
a general multiplier that requires (n/2)2 elementary modules. Fig. 4.7 illustrates
the construction of an Sq8x8 architecture that requires ten elementary (2 ×
2) modules. Out of the ten elementary modules, four compute 2× 2 square
operation (Sq2x2) and 6 compute 2×2 multiply operation (P2x2), see Appendix
A for the details.

To achieve an approximate Sq8x8, any number out of the ten elementarymodules
can be approximated based upon the error tolerance of an application. To design
an 8× 8 AASMP, we propose to utilize approximate P2x2 and Sq2x2 modules

67

4
.
4
–
A
b
s
o
l
u
t
e
A
p
p
r
o
x
i
m
a
t
e
S
q
u
a
r
e
r
M
i
r
r
o
r
P
a
i
r
(
A
A
S
M
P
)

a 7
a 6

a 5
a 4

a 3
a 2

a 1
a 0

a 7
a 6

a 5
a 4

a 3
a 2

a 1
a 0

*
a 3

a 2
a 1

a 0
*

a 3
a 2

a 1
a 0

a 7
a 6

a 5
a 4

*
a 3

a 2
a 1

a 0
a 3

a 2
a 1

a 0
*

a 7
a 6

a 5
a 4

a 7
a 6

a 5
a 4

*
a 7

a 6
a 5

a 4

eq
ua

l
Sh

ift
 o

f 4
-b

its

Sh
ift

 o
f 4

-b
its

Sh
ift

 o
f 8

-b
its

a 3
a 2

a 1
a 0

a 3
a 2

a 1
a 0

*
a 1

a 0
*

a 1
a 0

a 3
a 2

*
a 1

a 0
a 1

a 0
*

a 3
a 2

a 3
a 2

*
a 3

a 2

eq
ua

l

Sh
ift

 o
f 4

-b
its

Sh
ift

 o
f

2-
bi

ts

8-
bi

t P
ro

du
ct

16
-b

it
Pr

od
uc

t

Fi
gu
re

4
.6
:S

q8
x8

co
m
pu

ta
tio

n
ut
ili
zi
ng

4
×

4
pa
rt
ia
lp

ro
du

ct
s(
le
ft
),
ea
ch

4
×

4
pa
rt
ia
lp

ro
du

ct
ca
n
be

co
m
pu

te
d
by

de
pl
oy

in
g

2
×

2
pa
rt
ia
lp

ro
du

ct
s(
ri
gh

t)
.

68

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Sq2x2

P2x2

Sq2x2

P2x2

P2x2

P2x2

P2x2

Least Significant Sq4x4

A
A*A8

16

+

a1a0
a1a0

a1a0
a3a2

a3a2
a3a2

1

8

16

Sq2x2

P2x2

Sq2x2

Most Significant Sq4x4

+

a5a4
a5a4

a5a4

a7a6

a7a6

a7a6

1

8

16

a1a0
a5a4

a1a0
a7a6

P4x4

+

1

4

4

16

a5a4
a3a2

a3a2
a7a6

+

1

32

256

shift factors

shift factors

shift factors

shift
 factors

Figure 4.7: An 8×8 Squarer (Sq8x8) construction utilizing ten elementary (2×2)
modules, with four squarers (Sq2x2) and six general multipliers (P2x2).

in one Sq8x8 and to utilize the mirror approximate counterparts in the other
Sq8x8 to form a pair. Therefore, to design an 8×8 AASMP, we first discuss how
to design 2× 2 AASMP and 2× 2 AAMMP.

4.4.1 Design of 2× 2 Absolute Approximate Mirror Pairs

Several choices can be made to design an Sq2x2 AASMP or a P2x2 AAMMP.
Keeping in view the truth tables, any output (except zero) can be approximated
with a±δ error within a pair, i.e.,+δ for one approximate 2×2 module and−δ
for the other to form an absolute approximate mirror pair. For instance, a P2x2
AAMMP can utilize design choices such as: 2*1≈ 1 and 3 (ε=±1), 3*2≈ 5 and
7 (ε = ±1), or 4 and 8 (ε = ±2). Comprehensive design space exploration to
get an optimal 2×2 absolute approximate mirror pair is beyond the scope of this

69

4
.
4
.
2
–

8
×

8
A
A
S
M
P
D
e
s
i
g
n

A1

A0

P0

P1

P2

P3

(a) Accurate: 2*2 7→ 4

A1

A0

P0

P1

P2

P3

(b) S1: 2*2 7→ 0

A1

A0

P0

P1

P2

P3

(c) S2: 2*2 7→ 8

Figure 4.8: Logic diagrams of 2× 2 squarers; (a) accurate design; (b) proposed
approximate design S1; (c) proposed absolute approximate mirror of S1.

work, we only intend to show here how it can be designed. Noteworthy, only
those 2× 2 absolute approximate mirror pairs are interesting that provide better
hardware efficiency as compared to that of an accurate pair.

2× 2 AASMP Design We propose an approximate 2× 2 squarer: Sq2x2 (S1)
which introduces an error for one out of four possible input combinations:
2*2 ≈ 0, instead of 4 (εS1 = −4). An absolute approximate mirror of S1 is S2,
which computes 2*2≈ 8 (εS2 =+4). The logic diagrams of the accurate Sq2x2,
S1 and S2 are shown in Fig. 4.8. Combining S1 and S2 in a pair forms a 2× 2
AASMP which provides a better hardware efficiency as compared to that of an
accurate pair since the number of gates is less.

2×2 AAMMPDesign Consider M1 as shown in Fig. 4.2b, which is an approx-
imate 2×2 multiplier (P2x2) that introduces an error for one out of sixteen pos-
sible input combinations: 3*3≈ 7, instead of 9 [63], for the error: εM1 =−2. To
design Mp, which is an absolute approximate mirror of M1, we propose 3*3≈ 11,
εMp =+2. Combining M1 and Mp in a parallel pair produces our proposed 2×2
AAMMP. The logic diagram and truth table of Mp are shown in Fig. 4.9.

It can be seen from the logic diagrams that Mp (Fig. 4.9) requires more gates
as compared to that of M1 (Fig. 4.2b) while providing the same error rate and
(absolute value of) error magnitude. This means that only using Mp as an ap-
proximate 2× 2 multiplier is not recommended. However, the pair of Mp and
M1 that forms an AAMMP is proposed that provides a better quality-efficiency
trade-off as compared to using two M1 multipliers, see Section 4.5 and Section
Section 4.6.

4.4.2 8× 8 AASMP Design

As discussed earlier, an Sq8x8 architecture is composed of six P2x2 and four
Sq2x2 elementary modules (Fig. 4.7). Approximate elementary modules like
M1, Mp, S1 and S2 can be utilized to design an approximate Sq8x8. In the case
of an 8× 8 AASMP design, M1 and S1 modules can be utilized for one Sq8x8
(ε1 =−δ), and the Mp and S2 modules for the other Sq8x8 (ε2 =+δ) to form

70

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 1011

(a) Truth table of Mp.

P0

P1

A0

A1

B0

B1

P2

P3

(b) Mp: 3*3 7→ 11

Figure 4.9: Logic diagram and truth table of the proposed 2×2 multiplier (Mp),
which is an absolute approximate mirror of M1.

a pair. Thus, for a given input distribution, each Sq8x8 in an AASMP provides
an error that is equal in magnitude and opposite in sign (additive inverse) as
compared to that of the other Sq8x8.

4.4.3 n× n AASMP Design

We have elaborated on the design of an 8×8 AASMP so far. In a similar fashion,
an n × n AASMP can be designed by utilizing the negative error elementary
2× 2 designs (ε = −δ, like M1 and S1) for one n × n squarer and the positive
error elementary designs (ε=+δ, like Mp and S2) for the other n× n squarer
to form a pair.

4.5 Designing an Optimal Approximate SAC Accelerator

In this section, we present a design flow for building an optimal approximate
square-accumulate (SAC) accelerator. Fig. 4.10 illustrates the proposed design
methodology.

The first step (Stage 1) performs a design space exploration of an approximate
n × n squarer designed in a conventional way. The conventional way utilizes
the approximate 2× 2 designs that are based on the conventional methodology,
i.e., M1 and S1 as approximate 2× 2 multiplier and squarer respectively. It does
not utilize themirror approximate designs (Mp and S2). The design space explo-
ration considers all the possible configurations of an n× n squarer, where each
2× 2 multiplier and squarer can be filled-in with an accurate or an approximate
design.

Based on input statistics, the error metric (or conversely: quality) is computed
for each possible n × n configuration, see Appendix B for details. Also, the
hardware cost (or conversely: efficiency) is computed for each possible n × n
configuration. Then the Pareto-optimal n × n configurations are selected that
provide an optimal trade-off between a defined error metric and an efficiency
target (area/power/performance). We present the design space exploration of
an approximate 8× 8 squarer (Sq8x8) as shown in Fig. 4.11, wherein the Mean

71

4
.
5
–
D
e
s
i
g
n
i
n
g
a
n
O
p
t
i
m
a
l
A
p
p
r
o
x
i
m
a
t
e
S
A
C
A
c
c
e
l
e
r
a
t
o
r

Stage 1:
Design space exploration of a conventional
approximate n x n squarer

Stage 2:
Quantitative analysis of n x n squarer pairs
(constructed using pareto-optimal configurations
from stage 1 and their absolute approximate
mirror modules) in a SAC accelerator

Stage 3:
Selection of an optimal SAC design that meets the
user-defined quality constraints

User-defined
quality

constraints

Pareto-optimal approximate squarer designs

Optimal Approximate
SAC Accelerator

Real-world
input vectors

Input
distribution and
squarer structure

For thesis

Pareto-optimal approximate SAC accelerators

Figure 4.10: Design methodology for building an optimal approximate Square-
Accumulate (SAC) accelerator. The conventional approximate squarer designs
(Stage 1) are based on the conventional approximate computing methodology.
These designs are paired with their absolute approximate mirror pairs and are
tested for pareto-optimality in a SAC accelerator (Stage 2). Finally, an optimal
approximate SAC accelerator is chosen based on the user-defined quality con-
straints (Stage 3).

Error (ME) is plotted against the chip-area (Area) for uniform and normal input
distributions. We assume the efficiency target is chip-area of an 8× 8 squarer,
which is computed by adding the chip-areas of individual 2×2 multiplier/squarer
modules. The chip-areas based on TSMC 40nm Low Power (TCBN40LP), syn-
thesized at 1.43GHz, are shown in Table 4.1.

It is to be noted that the mean error (ME) is an important error metric for
the output-quality analysis of an approximate squarer in a SAC architecture.
When an approximate squarer produces a low ME (or ideally a zero ME) the
subsequent accumulator produces a small overall error (or ideally a zero error)
by averaging out the errors. Therefore, we have utilized the (normalized) ME
metric. Let nec be the number of input error-combinations of an approximate
squarer configuration, i.e., the number of input combinations that generate an
error in an approximate squarer configuration. Let e be a vector containing the
error values corresponding to each input error-combination. For a given input
distribution, let pe be a vector containing the corresponding probabilities of
each input error-combination. This means that the size of vector e is nec, which
is equal to the size of vector pe. The normalized ME metric can be computed as

72

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Table 4.1: Area of elementary 2× 2 multipliers (P2x2) and squarers (Sq2x2).

Multiplier/Squarer Area (µm2)
Accurate P2x2 9.65
Conventional Approx P2x2 (M1) 7.05
Accurate Sq2x2 3.53
Conventional Approx Sq2x2 (S1) 2.12

follows,

ME[normalized] = (
nec
∑

i=1

e(i)×pe(i))/(2
2n − 1) (4.7)

where 2n is the number of output bits. Based on the available design space, the
pareto-optimal configurations (that provide an optimal trade-off between Area
and ME as shown in Fig. 4.11) are selected for later stages (Stage 2 and Stage
3) of the design process. Each pareto-optimal point in Fig. 4.11 represents an
approximate Sq8x8 configuration based on six 2× 2 multipliers and four 2× 2
squarers (see Fig. 4.7). Each 2× 2 multiplier is selected from one of P2x2 and
M1. Each 2× 2 squarer is selected from one of Sq2x2 and S1. For example, the
pareto-optimal point shown at the top-left position in Fig. 4.11a represents the
following configuration (from the least significant (left) to the most significant
(right) 2× 2 module):

S1 M1 S1 M1 M1 M1 M1 S1 M1 S1

The above pareto-optimal configuration has an area consumption of 50.8µm2

and all of its 2× 2 modules are approximate. Therefore, this configuration has
the lowest computation cost (or the highest efficiency) and the maximum ME
(or the lowest quality) as compared to the other pareto-optimal points. On the
other hand, the pareto-optimal point at the bottom-right position in Fig. 4.11a
represents the following configuration (from the least significant (left) to the
most significant (right) 2× 2 module):

Sq2x2 M1 Sq2x2 P2x2 P2x2 P2x2 P2x2 Sq2x2 P2x2 Sq2x2

The above pareto-optimal configuration consumes 69.4µm2 of the chip-area and
has only one 2× 2 approximate module, the rest of the nine 2× 2 modules are
accurate. Therefore, this configuration has the maximum computation cost (or
the lowest efficiency) and the minimumME (or the highest quality) as compared
to the other pareto-optimal points.

Although, Stage 1 provides us with the configurations that offer an optimal
quality-efficiency trade-off, it is to be noted that a significant quality degradation
will occur if we employ higher error rate and higher error magnitude approxima-
tions in the elementary 2×2 modules (aiming at higher efficiency). However, if
we introduce approximations in the proposed self-healing manner such that the
mean error of two modules forming a mirror pair are additive inverse of each

73

4
.
5
–
D
e
s
i
g
n
i
n
g
a
n
O
p
t
i
m
a
l
A
p
p
r
o
x
i
m
a
t
e
S
A
C
A
c
c
e
l
e
r
a
t
o
r

50 55 60 65 70 75

Area [m2]

10
-4

10
-2

10
0

M
E

 [
n

o
rm

a
liz

e
d

]

Sub-optimal Points

Pareto Front

Pareto-optimal Points

(a) ME vs. Area for uniformly distributed inputs.

50 55 60 65 70 75

Area [m2]

10
-8

10
-6

10
-4

10
-2

10
0

M
E

 [
n

o
rm

a
liz

e
d

]

Sub-optimal Points

Pareto Front

Pareto-optimal Points

(b) ME vs. Area for normally distributed inputs.

Figure 4.11: Design space of an approximate Sq8x8 module constructed using
elementary 2×2modules: accurate P2x2, M1, accurate Sq2x2 and S1. The normal
input distribution has µ= 128 and σ = 22.5. Pareto-optimal points are chosen
that provide best efficiency for a given quality constraint and vice versa.

other, we have:
E(MEtotal) = E(ME1)+ E(ME2) = 0 (4.8)

where E(ME1) and E(ME2) are the expected ME values of the two squarers in a
mirror pair, and E(MEtotal) is the overall expected ME value of the approximate
mirror pair. Eq. (4.8) shows that the overall expected ME value of a squarer
mirror pair is zero because E(ME1) =−E(ME2), which will result in an overall
zero error after the accumulation stage in a SAC architecture. This will also
hold true for high error rate and high error magnitude approximate elementary
2× 2 designs in a mirror pair. This motivates the Stage 2, where the n × n
pareto-optimal squarer configurations (generated in Stage 1) are paired with
their absolute approximate mirror modules as discussed in Section 4.4.

74

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Table 4.2: Area of 2×2 multiplier (P2x2) and squarer (Sq2x2) pairs. M1 is a con-
ventional approximate multiplier [63]. Mp is the proposed absolute approximate
mirror of M1. S1 and S2 are the proposed approximate squarers that are absolute
approximate mirrors of each other.

Multiplier/Squarer Pair Area (µm2)
Pair of two accurate P2x2 19.29
Pair of two M1 14.11
AAMMP (pair of M1 and Mp) 15.52
Pair of two accurate Sq2x2 7.05
Pair of two S1 4.24
AASMP (pair of S1 and S2) 2.82∗
∗ S1 and S2 consume 2.12µm2 and 0.7µm2 of the chip-area, respectively.

Nevertheless, E(MEtotal) is not necessarily zero in case of random finite-length
input distributions for the self-healing case as in Eq. (4.8). This brings the im-
portance of finite-length random input analysis for quality-efficiency trade-off
evaluation and comparison of the self-healing methodology with the conven-
tional methodology. Therefore, at Stage 2, the quantitative analysis of the pairs
(AASMPs) is performed by considering the real world scenarios that involve
random input vectors of finite (limited) length. We present these simulations
for both self-healing and conventional methodologies to compare their overall
quality-efficiency trade-off. We consider uniform and normal (µ = 128 and
σ = 22.5) distributions, where each distribution has two finite-lengths: a small
data size with 100 vectors of 124 elements each and a large data size with 1000
vectors of 10,000 elements each. The small data size resembles one channel of
radio astronomy calibration data (LOFAR facility [124]). On the other hand,
the large data size represents the considered probability distribution relatively
better than the small data size.

As in Stage 1, chip-area is considered as efficiency target. However, here we
consider a pair of 8 × 8 squarers utilizing 2 × 2 multiplier (P2x2) and 2 × 2
squarer (Sq2x2) pairs in a conventional and the proposed way. In case of the
conventional P2x2 pair, both P2x2 are M1 (3*3 ≈ 7). But when we make an
absolute approximate multiplier mirror pair (AAMMP), one of the two P2x2
is M1 (3*3 ≈ 7) and the other is Mp (3*3 ≈ 11). Likewise, both Sq2x2 of a
conventional Sq2x2 pair are S1, while an absolute approximate squarer mirror pair
(AASMP) utilizes S1 and S2 to form a proposed Sq2x2 pair. Table 4.2 shows
the area of aforesaid pairs, synthesized at 1.43GHz for TSMC 40nm Low Power
(TCBN40LP) technology. The area cost of each 8×8 squarer design is estimated
by adding the areas of 2×2 constructs only, not the adder trees. This estimation
is plausible for comparison purpose because the adder trees remain accurate in
all designs. However, in Section 4.6we will present synthesis results of complete
designs, including the adder trees.

Fig. 4.12 shows the quality-efficiency trade-off of approximate Sq8x8 pairs

75

4
.
5
–
D
e
s
i
g
n
i
n
g
a
n
O
p
t
i
m
a
l
A
p
p
r
o
x
i
m
a
t
e
S
A
C
A
c
c
e
l
e
r
a
t
o
r

Figure 4.12: Quality-efficiency trade-off of pareto-optimal designs for the con-
ventional and the proposed SH methodologies. Various finite-length randomly
distributed inputs are considered. The proposed SH methodology provides a
more effective trade-off for all considered input distributions, which is quite
significant in case of larger vector inputs.

(AASMPs) in a SAC accelerator for random finite-length inputs. We also com-
pare the conventional methodology pareto-optimal designs with that of our
proposed SH methodology. The error metric (MSE) is computed at the output
of the accumulator using Eq. (4.6). Noteworthy, because the overall error of a
SAC (inner product) operation depends upon several outputs of the squarer, we
have utilized mean error metric for designing an approximate squarer. However,
on the other hand, several SAC outputs are independent of each other, i.e., sev-
eral inner products are independent of each other. Therefore, we have utilized
the MSE metric for the overall SAC output.

As expected, the quality-efficiency trade-off of the conventional methodology in
Fig. 4.12 follows the same trend as of Fig. 4.11 for both uniform and normal input
distributions. However, for normally distributed inputs, eleven pareto-optimal
points (designs) are shown in Fig. 4.12 for the conventional methodology while
there are twelve in Fig. 4.11. This is because the lowest approximation level

76

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

(maximum area) pareto-optimal point in Fig. 4.11 has generated zero error for
finite-length input due to absence of the error case3, which brings an MSE(dB)
value of −∞ (log10(0) =−∞). Therefore, this design point is not shown in Fig.
4.12.

It is to be noted that a low MSE value and a small area are desired. Therefore, in
Fig. 4.12, a pareto front that is near to the origin of the graph is a better option.
It follows from the quality-efficiency trade-off illustrated in Fig. 4.12 that self-
healing improves the pareto front (the optimal designs) for almost all considered
input cases. For large data sizes (large vector inputs), the pareto front of the
proposed self-healing methodology completely outperforms the conventional
counterpart, because the large random vectors have more tendency towards an
ideal input distribution (uniform or normal in this case). However, in case
of smaller data sizes (small vector inputs), randomly generated vectors have a
relatively higher deviation from the ideal distribution, which results in less error
cancellation in case of the proposed self-healing methodology. Nevertheless, self-
healing still improves the trade-off for smaller data sizes by introducing several
better pareto-optimal designs as shown in Fig. 4.12.

It should be noted that the smallest area (highest approximation level) of the
proposed self-healing methodology is greater than the smallest area of the con-
ventional methodology. This is due to the fact that a 2×2 AAMMP has a larger
area as compared to an approximate conventional pair (the pair of two M1) as
shown in Table 4.2. Specifically, in case of a conventional approximate multiplier
pair, we have two M1, while in case of an AAMMP, we have M1 and Mp. As
the area of Mp is larger than M1, we have more area cost for a 2× 2 AAMMP.
Moreover, because of a lower probability of error at a 2× 2 approximate mul-
tiplier compared to an approximate squarer4, the pareto-optimal designs tend
to utilize more 2× 2 AAMMPs as compared to 2× 2 AASMPs. Consequently,
the 8-bit approximate squarer pairs have a higher area cost for the self-healing
methodology as compared to conventional methodology. However, as we see
the complete trade-off, the proposed self-healing methodology increases the de-
sign space (i.e., offers additional pareto-optimal designs), and provides overall a
more effective quality-efficiency trade-off.

It is to be noted that other efficiency targets can also be considered, e.g., power,
performance, or energy to find the pareto-optimal designs from Stage 1 and
Stage 2 (see Fig. 4.10), where the relevant cost functions can be utilized like
power consumption, delay, or power-delay-product respectively. Subsequently,
while having a clear quality-efficiency trade-off (as in Fig. 4.12), an optimal SAC

3The configuration related of this pareto-optimal point has only one approximate 2×2 module:
the most significant 2× 2 multiplier. To generate an error case for such a configuration, the 8-bit
input (see Fig. 4.7) should not be less than (240)10, which is more than 4σ away from the mean in
our considered normally distributed input (µ= 128 and σ = 22.5). Therefore, the probability of an
error case for such a configuration is extremely low, which did not show up in our finite-length data.

4For example, the probability of error for M1 is 1/16 and the probability of error for S1 is 1/4
for a uniformly distributed input.

77

4
.
6
–
E
x
p
e
r
i
m
e
n
t
a
l
S
e
t
u
p
a
n
d
R
e
s
u
l
t
s

accelerator design can be chosen based on user-defined quality constraints for
the given input distribution, which accomplishes Stage 3 of the design process.

4.6 Experimental Setup and Results

To compare the conventional and the proposed self-healing designs, a quality-
efficiency trade-off study based on estimated area has been discussed in Section
4.5. In this section, we consider some selected designs to quantify and validate
the efficiency benefits of self-healing over the conventional methodology based
on the synthesis of designs. We present results of a quality analysis and a hard-
ware synthesis of the proposed and conventional approximate Sq8x8 designs
deployed in square-accumulate accelerators for random finite-length input vec-
tors. Moreover, for the radio astronomy calibration processing case study, we
analyze the quality impact of self-healing and compare it with an equivalent
efficiency design5 utilizing the conventional methodology.

4.6.1 Experimental Setup for Quality-efficiency Trade-off Study

Our experimental setup to study the quality-efficiency trade-off is illustrated in
Fig. 3.9 (Chapter 3). Quality analysis has been performed in Matlab utilizing
behavioral models of approximate multiplier/squarer designs. We used Synopsys
tools: Design Compiler and Power Compiler to assess hardware costs, i.e., area
and power, for the TSMC 40nm Low Power (TCBN40LP) technology library.

4.6.2 Quality-efficiency Trade-off of 8× 8 Squarer Pairs in a SAC Ac-

celerator

In this section, we present the comparison of some design alternatives of Sq8x8
pairs in a SAC accelerator to quantify the quality-efficiency benefits. We present
the first synthesis of Sq8x8 pairs that are not necessarily pareto-optimal. The
main purpose here is to provide a comparison at a coarse-level based on synthesis
of designs and quality analysis. In Chapter 5, however, we present the synthesis
results of pareto-optimal designs. The following designs are considered in this
section,

Accu An accurate Sq8x8 pair, where both Sq8x8 squarers in a pair are com-
posed of accurate 2× 2 elementary modules (P2x2 and Sq2x2).

Convent1 An Sq8x8 pair designed utilizing the conventional approximation
approach where the least significant P2x2 multiplier (shown in green in Fig. 4.7)
is approximated as M1 (3*3≈ 7)[63] for both Sq8x8s in a pair.

5Equivalent efficiency designs refer to the designs that provide the same hardware efficiency in
terms of the desired form, e.g., area and/or power efficiency.

78

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Table 4.3: Computational cost comparison of accurate and approximate Sq8x8
pairs. Convent1 andConvent3 are based on conventional approximationmethod-
ology; while SH1, SH3 and SH7 are self-healing based approximate designs.

Parameters Accu Convent1 SH1 SH3 Convent3 SH7

Area_1 (µm2) 642 617 626 599 582 436

Power_1 (µW) 460 437 445 423 426 399

Area_2 (µm2) 1000 925 935 897 855 729

Power_2 (µW) 1079 1051 1048 979 977 795

Area_1 and Power_1 at 1GHz, and Area_2 and Power_2 at 1.43GHz.

SH1 An Sq8x8 pair designed utilizing the proposed self-healing approximation
approach where the least significant P2x2 is approximated as M1 (3*3≈ 7)[63]
in one Sq8x8, and the least significant P2x2 is approximated as Mp (3*3≈ 11) in
the other Sq8x8. This forms an AASMP.

Convent3 In addition to Convent1 approximations, the two least significant
Sq2x2 squarers are approximated as S1 for both Sq8x8s in an approximate pair.
Therefore, approximating the three least significant 2× 2 elementary modules
(shown in green in Fig. 4.7) in a conventional fashion.

SH3 In addition to SH1 approximations, the two least significant Sq2x2 are
approximated as S1 (2*2≈ 0) for one Sq8x8, and approximated as S2 (2*2≈ 8)
for the other Sq8x8 to form an AASMP. Therefore, approximating the three
least significant 2× 2 elementary modules (shown in green in Fig. 4.7) in a
self-healing fashion.

SH7 In addition to SH1 and SH3 approximations, all four elementary modules
(P2x2) of P4x4 (see Fig. 4.7) are approximated as M1 for one Sq8x8 and as Mp
for the other Sq8x8 to form an AASMP. Therefore, approximating seven least
significant 2× 2 elementary modules in self-healing fashion.

We compare the computational costs in terms of chip-area and power con-
sumption of the above Sq8x8 pairs at the operating frequencies: 1GHz (Area_1,
Power_1) and 1.43GHz (Area_2, Power_2) as shown in Table 4.3. Normally
distributed input vectors have been utilized to estimate power consumption.
For each approximate computing methodology (conventional and self-healing),
Table 4.3 shows an increase in computational efficiency as the approximations
are increased, i.e., a higher number of elementary 2× 2 modules are approxi-
mated. For instance, the Convent3 design has a higher area and power efficiency
as compared to that of the Convent1 design, and likewise, the SH7 design has a
higher area and power efficiency as compared to that of the SH3 design.

For a quality comparison, the Mean Square Error (MSE) is computed at the
SAC output as in Eq. (4.6). The result is shown in Fig. 4.13. We have analyzed

79

4
.
6
.
2
–
Q
u
a
l
i
t
y
-
e
ffi

c
i
e
n
c
y
T
r
a
d
e
-
o
ff

o
f

8
×

8
S
q
u
a
r
e
r
P
a
i
r
s
i
n
a
S
A
C
A
c
c
e
l
e
r
a
t
o
r 20

 40

 60

 80

 100

 120

SH 1

Conven
t 1 SH 3

Conven
t 3

SH 7

M
SE

 (d
B)

Unif_S

Norm_S

Unif_L

Norm_L

Figure 4.13: Quality comparison for various SAC designs utilizing Sq8x8 pairs.
SH3 provides better quality as compared to conventional equivalent efficiency
design (Convent3), while SH7 outperforms Convent3 both in quality (mostly)
and efficiency.

Uniform (Unif_x) and normal (Norm_x) 8-bit unsigned input distributions,
namely: Unif_S, Unif_L, Norm_S, Norm_L, where S stands for a small data size
(100 vectors of 124 elements each) and L stands for a larger data size (1000 vectors
of 10,000 elements each). We consider Norm_x distributions with µ= 128 and
σ = 22.5. In case of small data sizes (Unif_S and Norm_S), SH1 provides better
quality as compared to the conventional approach (Convent1). Even though
the computational efficiency of SH1 is lower than that of the Convent1 design,
it introduces an additional design alternative in the trade-off. Moreover, SH3

brings higher efficiency at a lower quality as compared to Convent1 and also
contributes to an additional design alternative. Interestingly, SH3 provides much
better quality as compared to the Convent3 design while providing an almost
equivalent power efficiency. This is due to the error cancellation opportunity
brought by the self-healing approximation methodology. Also, SH7 provides
better efficiency as compared to that of Convent3 design while also providing a
better quality output for three out of four input cases.

For large data sizes with uniform (Unif_L) and normal (Norm_L) distributions,
self-healing designs SH1 and SH3 show a better quality than the conventional
design Convent1. Interestingly, SH3 deploys higher area- and power-efficiency as
compared to Convent1 and still provides better quality due to error cancellation.
Similar to small data sizes, self-healing designs SH3 and SH7 provide better
quality as compared to the Convent3 design for large data sizes. SH7 shows
better efficiency (up to 25% better area efficiency and up to 18.6% better power
efficiency, see Table 4.3) as compared to the conventional design (Convent3)
with a better quality output.

Therefore, we can conclude that in comparison to the conventional design ap-
proach, the self-healing approach increases the pareto-optimal design options

80

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

in some cases and brings better (higher efficiency and higher output quality)
designs in the other cases to provide an effective quality-efficiency trade-off.

4.6.3 Radio Astronomy Calibration Processing – A Case Study

As discussed in Chapter 3, radio astronomy calibration processing (StEFCal
[107]) employs a Least Squares (LS) algorithm that takes sky visibilities as in-
put and utilizes the model visibilities to estimate sensor gains for a given radio
telescope configuration. It has three computationally expensive components:
square-accumulate (SAC), multiply-accumulate (MAC) and element-wise prod-
uct (PE), see Fig. 3.7 in Chapter 3. Here we only present the simulation results
for the SAC accelerator that computes,

N
∑

j=1

{(zr j ∗ zr j)+ (zi j ∗ zi j)} (4.9)

where zr is the real part and zi is the imaginary part of a complex vector z. Each
squaring in Eq. (4.9) can be rewritten as a squarer pair to employ self-healing,

N/2
∑

k=1

{[(zr2k−1 ∗ zr2k−1)+ (zr2k ∗ zr2k)]+ [(zi2k−1 ∗ zi2k−1)

+ (zi2k ∗ zi2k)]} (4.10)

We have utilized the radio astronomy calibration data of the LOFAR facility
[124]. Table 4.4 shows the quality analysis of various design choices as discussed
in Section 4.6.2 (Accu, Convent1, SH1, SH3, Convent3). For the MSE (SAC
error), both self-healing designs (SH1 and SH3) provide better quality as com-
pared to their conventional counterparts (Convent1 and Convent3 respectively).
It is important to note that the conventional designs produce higher errors be-
cause of lack of error cancellation. However, the self-healing based designs can
cancel out the error partially or fully (based on the input distribution). For that
matter, we can see that SH3 produces 46.7% better quality as compared to the
conventional counterpart (Convent3) while providing approximately the same
computing efficiency as discussed in Section 4.6.2.

4.6.4 Discussion and Future Work

To quantify the quality-efficiency benefits of our proposed SH methodology, we
have utilized a few pareto-optimal designs (in this section) obtained from the
design space exploration (Section 4.5). These designs have been synthesized to
estimate area and power consumption using Synopsys tools. For power con-
sumption estimation, where switching activity is needed, we have only utilized
a normally distributed input. Also, these designs have been simulated for radio
astronomy calibration processing to assess their behavior in a real application

81

4
.
7
–
C
o
n
c
l
u
s
i
o
n
s

Table 4.4: Quality analysis of radio astronomy calibration for employing various
approximate SAC alternatives. SH3 and Convent3 designs provide almost equal
power efficiency, however, SH3 brings 46.7% better quality with reference to
Convent3.

Design Alternatives SAC Error (MSE)
Accu 0

Convent1 7.8341e-07
SH1 7.7470e-07
Convent3 2.25e-02
SH3 1.20 e-02

scenario. The benefits (area-/power-efficiency and quality improvements) re-
ported in this section are not very precise because only a few designs have been
tested. All the pareto-optimal designs should be tested for better quantification
of advantages offered by the proposed methodology. By testing, we mean that
the designs are synthesized for area consumption and their power consumption
is estimated based on their target input distribution (e.g., uniform or normal),
and their models are simulated in a real application scenario.

Secondly, to compare our proposed methodology with the conventional error
restricted methodology, we only utilized a fail-rare based conventional approx-
imate 2× 2 multiplier (M1) that provides only one error case out of sixteen
possible combinations. As discussed in Chapter 2, a fail-small based approxi-
mate 2× 2 multiplier (M2) is also reported in the literature, which provides
three error cases out of the total sixteen cases but with a relatively small magni-
tude of the error. However, in the comparison, we did not utilize M2 because its
absolute approximate mirror is not efficient. Nevertheless, in Chapter 5, we will
discuss the internal-self-healing methodology (that utilizes the self-healing prin-
ciple, internally, within an approximate n× n multiplier) and we will compare
both the fail-rare and fail-small based designs with our proposed methodology.

Finally, it should be noted that there is a chance of overflow when +δ approx-
imate designs are generated, see Chapter 5 for details. Although there is a low
probability, some of the 8× 8 squarer designs presented in this chapter may
overflow based on the input distribution. To guarantee that none of the pareto-
optimal designs overflows, the worst-case scenario has to be tested during the
design space exploration to detect and exclude the overflow designs. In Chap-
ter 5, where we will discuss +δ approximate n× n multipliers, we will utilize
overflow detection and exclusion within the design space exploration process.

4.7 Conclusions

A Self-Healing (SH) methodology to enable efficient and systematic approx-
imate computing has been presented. Our analysis has shown that exploit-

82

C
h
a
p
t
e
r
4
–
E
r
r
o
r
C
a
n
c
e
l
l
a
t
i
o
n
i
n
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

ing healing stages of an accumulation based algorithm in general, and of the
square-accumulate (SAC) accelerator in particular, provides an effective quality-
efficiency trade-off. We have shown how SH can be employed to truncation and
logic pruning approximate computing techniques. We discussed the randomly
distributed finite-length input analysis and a case study of radio astronomy cali-
bration processing for an approximate SAC accelerator that showed a more ef-
fective quality-efficiency trade-off utilizing SH as compared to the conventional
approximation methodology. For random input vectors, SH demonstrates up to
25% and 18.6% better area and power efficiency respectively with a better-quality
output as compared to the conventional approximate computing methodology.
As a case study, SH is applied to one of the computationally expensive compo-
nents (square-accumulate) of the radio astronomy calibration application, where
it shows up to 46.7% better quality for equivalent computing efficiency as that
of conventional methodology.

Nevertheless, a comprehensive design space exploration—based on input distrib-
ution—is required to ensure the highest efficiency for a given quality constraint
within radio astronomy calibration processing. We have shown how absolute
approximate mirror pairs are designed for unsigned logic-pruned multipliers
and squarers, and their utilization in SAC accelerators for an effective quality-
efficiency trade-off. However, the utilization of SH for the signed multiplier case
and Multiply-Accumulate (MAC) accelerators for attaining an effective quality-
efficiency trade-off are indicated as future directions of research.

83

84

855
Internal-Self-Healing

Methodology for Accumulation

Based Approximate Accelerators

Abstract – The self-healing methodology is constrained to parallel imple-
mentations with similar modules (or parts of a datapath) in multiples of two
through the pairing of mirror versions to achieve error cancellation. In this
chapter, we propose a methodology for Internal-Self-Healing (ISH) that allows
exploiting self-healing within a computing element internally without requir-
ing a paired, parallel module. We employ our ISH methodology to design an
approximate multiply-accumulate (xMAC), wherein the multiplier is regarded
as an approximation stage and the accumulator as a healing stage. We pro-
pose to approximate a recursive multiplier in such a way that a near-to-zero
average error is achieved for a given input distribution to cancel out the error
at an accurate accumulation stage. To increase the efficacy of such a multiplier,
we propose a novel 2× 2 approximate multiplier design that alleviates the
overflow problem within an n × n approximate recursive multiplier. The
proposed ISH methodology shows a more effective quality-efficiency trade-off
for an xMAC as compared to the conventional error-restricted techniques.

As discussed in Chapter 4, the conventional approximate computing method-
ology suggests utilizing fail-small, fail-rare, or fail-moderate strategies [26, 88],
wherein the errors are restricted as per their magnitudes and rates to avoid high
loss in the output-quality. This is referred to as the conventional methodology
in this chapter. An important drawback of the conventional methodology is
a limited design-space, which excludes the approximations that introduce high
error magnitudes and high error rates. This limitation hinders the achievable

This chapter is based on [G:4].

86

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

efficiency gains for a given quality constraint and therefore limits the efficacy of
the quality-efficiency trade-off.

The fail-balanced technique for approximate computing has alleviated the afore-
said limitation in the design space, see Chapter 4. This technique does not restrict
the approximations based on their error profiles but provides an opportunity for
the error cancellation to deliver an effective quality-efficiency trade-off. This is
referred to as the self-healing methodology here. Consider an example of a comput-
ing architecture, composed of two computing elements: P1 and P2, as shown in
Fig. 5.1. The input stream is fed to P1 while the output is obtained from P2. The
conventional methodology suggests approximating both computing elements
with controlled error rates and error magnitudes to avoid an unacceptable (high)
loss in the output-quality; see Fig. 5.1a. On the other hand, the self-healing
methodology considers P1 as an approximation stage and P2 as a healing stage.
The approximations are applied at the approximation stage (approximate P1) in
such a way that their corresponding error is canceled out (partially or fully) in
the subsequent healing stage (accurate P2). To achieve this, a pair of approximate
P1 elements is required with a mirror error effect, i.e., the error introduced by
each P1 in a pair is an additive or multiplicative inverse of the other; see Fig. 5.1b.

A limitation of the self-healing methodology is that it can only be employed
in parallel architectures that have similar computing elements (or parts of a
datapath) inmultiples of two, so that themirror error effect is achieved by pairing
the similar computing elements. However, in case of datapaths that do not have
similar elements in multiples of two, an approximation methodology is required
that can provide the mirror error effect within a single computing element, as
targeted in this chapter.

The principal contribution of this work is an Internal-Self-Healing (ISH) method-
ology where the approximation stage (P1, see Fig. 5.1c) is designed for an internal
mirror error effect without requiring a parallel paired computing element. To
elaborate on the ISH methodology, the following is presented in this chapter,

» The approximate multiply-accumulate1 (xMAC) concept with ISH meth-
odology (Section 5.2).

» Design of an n×n recursive multiplier with near-to-zero mean error and
its efficacy for xMAC (Section 5.2.1).

» Overflow handling scheme for near-to-zero mean error recursive multi-
pliers and design of a novel approximate 2× 2 multiplier that alleviates
the overflow problem (Section 5.2.2).

» We compare the conventional and the proposed ISH methodologies for
chip-area and power optimized designs considering data with uniform

1In contrast to Chapter 4, here we use a case study of an approximate multiply-accumulate
accelerator which is more generalized as compared to an approximate square-accumulate (SAC)
accelerator. Noteworthy, the proposed ISH methodology can also be employed to approximate SAC
accelerators.

87

5.
1
–
R
e
l
a
t
e
d
W
o
r
k

ϵp1 ϵo

Restricted error magnitude and error
rate approximations

Input

Approximate
Output

ϵp1 and ϵo
are the errors

P1 P2

(a) Conventional approximate computing methodology.

ϵ1
ϵo

P11

ϵ2
P12

Approximation
 Stage

Healing
Stage

Input

Approximate
Output

ϵ1, ϵ2 and ϵo
are the errors,

where ϵo
approaches
zero ideally P21, 2

ϵ1+ϵ2 ≈ 0
OR
ϵ1/ϵ2 ≈ 1

(b) Self-healing approximate computing methodology.

ϵ1, ϵ2 ϵo

Approximation
 Stage

Healing
Stage

Input
Approximate

OutputP2
ϵ1+ϵ2 ≈ 0
OR

ϵ1/ϵ2 ≈ 1 P1

(c) Proposed Internal-Self-Healing (ISH) approximate comput-
ing methodology.

Figure 5.1: An overview of the conventional, the self-healing and the proposed
approximate computing methodologies. The proposed ISH methodology does
not require parallel computing elements but provides amirror error effect within
a single approximate element (P1).

and normal distributions and data obtained from a radio astronomy ap-
plication (Section 5.3).

5.1 Related Work

This section reviews the essential concepts concerning approximate multipliers,
MAC, and the designs available in literature that correspond to the conventional
and self-healing methodologies.

Approximate circuits formultipliers [42, 48, 63, 69, 75, 83, 85, 101, 123] and adders
[6, 39, 53, 74, 97, 114, 130] have been investigated for their pivotal role in digital
signal processing architectures. As discussed in Chapter 2, approximate recursive
multipliers have been designed for their benefits of low power consumption

88

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

and the possibility of fine-grained optimization based on the input distribution
[63, 75, 101].

An n× n recursive multiplier utilizes elementary 2× 2 multiplier modules. An
approximate 2×2 multiplier (M1) [63] features a lower complexity of the circuit
(see Fig. 5.2b) as compared to the accurate design (M), see Fig. 5.2a. This brings
a smaller chip-area, lower power, and lower latency of M1 as compared to M.
However, M1 brings one error case out of sixteen possible input combinations
(3*3 7→ 7), where the error_rate= 1/16 for a uniformly distributed input and
the error_magnitude= 2. Another approximate design, M2 [101], also provides
a lower complexity of the circuit as compared to M, while producing three error
cases (Fig. 5.2c, 5.2d) with error_rate= 3/16 for a uniformly distributed input
and error_magnitude= 1. M1 has a higher error magnitude and a lower error rate
as compared to M2, therefore M1 can be regarded as a fail-rare design while M2 as
a fail-small design, and M1 and M2 correspond to the conventional approximate
computing methodology.

To enable self-healing (fail-balanced design), we proposedMp in Chapter 4which
is referred to as M3 here. Fig. 5.2e and Fig. 5.2f show the truth table and logic
diagram of M3. Noteworthy, M3 is amirror of M1, i.e., it produces an error case
(ε = +2) which is an additive inverse of M1 (ε = −2). Although M3 requires
more hardware as compared toM1, combiningM1 andM3 in a pair has shown an
overall effective quality-efficiency trade-off for square-accumulate architectures,
see Chapter 4 for details.

In case of approximate MAC (xMAC) accelerators, approximate multipliers that
produce near-to-zero2 mean error provide the opportunity of error cancella-
tion at the accumulation stage. A related approximate multiplier, DRUM, has
been demonstrated for producing a near-to-zero mean error for a uniformly
distributed input, by optimizing the widths of the input operands of a multi-
plier [42]. However, the applications that exhibit other input distributions (e.g.,
Gaussian) cannot utilize DRUM. On the other hand, approximate recursive mul-
tipliers can be optimized based on the input distribution but they do not exhibit
a near-to-zero mean error by original design [42]. Interestingly, we demonstrate
in Section 5.2.1 that they can be re-designed to achieve a near-to-zero mean error
profile while retaining their primary benefits.

Truncated multiplication in a MAC architecture has also been studied [62, 94],
where the primary aim is to restrict the bit-width of multipliers and produce
low error MAC computations by diminishing the effects of truncation. Another
approach for approximate MAC utilizes an offset compensation at the accumu-
lation stage to alleviate the inaccuracies of the approximate multiplier stage [35].
In the context of redundant arithmetic units, which are based on the redundant
number system, an approximate hybrid redundant MAC has been proposed that
utilizes hybrid redundant adders to achieve high performance [31]. On the other

2Near-to-zero mean error refers to the mean error value that is zero or approximately zero.

89

5.
1
–
R
e
l
a
t
e
d
W
o
r
k

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(a) Accurate (M).

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(b) M1: 3 ∗ 3 7→ 7.

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0000 0010 0010
10 0000 0010 0100 0110
11 0000 0010 0110 1001

(c) Truth table of M2.

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(d) M2.

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 1011

(e) Truth table of M3.

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(f) M3: 3 ∗ 3 7→ 11.

Figure 5.2: 2×2 Multiplier designs; M1 [63] and M2 [101] correspond to the con-
ventional methodology, while M3 corresponds to the self-healing methodology.

hand, however, the approximate hybrid redundant MAC has an overhead of
binary-redundant and redundant-binary converters [31].

The key limitation of the above designs is that either they are based on the con-
ventional error-restricted design methodology (e.g., M1 and M2 designs) or they
have a restriction of parallel pairs (e.g., a pair of M1 andM3). As discussed earlier,
the conventional error-restricted design methodology excludes the approxima-
tions that introduce high error magnitudes and high error rates, and therefore,
limits the achievable efficiency gains. On the other hand, the restriction of utiliz-
ing parallel pairs limits the applicability of the designs when a datapath does not
have similar computing elements inmultiples of two. Moreover, in the context of
approximate MAC accelerators, no exploitation of the self-healing methodology
has been studied to the best of our knowledge.

90

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Approximation Stage
(mirror pair)

MUL

+

Ai
Bi Approximate

MAC output+
MUL

Ai+1
Bi+1

+ �

­ �

ME ≈ 0

Healing Stage
(error cancelation)

­ � and + � are
errors

ME is mean error

(a)

Approximation Stage

MUL +
Ai
Bi

Approximate
MAC output... ­ � ... + � ME ≈ 0

Healing Stage
(error cancelation)

­ � and + � are errors and
ME is mean error

(b)

Figure 5.3: ApproximateMACdesigns, (a) utilizing the self-healingmethodology,
(b) utilizing the proposed ISH methodology, where approximation is achieved
with ±δ errors within a single multiplier module, which can be averaged out at
the accumulator.

5.2 Designing an Approximate MAC with the Internal-

Self-Healing (ISH) Methodology

A MAC operation computes,

N
∑

i=1

(Ai ∗Bi) (5.1)

where A and B are the input vectors of length N . To design an approximate
MAC (xMAC) in compliance with the self-healing methodology discussed in
Chapter 4, the multiplication is considered as an approximation stage and the
accumulation as a healing stage; see Fig. 5.3a. A pair of approximate multipliers is
utilized such that they produce errors that are additive inverse of each other, i.e.,
ε1 =+δ and ε2 =−δ, so that the expected value of the mean error approaches
zero. This helps the accurate accumulator to cancel out the errors originated
in the approximate multipliers. However, such a methodology is limited to
architectures that have multiple multiplier pairs in parallel, which is not always
the case as discussed earlier. Therefore, we propose an xMAC accelerator where
an approximate multiplier can generate +δ and −δ errors internally, without
requiring a parallel multiplier; see Fig. 5.3b. This relieves the restriction of
multiples of two computing units and increases the applicability of the design.

91

5.
2
.
1
–
A
p
p
r
o
x
i
m
a
t
e
M
u
l
t
i
p
l
i
e
r
f
o
r
M
A
C

5.2.1 Approximate Multiplier for MAC

A key challenge in employing the ISH methodology for xMAC is to achieve
an approximate multiplier that exhibits a near-to-zero mean error profile for
a given input distribution, so that the subsequent accurate accumulator can
average out the errors originated in the approximate multiplier. Here we discuss
an approximate n× n unsigned recursive multiplier with the desired property,
where n is the bit-width of input operands, n ∈ {2,4,8,16, ...}.

An n × n recursive multiplier is constructed using (n/2)2 elementary (2× 2)
multipliers [63, 75, 101]. These 2× 2 multipliers generate partial products. Sum-
mation of the bit-shifted partial products produce the overall output of an n×n
recursive multiplier. Fig. 5.4 shows cases of 4 × 4 (O4×4) and 8 × 8 (O8×8)
recursive multipliers that are composed of four and sixteen 2× 2 multipliers,
respectively. Any number out of the set of 2× 2 multipliers and/or adders can
be approximated to achieve an approximate multiplier [63, 101]. However, in
this work we only apply approximations in the 2×2 multipliers (not the adders)
as in Chapter 4. Therefore, any combination of approximate 2× 2 multipliers,
e.g., M1, M2 and M3 (Fig. 5.2), can be utilized to form an approximate n × n
multiplier.

To achieve a near-to-zero mean error profile, the 2×2 multipliers that have equal
numerical weights (see Fig. 5.4) can be approximated with +δ and −δ errors.
For example, in case of a 4× 4 multiplier, the output (O4×4) can be expressed as
follows (see Fig. 5.4a),

O4×4 =AL ∗BL+ 4(AL ∗BH)+ 4(AH ∗BL)+ 16(AH ∗BH) (5.2)

where the constants 4 and 16 are representing the shift factors. If M1 is deployed
for AL ∗BH , M3 for AH ∗BL, and M for the other two, the expected mean error
value of the multiplier (for uniformly distributed inputs) is zero. Therefore, an
xMAC utilizing such an approximate multiplier has an expected error value of
zero for uniformly distributed input vectors. Likewise, zero (or approximately
zero) expected error value configurations can be chosen for other input distribu-
tions.

In the case of an 8× 8 multiplier (see Fig. 5.4b), one possible way to achieve
a zero mean error (for uniformly distributed inputs) is to approximate all the
2× 2 multipliers of Mb with +δ (M3) errors and all the 2× 2 multipliers of
Mc with −δ (M1) errors. It is to be noted that there are multiple combinations
of 2× 2 multipliers in an n × n approximate multiplier that bring a zero (or
approximately zero) mean error value. However, some of the combinations may
overflow as discussed in the following section.

5.2.2 Overflow Handling

A challenge for designing an n× n recursive multiplier with near-to-zero mean
error is the requirement of positive error (ε=+δ) 2×2 approximate multipliers

92

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

AH*BH

AL*BL

0
0
0

0
0
0

0
0
0

0
0
0

00

0 0
+

p7 p6 p5 p4 p3 p2 p1 p0

a3 a2 a1 a0A: {

ALAH

{ {b3 b2 b1 b0B: {

BLBH

{

O4×4

O2×2

AL*BH

{

AH*BL

(a) 4×4 recursive multiplication requires four 2×2 multipliers.

exploration, and also propose a novel 2 × 2 approximate
multiplier design that helps to alleviate such configurations.

1) Overflow Examples: Consider a 4 × 4 multiplication
operation as shown in Fig. 4a. Let A = (1111)2 and B =
(1111)2. This implies AH = AL = BH = BL = (11)2 = 3,
therefore (2) becomes,

O4×4 = 3 ∗ 3 + 4(3 ∗ 3) + 4(3 ∗ 3) + 16(3 ∗ 3)
assuming M3 (3∗3 7→ 11) is deployed for all 2×2 multipliers,

O4×4 = 11 + 4(11) + 4(11) + 16(11)

= 275 = (1 0001 0011)2

the output exceeds 8 bits (2n). Therefore the above example
is an overflow configuration for a 4× 4 multiplier, and is not
desired. In case of a 4 × 4 multiplier, the overflow occurs
as the value of the output is greater than 255, i.e., 22n −
1. However, while constituting a higher order multiplier, say
8 × 8 multiplier, a 4 × 4 multiplier with an output value of
less than 255 may also overflow the higher order multiplier.
Note that 255 is still considerably larger than the maximum
possible accurate output value of a 4× 4 multiplier, which is
225. Consider an 8 × 8 multiplication (Fig. 4b), and let the
constituting four 4× 4 multiplications be represented by Ma,
Mb, Mc and Md such that the least significant multiplication is
Ma while the most significant is Md. The following expression
represents the 8× 8 computation,

O8×8 =Ma + 16(Mb) + 16(Mc) + 256(Md) (3)
where the constants 16 and 256 are representing the shift
factors. Let A = (1111 1111)2 and B = (1111 1111)2. Let
M3, M3, M1 and M are employed to compute the AL ∗ BL,
AL ∗BH , AH ∗BL and AH ∗BH partial products respectively
for each of the 4× 4 multipliers. Therefore, each of the 4× 4
multipliers will generate,

O4×4 = 11 + 4(11) + 4(7) + 16(9) = 227

and (3) becomes,
O8×8 = 227 + 16(227) + 16(227) + 256(227)

= 65603 = (1 0000 0000 0100 0011)2

the output exceeds 16 bits (2n), therefore this is an overflow
configuration. So, even in cases where none of the 4 × 4
multipliers lead to overflow, the resulting 8× 8 multiplier can
cause overflow.

2) A Novel 2 × 2 Approximate Multiplier: In order to
alleviate the overflow problem, we propose an approximate
2 × 2 multiplier design (M4), as shown in Fig. 5, which
provides a larger negative error (ε = −4) as compared to M1.
Note that M4 can be balanced with two M2 (ε = +2) in order
to achieve the internal-self-healing. Interestingly, M4 is useful
in the design of near-to-zero mean error recursive multipliers
as it reduces the maximum possible output value of an n× n
multiplier. For instance, if M4 is employed to only AH ∗BH

in (2), it averts the possibility of overflow no matter which of
the combination out of the given choices (M/M1/M2/M3/M4)
is used for the other three 2× 2 multipliers.

3) Overflow Handling Scheme: In order to identify the
overflow configurations, we propose to assess each configura-

AH*BH

AL*BL

0
0
0

0
0
0

0
0
0

0
0
0

00

0 0
+

p7 p6 p5 p4 p3 p2 p1 p0

a3 a2 a1 a0A: {

ALAH

{ {b3 b2 b1 b0B: {

BLBH

{

O4×4

O2×2

AL*BH

{

AH*BL

ALH*BLH
ALH*BLL
ALL*BLH

ALL*BLL
+

p7 p6 p5 p4 p3 p2 p1 p0

a7 a6 a5 a4A: {

AHLAHH

{ a3 a2 a1 a0{

ALLALH

{

b3 b2 b1 b0{

BLLBLH

{ {b7 b6 b5 b4B: {

BHLBHH

{

O8×8

ALH*BHH
ALH*BHL
ALL*BHH

ALL*BHL

AHH*BLH
AHH*BLL
AHL*BLH

AHL*BLL

AHH*BHH
AHL*BHH
AHH*BHL

AHL*BHL

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0

0
0
0

0
0
0
0
0
0
0

0

0
0
0

0
0
0
0
0
0
0

0
0
0

0

0
0
0
0
0

0
0
0

0

0
0
0
0
0

0
0
0
0
0

0

0
0
0

0
0
0
0
0

0

0
0
0

0
0
0
0
0
0
0

0
0
0

0

0
0
0
0
0
0
0

0
0
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

p15 p14 p13 p12 p11 p10 p9 p8

{O4×4

O2×2{

(b) 8× 8 recursive multiplication requires sixteen 2× 2 multipliers.

Fig. 4: Recursive n×n multiplication utilizes elementary 2×
2 multipliers. The same colors show equal numerical weight
2 × 2 multipliers that can be approximated with +δ and −δ
errors to enable ISH.

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 0101

(a) Truth table of M4.

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(b) M4: 3*37→5.

Fig. 5: A proposed 2× 2 approximate multiplier for overflow
compensation.

tion step-wise for 4×4, ... , n/2×n/2 and n×n cases. Without
loss of generality, here we elaborate on an 16× 16 recursive
multiplication operation. For each 16×16 configuration, firstly,
we need to check an overflow for each of the sixteen 4 × 4
multipliers,

max value 4 < 28 (4)

where max value 4 is the maximum possible value of a
4 × 4 multiplier. If Eq. (4) fails for any of the sixteen 4 × 4
multipliers, the configuration is discarded. Secondly, we need
to check an overflow for each of the four 8× 8 multipliers,

max value 8 =
4∑

j=1

[max value 4(j) ∗ S(j)] < 216 (5)

where max value 8 is the maximum possible value of an
8 × 8 multiplier, which is essentially the summation of the
products of maximum possible values of constituting 4 × 4

{
{
{
{

Md

Mc

Mb

Ma

(b) 8× 8 recursive multiplication requires sixteen 2× 2 multipliers.

Figure 5.4: Recursive n× n multiplication utilizes elementary 2× 2 multipliers.
The same colors show equal numerical weight 2 × 2 multipliers that can be
approximated with +δ and −δ errors to enable ISH.

like M3, which may result in the overall output exceeding the 2n bits. We define
an overflow configuration as the configuration of an n× n multiplier (consisting
of 2× 2 multipliers) that overflows for at least one combination of n-bit inputs.
Here we discuss how to identify the overflow configurations in order to discard
them during design space exploration, and also propose a novel 2×2 approximate
multiplier design that helps to alleviate the overflow problem.

Overflow Examples

Consider a 4×4 multiplication operation as shown in Fig. 5.4a. Let A= (1111)2
and B = (1111)2. This implies AH = AL = BH = BL = (11)2 = 3, therefore Eq.

93

5.
2
.
2
–
O
v
e
r
fl
o
w
H
a
n
d
l
i
n
g

(5.2) becomes,

O4×4 = 3 ∗ 3+ 4(3 ∗ 3)+ 4(3 ∗ 3)+ 16(3 ∗ 3)

assuming M3 (3 ∗ 3 7→ 11) is deployed for all 2× 2 multipliers,

O4×4 = 11+ 4(11)+ 4(11)+ 16(11)
= 275= (1 0001 0011)2

the output exceeds 8 bits (2n). Therefore the above example is an overflow
configuration for a 4 × 4 multiplier, which is not desired. In case of a 4 × 4
multiplier, the overflow occurs as the value of the output is greater than 255,
i.e., 22n − 1. However, while constituting a higher order multiplier, say 8× 8
multiplier, a 4× 4 multiplier with an output value of less than 255 may also
overflow the higher order multiplier. Note that 255 is still considerably larger
than the maximum possible accurate output value of a 4× 4 multiplier, which
is 225 (i.e., (2n − 1)2). Consider an 8× 8 multiplication (Fig. 5.4b), and let the
constituting four 4× 4 multiplications be represented by Ma , Mb , Mc and Md
such that the least significant multiplication is Ma while the most significant is
Md . The following expression represents the 8× 8 computation,

O8×8 =Ma + 16(Mb)+ 16(Mc)+ 256(Md) (5.3)

where the constants 16 and 256 are representing the shift factors. Let A =
(1111 1111)2 and B = (1111 1111)2. Let M3 (3*3 7→ 11), M3, M1 (3*3 7→ 7)
and M (3*3 7→ 9) compute the AL ∗ BL, AL ∗ BH , AH ∗ BL and AH ∗ BH partial
products respectively for each of the 4× 4 multipliers. Therefore, each of the
4× 4 multipliers will generate,

O4×4 = 11+ 4(11)+ 4(7)+ 16(9) = 227

and Eq. (5.3) becomes,

O8×8 = 227+ 16(227)+ 16(227)+ 256(227)
= 65603= (1 0000 0000 0100 0011)2

the output exceeds 16 bits (i.e., 2n), therefore this is an overflow configuration. So,
even in cases where none of the 4×4 multipliers leads to overflow, the resulting
8×8 multiplier can cause overflow. In general, any n×n multiplier configuration
that is not an overflow configuration in itself but has a maximum output value
greater than (2n − 1)2, may overflow a higher order 2n× 2n multiplier.

A Novel 2× 2 Approximate Multiplier

To alleviate the overflow problem in an n× n approximate recursive multiplier,
one way is to utilize an approximate 2× 2 multiplier that provides a relatively

94

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 0101

(a) Truth table of M4.

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(b) M4: 3*3 7→ 5.

Figure 5.5: A proposed 2×2 approximate multiplier for overflow compensation.

larger negative error (−δ). When such an approximate 2× 2 multiplier is uti-
lized, the maximum possible output value of an n× n approximate multiplier
is reduced. In this regard, we propose an approximate 2× 2 multiplier design
(M4), as shown in Fig. 5.5, which provides a larger negative error (ε = −4) as
compared to M1 (ε=−2). Note that M4 can be balanced with two M2 (ε=+2)
in order to achieve the internal-self-healing.

It should also be noted that M4 is useful in the design of near-to-zero mean error
recursive multipliers as it reduces the maximum possible output value of an n×n
multiplier. For instance, if M4 is employed to only AH ∗BH in Eq. (5.2), it averts
the possibility of overflow no matter which of the combination out of the given
choices (M/M1/M2/M3/M4) is used for the other three 2× 2 multipliers.

Overflow Handling Scheme

To identify the overflow configurations, we propose to assess each n× n multi-
plier configuration step-wise, from 4× 4 constituting multipliers to an overall
n×n multiplier. Consider an 8×8 recursive multiplication operation. For each
8× 8 configuration, firstly, we need to check the possibility of an overflow for
each of the four 4× 4 multipliers. Let Γ4 be the maximum possible output value
of a 4× 4 multiplier,

Γ4 =max(O4×4) (5.4)

Then we need to check the following,

Γ4 < 28 (5.5)

If Eq. (5.5) fails for any of the four 4×4multipliers, the configuration is discarded.
Otherwise, we need to check the maximum possible output value of an overall
8× 8 multiplier (Γ8). Let Γ4(1), Γ4(2), Γ4(3), and Γ4(4) be the maximum possible
output values of the constituting 4 × 4 multipliers and their respective shift
factors be S4(1), S4(2), S4(3), and S4(4). Then the maximum possible output
value of an 8× 8 multiplier (Γ8) is given as,

Γ8 =
4
∑

j=1

[Γ4(j) ∗ S4(j)] (5.6)

95

5.
2
.
3
–
C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
p
r
o
p
o
s
e
d
I
S
H

w
i
t
h
t
h
e
c
o
n
v
e
n
t
i
o
n
a
l
a
p
p
r
o
x
i
m
a
t
e
c
o
m
p
u
t
i
n
g
m
e
t
h
o
d
o
l
o
g
y

now we need to check the following,

Γ8 < 216 (5.7)

If Eq. (5.7) fails, the 8× 8 multiplier is an overflow configuration. Likewise,
additional steps can be added to identify overflow, or, to select non-overflow
configurations for higher order recursive multipliers. For example, in the case of
a 16×16multiplier, Eq. (5.7) is to be checked for each constituting 8×8multiplier
and then the overall maximumpossible output of the 16×16multiplier is checked
for an overflow.

To automate overflow handling for an n× n approximate multiplier configura-
tion, a recursive function can be utilized (see Appendix C for details), where
at each stage (nr), the function checks the following condition for identifying
valid configurations,

Γnr
< 22nr (5.8)

here nr is the current recursive stage, nr ∈ {4,8, ..., n/2, n}. The related maxi-
mum possible output value (Γnr

) can be computed as,

Γnr
=

4
∑

j=1

[Γ(nr /2)
(j) ∗ S(nr /2)

(j)]

= ΓMa
+ 2nr /2ΓMb

+ 2nr /2ΓMc
+ 2nΓMd

(5.9)

where ΓMa
,ΓMb

,ΓMc
and ΓMd

are the maximum possible output values of the con-
stituting nr/2× nr/2 multipliers (sub-multipliers).

5.2.3 Comparison of the proposed ISH with the conventional approxi-

mate computing methodology

Terminology and Notation

We follow the notation introduced in [G:7] and extend that to incorporate
approximate recursive multipliers. Let I be a set of inputs that is mapped to O
as the function f is executed in its exact form, i.e., f : I 7→O. Let f ∗ : I 7→O∗
and f ∗′ : I 7→ O∗′ be the execution of the same function in approximate form
by utilizing the conventional and the ISH methodologies, respectively. Let D
be the design space offered by an approximate computing methodology, which
is essentially a set of all possible design configurations offered by the respective
methodology, i.e.,

D= {C1,C2,C3, ...,Cg } (5.10)

here g is the number of design alternatives/configurations offered by the respec-
tive approximate computing methodology, and each Ci is a design configura-
tion that characterizes a specific point: (ei , qi) in the quality-efficiency trade-off.
Where ei is efficiency and qi is quality offered by Ci .

96

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Supposing an n× n recursive multiplier, the function f corresponds to multi-
plication operation. Let D∗ and D∗′ be the design spaces offered by the con-
ventional and the ISH approximate computing methodologies respectively. The
conventional approximate computing methodology utilizes the conventional
error-restricted elementary (2×2) multipliers (M1, M2) along with the accurate
version (M). Let K∗ be defined as the set of elementary multipliers utilized by
the conventional approximate computing methodology, i.e., K∗ = {M, M1, M2}.
On the other hand, the proposed ISH methodology utilizes the conventional
and the proposed self-healing based elementary multipliers, therefore, K∗′ = {M,
M1, M2, M3, M4}, where K∗′ is a set of elementary multipliers utilized by the
ISH methodology. It can be noted that all elements of K∗ are included in K∗′,
i.e., K∗ ⊂K∗′. Therefore,

D∗ ⊂D∗′ (5.11)

Comparison

To compare the trade-offs offered by twomethodologies, we define effectivity (E),
such that E is a function of quality and efficiency. A design methodology (with
an effectivity of E1) is considered to be more effective than the other (with the
effectivity of E2), i.e., E1 >E2, if and only if it provides a better efficiency (e) for
a specific output quality (q), and a better quality (q) for a specific efficiency (e)
target. As shown in Eq. (5.11), the design alternatives offered by the proposed
ISH methodology include the design alternatives offered by the conventional
methodology, and additionally, the ISH methodology offers new designs that
help error cancellation. Consequently, the proposed ISH methodology provides
a quality-efficiency trade-off that is always equally or more effective as compared
to that of the conventional methodology counterpart, i.e.,

E(f ∗′:I7→O∗′) ≥E(f ∗:I7→O∗) (5.12)

Besides the overall trade-off, it is also important to analyze the error bounds of
an approximate circuit that affect its feasibility for a target application. Marzek
et al. [85] formalized the Worst Case Error (WCE) of a recursive multiplier as,

WCEn =WCEMa
+ 2n/2WCEMb

+ 2n/2WCEMc
+ 2nWCEMd

(5.13)

where WCEn is the worst case error of an n × n recursive multiplier, and
WCEMa

,WCEMb
,WCEMc

and WCEMd
represent the worst case errors of the

four constituting (n/2× n/2) multipliers (sub-multipliers) respectively. In case
of an approximate multiplier that is designed in a conventional way, Eq. (5.13)
represents the WCE that occurs when a worst case input triggers the error cases
of all the approximate sub-multipliers. On the other hand, consider Mb and Mc
are mirrored, such that they have error magnitudes that are additive inverse of
each other, i.e., utilizing the proposed ISH methodology. If an input triggers an
error case for each sub-multiplier, the second and third terms in Eq. (5.13) cancel

97

5.
3
–
E
x
p
e
r
i
m
e
n
t
a
l
R
e
s
u
l
t
s

out. In fact, the WCE for such an ISH based approximate multiplier occurs
when one of the Mb or Mc does not have an error triggering input and is given
as,

WCEn =WCEMa
+ 2n/2WCE(Mb,Mc)

+ 2nWCEMd
(5.14)

whereWCE(Mb,Mc)
is the worst case error of Mb and Mc , which occurs when only

one of them introduces an error, and the error has a same direction (sign) as that
of Ma and Md . Hence, the worst case error (WCEn) of the ISH methodology
can never be greater than that of the conventional methodology. Keeping in
view the design space relation in Eq. (5.11), and the worst case errors for the
conventional (see Eq. (5.13)) and the ISH (see Eq. (5.14)) methodologies, we
have,

WCE(f ∗′:I7→O∗′) ≤WCE(f ∗:I7→O∗) (5.15)

From Eq. (5.12) and Eq. (5.15), it can be concluded that it is always beneficial
to employ the proposed ISH methodology as compared to the error restricted
conventional approximate computing methodology. It is to be noted that the
aforesaid comparison is independent of the input distribution. Moreover, we
quantify the benefits offered by the proposed ISHmethodology in the subsequent
sections.

5.3 Experimental Results

To study the quality-efficiency trade-off for approximate MAC accelerators and
to compare the proposed internal-self-healing (ISH) methodology with the con-
ventional methodology, we have performed a design space exploration for area-
and power-optimization for uniform and normal input distributions. As 8-bit
architectures are widely used in signal processing applications [8, 52, 68, 111],
our experiments are mainly focused on 8-bit designs. However, we also compare
4-bit and 16-bit designs to test the scalability of our methodology.

In Section 5.2.3, it has been shown that the proposed ISH methodology always
provides better (or at least equivalent as a worst-case) designs as compared to the
conventional approximate computing methodology. Here we present the cases
that quantify the maximum benefits offered by the ISH methodology based on
our design space exploration. This includes our case study of radio astronomy
calibration processing (Section 5.3.4) and synthesis based comparison (Section
5.3.5) of quality-efficiency benefits.

5.3.1 Experimental Setup

A quality analysis was performed using function-accurate behavioral implemen-
tations of accurate and approximate n× n recursive multipliers, and a hardware
efficiency analysis was performed utilizing SynopsysDesignCompiler and Power
Compiler for the TSMC 40nm Low Power (TCBN40LP) technology library. A
block diagram of our experimental setup is shown in Fig. 3.9 (Chapter 3).

98

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

To fix the latency budget of all the synthesized designs, a fixed operating fre-
quency of 1 GHz has been utilized for hardware efficiency analysis. This legiti-
mates the area and power comparison of various design alternatives to ensure a
fair comparison. We have utilized the same compile command (compile_ultra3)
for synthesizing all designs. Questasim has been utilized for functional verifica-
tion and to generate the switching activity for power estimation. For normally
distributed inputs, the followingmean (µ) and standard deviation (σ) values have
been considered4, 4-bit case: (µ = 8, σ = 1.5), 8-bit case: (µ = 128, σ = 22.5),
and 16-bit case: (µ= 32768, σ = 6553).

5.3.2 Design Space Exploration of the Proposed ISH methodology

We have performed design space exploration as discussed in Appendix C to
obtain the best designs offered by the ISH methodology. These best designs are
referred to as the pareto-optimal configurations/designs, and the line joining the
pareto-optimal points in the quality-efficiency trade-off is regarded as the pareto
front.

One way of estimating the hardware costs of an n× n recursive multiplier is to
add up the costs of the constituting sub-multipliers [G:3] [85]. However, this
ignores the hardware costs related to adder trees within an n × n multiplier.
Therefore, the cost estimation proposed in [G:3] [85] is useful for ranking pur-
pose only, and has an underlying assumption that the costs of adder trees will
follow the same trend as that of the sub-multipliers. In this chapter, we have
utilized a better way of cost estimation that also includes the cost contributions
of the adder trees related to the sub-multipliers. Firstly, we obtain the cost of
an n× n multiplier composed of multiples of a unique 2× 2 multiplier, say M1,
using the Synopsys tool flow. Then we divide the cost of an n× n multiplier by
the number of total 2×2 designs constituting an n×n multiplier. This includes
the area/power costs of the 2× 2 multipliers along with the related adders, and
therefore provides a plausible estimation of hardware costs, or conversely: the
hardware efficiency.

Table 5.1 shows the estimated hardware costs of the considered 2× 2 multipliers
that are utilized for estimating the costs of design configurations during the de-
sign space exploration. Note that an 8×8 multiplier needs relatively more adders
as compared to a 4×4 multiplier to add the partial products. Therefore, each of
the 2× 2 multipliers in Table 5.1 has a lower cost estimate while constituting a
4×4 multiplier as compared to while constituting an 8×8 multiplier. Similarly,

3The compile command has been mentioned here for the reproducibility of our results. How-
ever, the conclusions of this chapter do not depend on this command.

4We mention the mean (µ) and standard deviation (σ) values for the reproducibility of our
results. These µ and σ values have been chosen so that it is highly likely that the inputs remain
less than 2n , i.e., µ+ 5σ < 2n . However, the conclusions of this chapter do not depend on these
particular cases because using the same procedure the designs can be optimized based on the required
µ and σ values, i.e., the input distribution of the target application.

99

5.
3.
3
–
S
c
a
l
a
b
i
l
i
t
y
a
n
d
C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
I
S
H

w
i
t
h
t
h
e
C
o
n
v
e
n
t
i
o
n
a
l
M
e
t
h
o
d
o
l
o
g
y

Table 5.1: 2× 2 multiplier cost (conversely: efficiency) estimation for TSMC
40nm Low Power library at 1 GHz. The estimation also includes the costs
related to the adder trees within a higher order multiplier.

Design 4× 4 Multiplier 8× 8 Multiplier
Type Area (µm2) Power a Area (µm2) Power a

M 21.52 13.41 32.43 27.59
M1 13.29 9.18 25.20 22.34
M2 19.17 10.16 31.11 22.06
M3 19.17 13.15 31.21 27.47
M4 16.76 10.27 27.36 22.66

a Power(µW) estimates based on uniformly distributed input.

we have generated the results for a 16× 16 case that has the same pattern in
increase. We use these results in Section 5.3.3.

Fig. 5.6 shows the complete design space of a 4× 4 recursive multiplier utilizing
the five 2 × 2 multiplier options (M, M1, M2, M3, and M4), optimized for
uniformly distributed input. The absolute mean error shown at the y-axis (in all
our results of this Chapter) is normalized to the output range of the multiplier,
i.e., 22n , where n is the bit-width of the input operands. Red asterisks represent
the overflow configurations that are identified and discarded (using Eq. (5.8)).

Table 5.2 shows the pareto-optimal configurations for a 4× 4 recursive multi-
plier based on uniformly distributed input. The left column shows the power
optimized pareto-optimal configurations and the right column shows the area
optimized ones. Each configuration contains four 2× 2 multipliers, e.g., M1 M1

M1 M1, where the left-most 2× 2 multiplier is the Least Significant Multiplier
(LSM) and the right-most one is the Most Significant Multiplier (MSM) of a
4× 4 configuration. The hardware efficiency increases and the output-quality
decreases as we go from the bottom row to the top row. It can be seen that most
of the pareto-optimal configurations include the self-healing based designs like
M3 and M4. This substantiates the importance of our proposed M3 and M4

designs. Similarly, we have generated the results for an 8× 8 and a 16× 16 case
that have shown the same pattern and are discussed in the following sections.

5.3.3 Scalability and Comparison of the ISH with the Conventional

Methodology

To compare the proposed ISH and the conventional approximate computing
methodologies, we compare their pareto fronts for area- and power-optimized
designs based on each input distribution (uniform and normal). As discussed in
Section 5.2.3, all four approximate designs (M1, M2, M3 and M4) are considered
(along with the accurate one (M)) as 2× 2 multiplier options for the proposed

100

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

(a) Design space exploration for power optimization.

(b) Design space exploration for area optimization.

Figure 5.6: Quality-efficiency trade-off study of a 4× 4 multiplier optimized for
uniformly distributed inputs.

ISH methodology. However, only the conventional low error-rate (M1) and
low error-magnitude (M2) approximate designs are considered (along with the
accurate one (M)) for the conventional methodology.

Fig. 5.7 shows the pareto fronts for 4×4 recursive multipliers. It can be seen that
the proposed ISHmethodology presents many designs that have better efficiency
for a given quality constraint and vice versa as compared to the conventional
methodology counterparts. It should be noted that the additional design points
(shown in Fig. 5.7b and 5.7d) are not worse as compared to the conventional
methodology because they increase the number of design options in the pareto
front. However, such designs may be ignored as they do not provide much
efficiency benefits as compared to their decreased quality. Moreover, it should
be noted that Fig. 5.7 shows pareto-optimal configurations based on exhaustive
search, as the design space is small enough for a 4× 4 multiplier case.

101

5.
3.
3
–
S
c
a
l
a
b
i
l
i
t
y
a
n
d
C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
I
S
H

w
i
t
h
t
h
e
C
o
n
v
e
n
t
i
o
n
a
l
M
e
t
h
o
d
o
l
o
g
y

Table 5.2: Pareto-optimal configurations for a 4×4 recursive multiplier based on
uniformly distributed input. The hardware efficiency increases and the output-
quality decreases as we go from the bottom row to the top row.

Power Optimization SpArea Optimization
LSM∗ → MSM∗ LSM Spa→ MSM
M1 M1 M1 M1 M1 M1 M1 M1

M1 M1 M1 M3 M1 M1 M1 M3

M1 M2 M1 M3 M1 M4 M1 M3

M1 M4 M1 M3 M1 M4 M4 M3

M1 M4 M2 M3 M4 M2 M4 M3

M2 M4 M2 M3 - - - -
M4 M4 M2 M3 - - - -
∗LSM and MSM are the least significant and the most
significant 2× 2 multipliers respectively.

To verify the scalability of the proposed methodology, we also present a com-
parison for 8×8 and 16×16 recursive multipliers as shown in Fig. 5.8. Here the
y-axis is shown in logarithmic scale to clearly illustrate the widely spread designs
for comparison. It is to be noted that we have performed an exhaustive search for
the 8× 8 conventional methodology case, where the rest of the simulations for
Fig. 5.8 (8× 8 ISH and 16× 16 conventional and ISH) have been performed by
utilizing the intermediate-pruning technique discussed in Appendix C. It can be
seen that the proposed ISH methodology clearly outperforms the conventional
methodology for all considered input lengths by providing many designs that
have better efficiency for a given quality constraint and vice versa.

In the case of the ISH methodology, it is noteworthy that the error drops rela-
tively faster for increasing area/power costs in the beginning. This is because of
error balancing that helps to reduce the error without using the accurate mod-
ules. However, at a certain stage, when the error is already very low, the rate
of error drop (with respect to area/power) decreases (e.g., see Fig. 5.8b, designs:
C6 and C7). This is because the usage of accurate modules is necessary to further
reduce the error beyond this stage.

As discussed earlier, for 4× 4 and 8× 8 cases, exhaustive simulation is utilized
(by considering all possible combinations of 2× 2 multipliers) to obtain pareto-
optimal designs based on the conventional methodology, which means no con-
ventional design can be better than them. Although there are some approxima-
tions involved within the intermediate-pruning algorithm (see Appendix C) that
may provide near-optimal (instead of optimal) designs in a rare case, it gener-
ates better ISH designs as compared to the conventional exhaustively searched
designs. This substantiates the fact that the ISH methodology performs better
than the conventional error-restricted methodology, including the higher order

102

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

50 60 70 80

0

0.5

1

·10−2

Estimated Area [µm2]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(a) Area optimization for uniformly
distributed input.optimization for nor-
mally distributed input

50 60 70 80

0

2

4

6

·10−4

an additional design point

Estimated Area [µm2]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(b) Area optimization for normally
distributed input.optimization for nor-
mally distributed input

40 45 50 55

0

0.5

1

·10−2

Estimated Power [µW]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(c) Power optimization for uniformly
distributed input.

35 40 45 50 55

0

2

4

6

·10−4

an additional design point

Estimated Power [µW]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(d) Power optimization for normally dis-
tributed input.

Figure 5.7: Comparison of the pareto-optimal designs of 4× 4 multipliers based
on ISH and the conventional approximate computing methodologies. The pro-
posed ISH methodology outperforms for all considered optimization targets by
providing better (or at least equal) efficiency designs for a given quality constraint
and vice versa. For normally distributed input (b) and (d), additional design
points are brought by the proposed ISH methodology, which are not worse
as compared to the conventional methodology as they increase the number of
design options in the pareto front.

input cases like 8-bit and 16-bit. Therefore we can conclude that the proposed
ISH methodology provides a more effective quality-efficiency trade-off as com-
pared to the conventional approximate computing methodology due to internal
self-healing of the errors within the approximate modules, and this is indepen-
dent of the target hardware efficiency (e.g., area or power), input width (e.g.,
4-bit/8-bit/16-bit), and input distribution (e.g., uniform or normal).

103

5.
3.
3
–
S
c
a
l
a
b
i
l
i
t
y
a
n
d
C
o
m
p
a
r
i
s
o
n
o
f
t
h
e
I
S
H

w
i
t
h
t
h
e
C
o
n
v
e
n
t
i
o
n
a
l
M
e
t
h
o
d
o
l
o
g
y

400 420 440 460 480 500 520
10−6

10−5

10−4

10−3

10−2

Estimated Area [µm2]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(a) Area optimization for uniformly dis-
tributed input (8× 8).

400 420 440 460 480 500 520

10−8

10−7

10−6

10−5

10−4

10−3

C6 C7

Estimated Area [µm2]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(b) Area optimization for normally dis-
tributed input (8× 8).

350 360 370 380 390 400 410 420 430 440

10−6

10−5

10−4

10−3

10−2

Estimated Power [µW]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(c) Power optimization for uniformly
distributed input (8× 8).

350 360 370 380 390 400 410 420 430 440

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Estimated Power [µW]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(d) Power optimization for normally dis-
tributed input (8× 8).

3,400 3,700 4,000 4,300 4,600 4,900 5,200

10−11

10−9

10−7

10−5

10−3

10−1

Estimated Area [µm2]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(e) Area optimization for uniformly dis-
tributed input (16× 16).

3,400 3,700 4,000 4,300 4,600 4,900 5,200
10−12

10−10

10−8

10−6

10−4

Estimated Area [µm2]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(f) Area optimization for normally dis-
tributed input (16× 16).

5,000 5,400 5,800 6,200 6,600 7,000 7,400

10−11

10−9

10−7

10−5

10−3

10−1

Estimated Power [µW]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(g) Power optimization for uniformly
distributed input (16× 16).

5,000 5,400 5,800 6,200 6,600 7,000 7,400
10−13

10−11

10−9

10−7

10−5

10−3

Estimated Power [µW]

A
b
so

lu
te

M
e
a
n

E
rr
o
r
(n

o
rm

a
li
z
e
d
)

Pareto Front for the
proposed ISH methodology

Pareto Front for the
Conventional methodology

(h) Power optimization for normally dis-
tributed input (16× 16).

Figure 5.8: Comparison of the pareto-optimal designs of 8×8 ((a)-(d)) and 16×16
((e)-(h)) recursive multipliers based on the ISH and the conventional approxi-
mate computing methodologies. The proposed ISH methodology outperforms
for all considered optimization targets.

104

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

5.3.4 Case Study: Radio Astronomy Calibration Processing

So far, we have shown results for general input distributions in this Chapter.
Here we present the improvements offered by the ISH methodology for an
application. As discussed in Chapter 3, radio astronomy calibration estimates
complex antenna gains within a radio telescope by utilizing an iterative method,
known as StEFCal [107]. For a given configuration, i.e., the number of antenna
elements and receiving channels in a radio telescope, StEFCal estimates the gains
by utilizing measured visibilities (V) and model visibilities (M).

Considering a hardware accelerator design, StEFCal has three dominant ker-
nels: complex-input element-wise product, complex-input square-accumulate
and complex-input multiply-accumulate (MAC), see Fig. 3.7 in Chapter 3. Here
we focus on the quality-efficiency trade-off of the complex-input MAC operation,
which computes,

N
∑

j=1

{z j ∗ v j } (5.16)

where v ∈V. Also, z ∈ Z represents an element-wise product of model visibility
vector and gain vector computed in the previous iteration, see Chapter 3 for
details. We assume N = 496, which is the vector size for a radio telescope
configuration of 124 antenna elements and 4 frequency channels.

It is to be noted that each complex multiplication requires four real-input multi-
plications. Therefore, in order to study the quality-efficiency trade-off, we have
utilized pareto-optimal multipliers of the ISH and the conventional method-
ologies for all the four multiplications. Keeping in view the feasibility of 8-bit
architectures in radio astronomy processing [111], we considered the MAC oper-
ation utilizing 8×8 multipliers to process StEFCal. We have utilized the radio
astronomy calibration data of the LOFAR facility [124].

As shown in Eq. (5.12), the ISH methodology always provides better (or at least
equivalent as a worst case) designs as compared to the conventional methodology.
Therefore, here we present the cases that quantify the maximum benefits offered
by the ISH methodology. Table 5.3 shows equivalent-efficiency5 designs for the
area and power optimization. It can be seen that the area-optimized design of
the ISH methodology (ISH_A) brings 27% improvement of the Mean Square Er-
ror (MSE) as compared to the equivalent-efficiency conventional methodology
design (Conven_A). For power optimized designs, ISH methodology (ISH_P)
offers 55% improvement in quality as compared to the conventional methodol-
ogy counterpart (Conven_P).

Table 5.3 also shows the power costs of area-optimized designs (Conven_A and
ISH_A), and area costs for power-optimized designs (Conven_P and ISH_P).

5The equivalent-efficiency designs have equal (or approximately equal) targeted efficiency, or
inversely, the computational cost. For example, in the case of area optimized designs, Conven_A
and ISH_A are equivalent-efficiency designs because they both consume equal chip-area, see Table
5.3.

105

5.
3.
5
–
S
y
n
t
h
e
s
i
s
b
a
s
e
d
c
o
m
p
a
r
i
s
o
n

Table 5.3: Employing equivalent-efficiency approximate MAC alternatives in
radio astronomy calibration. The proposed designs (ISH_A and ISH_P) ex-
hibit 27% and 55% better quality as compared to the conventional methodology
counterparts (Conven_A and Conven_P).

Design Alternatives MAC Error (MSE) Hardware Cost∗

Accurate 0 A = 519, P = 439

Conven_A 1.96e-02 A = 447 (Ps =389)
ISH_A 1.44e-02 A = 447 (Ps =384)
Conven_P 2.01e-02 P = 383 (As =445)
ISH_P 9.07e-03 P = 383 (As =472)
∗ A and P are Area (µm2) and Power (µW) estimates (respectively)
of each multiplier in a complex-input MAC accelerator.
s These A and P costs are not the primary optimization targets.

Although these power and area costs are not the primary optimization targets6,
it is important to note that they can introduce an additional trade-off. For
instance, the conventional methodology design Conven_A consumes slightly
more power as compared to the ISH counterpart (ISH_A); on the other hand, the
conventional methodology design Conven_P requires less area as compared to
the ISH counterpart (ISH_P). Moreover, it is to be noted that in case of the ISH
methodology, the power-optimized designs (e.g., ISH_P) tend to utilize more
M2multipliers as they are cheap in power, on the other hand, they require more
area (see Table 5.1). Keeping in view the aforesaid comparisons, it is important
to optimize a design based on the efficiency target defined by the requirement
specifications of an application.

This case study shows that utilizing the ISH methodology brings better quality
for a given hardware cost (or efficiency target) as compared to the conventional
methodology. However, in order to employ approximate modules optimized
for radio astronomy processing, a comprehensive study of error resilience and
input distribution of representative data sets is required.

5.3.5 Synthesis based comparison

As yet, we have shown quality-efficiency improvements offered by the proposed
ISH methodology based on estimated hardware cost models discussed in Section
5.3.2. Here we present the results to quantify maximum hardware improvements
based on the synthesis of complete units. We have synthesized 8×8 pareto-
optimal multiplier designs that are optimized for normally distributed input.
Table 5.4 shows the area and power consumption of the considered designs while
their design configurations are shown in Table 5.5. Conven_1 and Conven_2

6For example, area optimized designs have a primary optimization target of minimum chip-area,
and power optimized designs have a primary optimization target of minimum power consumption.

106

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Table 5.4: Synthesis based comparison of the considered pareto-optimal con-
figurations for an 8× 8 recursive multiplier. The proposed ISH methodology
provides more effective quality-efficiency designs, e.g., ISH_1 shows 18% better
area and 14% better power as compared to Conven_2, also with a better quality
output.

Design Quality-Efficiency
Alternatives Error∗ Area∗ Power∗

Accurate 0 519 439

Conven_1 2.95e-5 455 387

Conven_2 1.87e-6 507 414

ISH_1 1.57e-8 415 356

ISH_2 9.26e-9 464 373
∗ Unit of Area is µm2. Power (µW) is obtained utilizing
switching activity based on normally distributed input.
Normalized absolute mean error is considered as an Error.

designs are based on the conventional approximate computing methodology.
ISH_1 and ISH_2 designs are based on the proposed ISH methodology.

In Table 5.4, as can be expected, hardware efficiency increases as we compromise
on the quality of output. For example, Conven_1 is more efficient (requires
less area and power) as compared to Conven_2 and Accurate designs. On the
other hand, Conven_2 and Accurate designs have a better quality of output
as compared to Conven_1. Similarly, the efficiency of ISH_1 is higher than
ISH_2. In Table 5.5, it can be seen that the designs based on the proposed
ISH methodology tend to utilize M3 and M4 as approximate 2× 2 multiplier
options, which helps for error cancellation and avoiding overflow situation at
the same time. It can also be noted that the approximate 8× 8 designs tend to
utilize an approximate 2×2 multiplier (M1/M4) at the most significant position.
This is because of a very low probability of error for the considered normally
distributed input (µ= 128, σ = 22.5), i.e., for the aforesaid characteristics of the
input, it is hardly likely that both inputs of a 2×2 multiplier (placed at the most
significant position) are 3.

Interestingly, while comparing quality and efficiency of designs for the proposed
ISH and the conventional methodologies (see Table 5.4), the ISH designs (ISH_1
and ISH_2) provide a higher area-/power-efficiency and a higher output quality
as compared to that of the conventional counterparts (Conven_1 and Conven_2).
Specifically, ISH_1 exhibits 18%better area and 14%better power as compared to
Conven_2, and at the same time, it provides a better quality of output (less error)
due to the error cancellation mechanism intrinsic to the ISH methodology.

107

5.
3.
5
–
S
y
n
t
h
e
s
i
s
b
a
s
e
d
c
o
m
p
a
r
i
s
o
n

Ta
bl
e
5.
5:
Pa
re
to
-o
pt
im

al
co
nfi

gu
ra
tio

ns
fo
ra

n
8
×

8
re
cu
rs
iv
e
m
ul
tip

lie
rc

on
sid

er
ed

in
Ta

bl
e
5.
4
.

D
es
ig
n

M
ul
ti
pl
ie
r
co
nfi

gu
ra
ti
on

so
pt
im

iz
ed

fo
r
no

rm
al
ly

di
st
ri
bu

te
d
in
pu

t
A
lt
er
na

ti
ve
s

LS
M
∗

→
M
SM
∗

A
cc
ur
at
e

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

C
on

ve
n_

1
M
1

M
1

M
1

M
M

M
1

M
M
1

M
M

M
1

M
1

M
M

M
M
1

C
on

ve
n_

2
M

M
M

M
M

M
1

M
M

M
M

M
M

M
M

M
M
1

IS
H
_1

M
4

M
1

M
1

M
1

M
1

M
1

M
4

M
1

M
1

M
1

M
1

M
1

M
3

M
4

M
1

M
4

IS
H
_2

M
4

M
1

M
1

M
M
4

M
4

M
3

M
1

M
1

M
M
4

M
1

M
M
1

M
3

M
1

∗
LS

M
an
d
M
SM

ar
e
th
e
le
as
ts
ig
ni
fic
an
ta

nd
th
e
m
os
ts
ig
ni
fic
an
t2
×

2
m
ul
tip

lie
rs

re
sp
ec
tiv

el
y.

108

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

Accurate Conven 1 Conven 2 ISH 1 ISH 2
0

100

200

300

400

500

600

A
re
a
[µ
m

2
]
a
n
d
P
ow

er
[µ
W

]

Synthesis Area Estimated Area Synthesis Power Estimated Power

Figure 5.9: Comparison of the model based estimated cost and the synthesis
based cost. The difference varies from 0-4% for both area and power costs.

5.3.6 Discussion and Future Work

In Section 5.3.2, we have performed a design space exploration to obtain the
best designs offered by the conventional and the proposed ISH methodologies.
For computing the computational cost (area and power consumption) of each
considered design, we have utilized a cost estimation model discussed in Section
5.3.2. In Section 5.3.5, we have synthesized some designs obtained from the design
space exploration as complete units. To assess the validity of the cost estimation
model utilized in Section 5.3.2, we can compare its estimated costs with that
of the synthesis based hardware costs. Fig. 5.9 shows the differences in area
and power costs that vary from 0-4% for the considered designs. Although the
number of cases considered is not sufficient to draw strong conclusions, Fig. 5.9
shows that the estimation model provides a useful approach to rank the designs
cost-wise in order to find the pareto-optimal configurations during the design
space exploration process. Especially because it’s not possible to synthesize the
millions of designs to obtain the synthesis-based hardware costs.

We have shown that utilizing the proposed ISH methodology provides more
quality-efficiency benefits for the radio astronomy calibration processing as com-
pared to the conventional approximate computing methodology. Nevertheless,
before employing the proposed approximate computing designs to any appli-
cation, it is important to assess the error resilience intrinsic to the application
based on the error characteristics of the approximate designs. For example, the
error profile of an approximate MAC accelerator is shown in Fig. 5.10, which

109

5.
4
–
C
o
n
c
l
u
s
i
o
n
s

Figure 5.10: Error profile of an approximate MAC accelerator that employs
the ISH_1 multiplier design. The error profile is generated based on normally
distributed input (µ= 128, σ = 22.5).

employs the ISH_1 multiplier design. It would be interesting to investigate the
introduction and propagation of such an error profile in the signal processing
pipeline of the target application, e.g., the science data processing (SDP) pipeline
of the SKA radio telescope.

5.4 Conclusions

In this chapter, an Internal-Self-Healing (ISH) methodology is presented for
approximate MAC accelerators, which utilizes the proposed approximate recur-
sive multipliers with a near-to-zero mean error profile. In contrast to the self-
healing methodology (discussed in Chapter 4), the proposed ISH methodology
has shown an opportunity for error cancellation within approximate circuits,
without requiring similar computing elements (or parts of a datapath) in multi-
ples of two.

We have presented a quantitative analysis based on a design space exploration
of 4-bit, 8-bit and 16-bit designs for area and power optimization, considering
uniform and normal input distributions, and radio astronomy calibration pro-
cessing. Our results showed a more effective quality-efficiency trade-off offered
by the ISH methodology as compared to the conventional approximate comput-
ing methodology. By definition, the proposed ISH methodology also considers
the conventional designs in addition to the novel designs (for error cancellation)
during the design space exploration. Therefore, it always generates better or at

110

C
h
a
p
t
e
r
5
–
I
n
t
e
r
n
a
l
-
S
e
l
f
-
H
e
a
l
i
n
g
M
e
t
h
o
d
o
l
o
g
y
f
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s

least equivalent designs with a higher effectivity (based on quality-efficiency trade-
off) and a lower worst-case error as compared to the conventional methodology.

111

112

1136
Conclusions and

Recommendations

Approximate computing techniques have helped designers to exploit error tol-
erance to achieve increased hardware efficiency, especially in combating power-
/energy-challenges. Nonetheless, the state-of-the-art techniques do not suffi-
ciently address accelerator designs for iterative and accumulation based algo-
rithms despite the fact that they are widely used in digital signal processing.
This thesis is an effort to contribute towards high-efficiency accelerator designs
for such algorithms. Based on our contributions, here we address the research
questions raised in Chapter 1 and provide the future directions of our research.

6.1 Contributions

6.1.1 Error Resilience Analysis Of Iterative Algorithms

Our first research question directs to investigate how to analyze iterative algo-
rithms for error resilience, and how trustworthy is a precision-based quality
metric (convergence) in the error resilience analysis process. As discussed in
Chapter 3, error resilience analysis provides a means to assess if an algorithm is
amenable to approximate computing techniques. The state-of-the-art Statistical
Approximation Model (SAM) helps to inject Gaussian randomness during the
processing of an algorithm. While employing SAM, the output quality of the
algorithm is monitored to assess if it is error-resilient. In the case of iterative algo-
rithms, our simulation results show that employing SAM is not sufficient. Our
proposed Adaptive Statistical Approximation Model (Adaptive-SAM) provides
an opportunity to divide an iterative algorithm into approximate and accurate
parts. It quantifies the number of initial iterations that are error-resilient.

We have presented the error resilience analysis of radio astronomy calibration
processing, which utilizes a Least Squares (LS) algorithm to estimate sensor
gains within a radio telescope. While employing SAM, the algorithm demon-

114

C
h
a
p
t
e
r
6
–
C
o
n
c
l
u
s
i
o
n
s
a
n
d
R
e
c
o
m
m
e
n
d
a
t
i
o
n
s

strated resilience for an error magnitude that is 0.001% to 0.003% of the output
values. Showing that there is a negligible error resilience intrinsic to the algo-
rithm. However, while employing the proposed Adaptive-SAM, the algorithm
showed resilience for an error magnitude that is 11% to 13% of the output values
for the first 23% of the iterations. Therefore, we can conclude that our pro-
posed Adaptive-SAM analysis reveals approximation opportunities in iterative
algorithms.

We have investigated if the precision-based quality metric, the convergence cri-
terion, is sufficient in the error resilience analysis process. While applying two
different approximations in an iterative algorithm, our simulation results show
the possibility that the solution is not acceptable while the convergence criterion
is satisfied and vice versa. Therefore, the precision-based quality metric is not
trust-worthy in the error resilience analysis process. To resolve this problem,
we defined an additional accuracy-based quality metric to assess the viability of
approximation techniques promising for an iterative algorithm.

6.1.2 Exploiting Error Resilience Of Iterative Algorithms

Our second research question deals with investigating how to exploit the intrinsic
error resilience of iterative algorithms effectively. In this regard, a heterogenous
architecture (composed of accurate and approximate computing cores) has been
presented in Chapter 3. Our proposed approximate LS accelerator design pro-
cesses the initial iterations on a low-precision (approximate) core and the later
ones on an optimized-precision (accurate) core. In a case study of radio astron-
omy calibration processing, the proposed accelerator design has shown 23.4%
of energy savings while providing an acceptable quality output within an equal
number of iterations as compared to that of an accurate counterpart.

6.1.3 Designing Approximate Accelerators For Accumulation Based

Algorithms

Our third research question has led us to investigate how to design high-efficiency
approximate accelerators for accumulation based algorithms. In accumulation
based algorithms like MAC (or SAC), we have investigated the design of such
approximate multipliers (or squarers) that bring an opportunity to cancel out er-
rors within accumulation without the overhead of error correction circuitry. We
have shown that high-efficiency approximate accelerators like square-accumulate
(SAC) and multiply-accumulate (MAC) can be designed by utilizing the pro-
posed approximate computing methodologies. Building on the observation that
these accelerators accumulate the outputs of squarers and multipliers in the case
of SAC and MAC respectively, we have proposed approximate squarers/multipli-
ers that generate a near-to-zero mean error for a given input distribution. Hence
providing an opportunity to cancel out the errors (originated in the approx-
imate squarer/multiplier) at the accumulation stage. Noteworthy, this error

115

6
.
1.
3
–
D
e
s
i
g
n
i
n
g
A
p
p
r
o
x
i
m
a
t
e
A
c
c
e
l
e
r
a
t
o
r
s
F
o
r
A
c
c
u
m
u
l
a
t
i
o
n
B
a
s
e
d
A
l
g
o
r
i
t
h
m
s

cancellation does not require the overhead of error detection and correction
circuitry.

In Chapter 4, a self-healing (SH) methodology is proposed for designing a SAC
accelerator. In the case of signed inputs, the conventional truncation techniques
provide positive and negative errors for squarer/multiplier operations. However,
we have shown that they do not provide a near-to-zero mean error if employed
naively. In the case of squarers, the output is always a positive number, and
therefore, the output quality is not compromised if we invert the signs of the
inputs. We proposed to employ an approximate squarermirror pair, composed of
two squarers, S1 and S2. Where S1 squares the truncated input numbers that are
made negative (before truncation) and S2 squares the truncated input numbers
that are made positive (before truncation). Our simulation results show that the
proposed mirror pair provides significantly better quality for a SAC accelerator
as compared to the conventional way of truncation.

For unsigned inputs, we proposed logic-pruned approximate squarers that cancel
out the error completely (for a given input distribution) while forming amirror
pair. We proposed 2× 2 squarers/multipliers that are utilized to construct a
higher order (n×n) squarermirror pair. With randomly distributed finite-length
input data, we have shown that an approximate SAC accelerator based on our
proposed squarermirror pair provides amore effective quality-efficiency trade-off
as compared to that of the conventional error-restricted approximate computing
methodology. Specifically, our proposed squarermirror pair demonstrates up to
25% and 18.6% better area and power efficiency respectively with a better-quality
output as compared to the conventional counterpart.

The proposed SHmethodology is however restricted to pairs of two (ormultiples
of two) computing elements for error cancellation. In Chapter 5, we have pre-
sented an internal-self-healing (ISH) methodology for a MAC accelerator that
introduces self-healing within a single multiplier. The ISH methodology relieves
the pairs of two restriction for computing elements and enables error cancellation
within a single computing element. Our MAC accelerator employs the proposed
approximate recursive multipliers with a near-to-zero mean error profile. We
have introduced novel 2× 2 multipliers that allow the construction of n × n
multipliers with characteristics of near-to-zero mean error while guaranteeing
the non-overflow operation.

Our scalability analysis of designing 4×4, 8×8, and 16×16 approximate multi-
pliers for aMAC accelerator shows that the proposed ISHmethodology provides
a more effective quality-efficiency trade-off as compared to that of the conven-
tional approximate computing methodology. Noteworthy, input cases utilized
for the aforesaid analysis include uniformly and normally distributed random
data and radio astronomy calibration data. Moreover, we have shown that our
ISH methodology provides a lower worst-case error as compared to the con-
ventional methodology while offering an increase in area efficiency and power
efficiency.

116

C
h
a
p
t
e
r
6
–
C
o
n
c
l
u
s
i
o
n
s
a
n
d
R
e
c
o
m
m
e
n
d
a
t
i
o
n
s

6.1.4 Radio Astronomy Calibration Processing – A Case Study

Our fourth research question has led us to perform a case study of radio astron-
omy processing, specifically to investigate how do the proposed approximate
computing methodologies affect the quality and efficiency of the processing
and what are the opportunities and challenges to embrace approximate comput-
ing principles for radio astronomy processing. As the Science Data Processing
(SDP) pipeline of a radio telescope is dominated by accumulation based itera-
tive processes that also utilize approximate algorithms like LS, our proposed
methodologies provide opportunities for energy-/power-efficient radio astron-
omy processing. The heterogeneous architecture presented in Chapter 3 shows
23.4% of the reduction in energy consumption for radio astronomy calibration
processing.

Moreover, the self-healing methodologies presented in Chapter 4 and Chapter 5
provide promising solutions for low-power SAC and MAC accelerators required
for the SDP pipeline. By assessing equivalent-efficiency designs, we have shown
that the proposed self-healing methodologies bring much better output quality
for the radio astronomy calibration processing as compared to the conventional
approximate computing methodologies. Nevertheless, to embrace approximate
computing principles, the challenges include quantifying the error resilience
intrinsic to the SDP pipeline based on a representative data set and investigating
various components of the SDP (like gridding and de-gridding) as discussed in
Section 6.2.

6.2 Recommendations for future work

Based on our research on iterative and accumulation based algorithms, we believe
that the following research directions are interesting to further enhance/broaden
the benefits of employing approximate computing techniques.

The self-healing (SH) methodology presented in Chapter 4 has been demon-
strated by designing an approximate SAC accelerator. However, in principle, the
SH methodology can also be applied to design an approximate MAC accelerator
or an approximate MAC array processor having several parallel MAC opera-
tions, wherein an approximate multiplier mirror pair is utilized to introduce a
near-to-zero mean error that can be compensated at the accurate accumulation
stage. Similarly, the internal-self-healing (ISH) methodology presented in Chap-
ter 5 can be applied to approximate SAC accelerators. Therefore, it would be
interesting to compare the quality-efficiency trade-offs offered by the aforesaid
methodologies for designing SAC and MAC accelerators.

In Chapter 4 and Chapter 5, we have shown how unsigned multipliers/squarers
can be designed to introduce error cancellation within the accumulation based
algorithms. Such designs can handle the applications that have unsigned inputs,
and the applications that have signed inputs in signed-magnitude representation.

117

6
.
2
–
R
e
c
o
m
m
e
n
d
a
t
i
o
n
s
f
o
r
f
u
t
u
r
e
w
o
r
k

On the other hand, in case of applications having signed inputs in 2’s comple-
ment representation, we have provided a proof of concept by analyzing their
error behavior for a truncated squarer mirror pair. It is important to note that
the truncated squarer mirror pair does not cancel out the error completely, see
Fig. 4.4 for an example. Secondly, inverting signs of the input may introduce
hardware overheads depending upon the data representation. Nevertheless, it
would be interesting to investigate the quality-efficiency trade-off offered by the
truncated signed squarers/multipliers within the accumulation based algorithms
and compare it with that of the other approximate signed multiplier designs like
hybrid high-radix encoded booth multipliers [69].

Although the proposed ISH and SH methodologies have been demonstrated by
designing approximate recursive multipliers/squarers, potentially, they can be
utilized to design/modify other multiplier structures like booth multipliers. Sec-
ondly, we have introduced approximations at the logic level, however, applying
approximations at the standard cell level is also promising [27]. Therefore, It
would be interesting to apply (and compare) the proposed error cancellation
based approximations at standard cell level. Moreover, comparative studies have
been done by considering the state-of-the-art approximate multipliers for general
algorithms [50]. Similarly, it is important to carry out a comparative study of
approximate multipliers for the subsequent accumulation, i.e., a comparative
study of the approximate multipliers that are to be used in accumulation based
algorithms.

In the context of radio astronomy processing, it is important to quantify the
intrinsic error resilience present in the SDP pipeline to embrace the approximate
computing principles discussed in Section 6.1. This requires to define a repre-
sentative data-set of a radio telescope that can be analyzed for the introduction
and propagation of errors within the SDP pipeline due to the employment of
approximate computing techniques. For instance, an approximate unsigned mul-
tiplier design (ISH_1) utilizing the ISH methodology is presented in Chapter 5.
It brings 19% better power efficiency as compared to an accurate counterpart.
When utilized in a MAC accelerator, its error profile is shown in Fig. 5.10. It
would be interesting to investigate if such an error profile is acceptable for the
SDP pipeline to achieve the power efficiency benefits. Moreover, investigating
ISH based signed multiplier designs would be useful for their direct application
within the SDP pipeline.

Furthermore, the approximate LS accelerator has shown a reduction in energy
consumption based on a limited data set of the LOw-Frequency ARray (LOFAR)
[124]. As already discussed, a well-defined representative data set can be utilized
to further tune the approximate core in the heterogeneous architecture to quan-
tify the overall energy-efficiency gains. Noteworthy, although the accelerator
designs presented in this thesis (MAC, SAC and LS) provide reasonable efficiency
benefits for ASIC based implementations, they may not offer an equal extent of
efficiency benefits for FPGA based architectures. In this regard, our designs may

118

C
h
a
p
t
e
r
6
–
C
o
n
c
l
u
s
i
o
n
s
a
n
d
R
e
c
o
m
m
e
n
d
a
t
i
o
n
s

need modifications for optimized FPGA based implementations. Or conversely,
it would be interesting to investigate how the existing approximate computing
techniques (optimized for FPGAs like in [32, 97]) can be modified to employ
self-healing approximations for high-efficiency FPGA based accelerator designs
targeting the iterative and accumulation based algorithms.

Finally, gridding and de-gridding are compute-intensive parts of the SDP pipeline,
which help to map the non-uniform visibilities to the Fourier transform of the
sky images [126]. These algorithms also require multiply-add operations that
can be investigated for self-healing approximate computing techniques.

119

120

121A
8 × 8 Squarer Construction

As discussed in Chapter 4 (Section 4.4), an 8 × 8 squarer (Sq8x8) computes
the A*A multiplication, where A is an 8-bit unsigned input. Let A= a7a6 a5a4
a3a2 a1a0, where a7 is the most significant bit, and a0 is the least significant bit.
Therefore,

Sq8x8=a7a6 a5a4 a3a2 a1a0 * a7a6 a5a4 a3a2 a1a0

=a3a2 a1a0 * a3a2 a1a0 + 16(a3a2 a1a0 * a7a6 a5a4)
+ 16(a7a6 a5a4 * a3a2 a1a0)+ 256(a7a6 a5a4 * a7a6 a5a4) (A.1)

Eq. (A.1) shows that the total of four 4× 4 partial products compute the Sq8x8
operation as illustrated in Fig. 4.6 (left). However, two of the 4× 4 partial
products multiply the same (equal) inputs. Therefore, Eq. (A.1) can be re-
written as,

= a3a2 a1a0 * a3a2 a1a0+ 32(a3a2 a1a0 * a7a6 a5a4)
+ 256(a7a6 a5a4 * a7a6 a5a4) (A.2)

which means that three 4×4 partial products can compute the Sq8x8 operation,
where the factors 32 and 256 are implemented as bit shifts as shown in Fig. 4.7.
Moreover, each 4×4 partial product can be further decomposed into basic 2×2
partial product constructs as shown in Fig. 4.6 (right). Therefore, Eq. (A.2)
becomes,

=a1a0 * a1a0 +4(a1a0 * a3a2) +4(a3a2 * a1a0) + 16(a3a2 * a3a2)
+ 32[a1a0 * a5a4 +4(a1a0 * a7a6) +4(a5a4 * a3a2) + 16(a3a2 * a7a6)]
+ 256[a5a4 * a5a4 +4(a5a4 * a7a6) +4(a7a6 * a5a4) + 16(a7a6 * a7a6)] (A.3)

This Appendix is based on [G:3].

122

A
p
p
e
n
d
i
x
A

–
8×

8
S
q
u
a
r
e
r
C
o
n
s
t
r
u
c
t
i
o
n

By combining the same (equal) 2× 2 partial product operations,

= a1a0 * a1a0+ 8(a1a0 * a3a2) + 16(a3a2 * a3a2)+ 32[a1a0 * a5a4

+ 4(a1a0 * a7a6 + a5a4 * a3a2)+ 16(a3a2 * a7a6)]
+ 256[a5a4 * a5a4+ 8(a5a4 * a7a6) + 16(a7a6 * a7a6)] (A.4)

Eq. (A.4) shows total of ten 2× 2 partial products, wherein four are Sq2x2
and six are P2x2 (also depicted in Fig. 4.7). The adders and shift factors are
implemented in the higher order blocks like P4x4, Sq4x4 and Sq8x8 shown in
Fig. 4.7.

123

124

125B
Quality Evaluation for

Approximate Squarers

To evaluate the quality of all the possible configurations of an n × n approxi-
mate squarer, a tool1 is utilized that computes the probability mass function of
error (PMFe) [74, 75] for an approximate squarer configuration, provided an
input distribution. We consider an approximate n × n squarer (composed of
elementary 2× 2 multiplier and squarer modules) designed in a conventional
(approximate) way. As discussed in Chapter 4, the conventional way utilizes M1

as an approximate 2×2 multiplier option and S1 as an approximate 2×2 squarer
option, without the mirror approximate designs (Mp and S2).

Let n be the number of input bits and n ∈ {4,8,16,32, ...}. Based upon the fact
that the elementary modules used in this work are 2× 2 multipliers and 2× 2
squarers, the input can be divided into pairs of bits, starting from the LSB, as
shown in Fig. B.1. Each input pair can attain one of three possible states, which
defines whether the particular state will/can/will not lead to error(s) in the
corresponding 2× 2 approximate elementary module(s). The states are defined
as follows:

» State 0 : If in this state, the input pair will ensure that there is (are) no
error(s) in the corresponding elementary module(s).

» State 1 : If in this state, the input pair will generate an error in the corre-
sponding approximate 2× 2 squarer module only.

» State 2 : If in this state, the input pair can only generate an error in
the corresponding approximate 2× 2 multiplier module(s), depending
on the state of the other pair(s) of bits being used by the corresponding
elementary module(s).

This Appendix is based on [G:3].
1This tool has been developed with the CARE-Tech (ECS group), TU Wien where the imple-

mentation was done by that group.

126

A
p
p
e
n
d
i
x
B
–
Q
u
a
l
i
t
y
E
v
a
l
u
a
t
i
o
n
f
o
r
A
p
p
r
o
x
i
m
a
t
e
S
q
u
a
r
e
r
s

Figure B.1: Pairing of bits for an n-bit input. A1,A2, ...,An/2 are utilized by
elementary 2× 2 modules in an n× n squarer.

It can be inferred from the designs of the approximate elementary modules (M1

and S1), presented in section 4.4, that an input pair will be considered in State 0 if
it has either the value (00)2 or (01)2, as in all the designs these values do not lead to
any approximation error. An input pair is considered in State 1 if it has the value
(10)2, as this will always generate an error in case of an approximate 2×2 squarer
(S1) being used at the corresponding location, see Section 4.4.1. Similarly, an
input pair is considered in State 2 if it has the value (11)2, as this might generate
an error in a 2× 2 approximate multiplier (M1) module, depending on the state
of the other pair of bits being input to the module.

Given an input probability distribution, the probabilities of each state can be
computed as follows:

» State 0 :

P (s(Ai) = 0) = P (Ai == (00)2) + P (Ai == (01)2) (B.1)

» State 1 :
P (s(Ai) = 1) = P (Ai == (10)2) (B.2)

» State 2 :
P (s(Ai) = 2) = P (Ai == (11)2) (B.3)

Here s(Ai) ∈ {0,1,2} defines the state of i t h input pair of bits (Ai), where i ∈
{1,2, ..., n/2}.

Using the probabilities of the individual states of the input pairs, assuming that
they are independent, the probability of a state combination of input pairs can
be computed as:

P (s(A1) = s1, s(A2) = s2, ..., s(An/2) = sn/2) =
n/2
∏

i=1

P (s(Ai) = si) (B.4)

where s1, s2, ..., sn/2 is a state combination of A1,A2, ...,A(n/2) input pairs. For
example, in case of a 4-bit input the possible state combinations of A1 and A2
are (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2). The probability of

127

A
p
p
e
n
d
i
x
B
–
Q
u
a
l
i
t
y
E
v
a
l
u
a
t
i
o
n
f
o
r
A
p
p
r
o
x
i
m
a
t
e
S
q
u
a
r
e
r
s

a state combination, say (0,0), is given by P (s(A1) = 0) ∗ P (s(A2) = 0) based on
Eq. (B.4).

To compute the probability of a state combination of input pairs more precisely,
a modified version of the equation presented in [74] can be used. The equation
for the given scenario can be reformulated as:

P (s(A1) = s1, s(A2) = s2, ..., s(An/2) = sn/2) =
∑

{an−1,...,a0|s(An/2)=sn/2∧...∧s(A1)=s1}
P ((an−1 ... a0)2) (B.5)

For example, in case of a 4-bit input, the probability of the state combination
(0,0) is given by,

P (s(A1) = 0, s(A2) = 0) =
∑

{a3,a2,a1,a0|s(A2)=0∧s(A1)=0}
P ((a3 a2 a1 a0)2)

= P ((a3 a2 a1 a0)2 = (0000)2)+ P ((a3 a2 a1 a0)2 = (0001)2)+
P ((a3 a2 a1 a0)2 = (0100)2)+ P ((a3 a2 a1 a0)2 = (0101)2)

(B.6)

Note that the Eq. (B.5) considers the interdependency between pairs while Eq.
(B.4) assumes that the pairs are independent, therefore, the results generated
using Eq. (B.5) are more accurate than the results generated using Eq. (B.4).
Although at first it seems that Eq. (B.5) will result in significant computational
overheads, this is not the case for design space exploration. This is because of
the fact that the probability of the state combinations of input pairs remain
the same for all the configurations of the approximate squarer for a given input
probability distribution, and is required to be computed only once. Therefore,
the overhead when distributed over all the configurations results in insignificant
overhead.

The PMFe for a given configuration can be computed by iterating over all the
possible combinations of the input pairs. Algorithm 2 presents the pseudo-code
for computing the PMFe of a given configuration of a squarer, provided an input
distribution. The arrays V and Pv , returned by the algorithm, represent the
PMFe where V stores the error values and Pv stores the corresponding error
probabilities. Note that, although the computational complexity of the proposed
algorithm is exponential, the design space exploration time has significantly been
reduced by reducing the number of states per input pair from 4 (total number
of input combinations, i.e., 22) to 3 (because of 3 states).

The error corresponding to the combination of input pairs can be computed
by identifying the elementary module(s) that will generate error(s) and then
adding the errors from all the modules together. Note that here by the error
of an elementary module we mean the approximation error multiplied by the

128

A
p
p
e
n
d
i
x
B
–
Q
u
a
l
i
t
y
E
v
a
l
u
a
t
i
o
n
f
o
r
A
p
p
r
o
x
i
m
a
t
e
S
q
u
a
r
e
r
s

Algorithm 2 Pseudo-code for computing PMFe
1: Input:
2: n : Number of input bits
3: Config : Configuration of the approximate squarer
4: P (ai) : Probabilities of individual bits of the input
5: Initialize:
6: V : Array for storing error magnitudes
7: Pv : Array for storing error probabilities
8:
9: Compute P (s(Ai) = si) ∀ Ai ∈ {1,2, ..., n/2} and si ∈ {0,1,2} using Eq. B.1, B.2,

and B.3.
10: Find C , i.e., All possible combinations of states of the pairs of input bits
11: for c = {1, ..., number of combinations in C } do
12: Compute vc (error value of the combination) using Algo. 3
13: Compute ρc (probability of the combination) using Eq. (B.4) or Eq. (B.5)
14: if vc ∈V then
15: Pv (vc) = Pv (vc) + ρc ;
16: else
17: Append vc to V and place ρvc

in Pv (vc)
18: end if
19: end for
20: RETURN V and Pv

significance (shift factor) of the module. Algorithm 3 presents the pseudo-code
for computing the error value (vc) for a given combination of input pairs.

Note that Algorithm 2 provides the PMFe of a configuration which can be
used to compute almost all the commonly used error metrics. Therefore, a
complete design space, covering all the possible configurations of an approximate
squarer, can be generated for a given input distribution to identify the pareto-
optimal configurations which provides an optimal trade-off between a defined
error metric and an efficiency target (area/power/performance).

129

A
p
p
e
n
d
i
x
B
–
Q
u
a
l
i
t
y
E
v
a
l
u
a
t
i
o
n
f
o
r
A
p
p
r
o
x
i
m
a
t
e
S
q
u
a
r
e
r
s

Algorithm 3 Pseudo-code for computing the error value (vc) for a given combi-
nation of input pairs
1: Input:
2: c : State combination that defines the state of each pair of input bits
3: Config : Configuration of the approximate squarer
4: Initialize:
5: vc = 0
6:
7: for i = {1, ..., length(c)} do
8: if c(i) == 1 & corresponding 2× 2 sq. is approx. then
9: vc = vc + approximation error × significance of the corresponding module
10: else if c(i) == 2 then
11: for j = {i + 1, i + 2, ..., length(c)} do
12: if c(j) == 2 then
13: vc = vc + approximation error × significance of the corresponding mod-

ule
14: end if
15: end for
16: end if
17: end for
18: RETURN vc

130

131C
Design Space Exploration

of Approximate

Multipliers for MAC

To quantify the gains offered by the ISH methodology as compared to the con-
ventional methodology, we need to find the best quality-efficiency designs for
each. Here we elaborate on the design space exploration tool1 that leads us to
such approximate recursive multiplier configurations for an approximate MAC
unit. These designs are referred to as the pareto-optimal designs/configurations.

C.1 Huge Design Space - A Challenge

The number of elementary multipliers increases rapidly with the increase in the
number of bits per input (operand). The number of 2× 2 elementary modules
required for an n× n multiplier can be given as: (n/2)2. The total number of
possible configurations for an approximate multiplier directly depends on the
number of elementary multipliers and the number of types that each can have.
Assuming m as the number of types of elementary multipliers, the total number
of possible configurations for an n× n multiplier can be given as:

No. of configurations= m(n/2)
2

(C.1)

As can be inferred from Eq. (C.1), the number of configurations grows rapidly
both with m and n. To further highlight the requirement of a systematic design
space exploration, Table C.1 presents the number of possible configurations for
a few example cases with different m and n values. It can be seen that a huge
design space has to be explored for a 16×16 multiplier case with only 5 options

This Appendix is based on [G:4].
1This tool has been developed with the CARE-Tech (ECS group), TU Wien where the imple-

mentation was done by that group.

132

A
p
p
e
n
d
i
x
C
–
D
e
s
i
g
n
S
p
a
c
e
E
x
p
l
o
r
a
t
i
o
n
o
f
A
p
p
r
o
x
i
m
a
t
e
M
u
l
t
i
p
l
i
e
r
s
f
o
r
M
A
C

Table C.1: Number of configurations for a few example scenarios with different
bit-widths (n) of multipliers and types of elementary 2× 2 designs (m).

S. No. n m No. of
Configurations

1. 8 3 4.3× 107

2. 8 5 1.53× 1011

3. 16 3 3.43× 1030

4. 16 5 5.42× 1044

for elementary 2× 2 designs (S. No. 4). To tackle such an enormous design
space, we have utilized a heuristic that prunes the search space in order to find
the pareto-optimal configurations effectively.

C.2 Design Space Exploration

The design space exploration tool employs a recursive algorithm with intermedi-
ate pruning for fast exploration. The intermediate pruning is employed to prune
less-effective parts of the overall design space at each intermediate stage to reduce
the design space for the next subsequent stage. The overall flow is illustrated in
Fig. C.1 and the related pseudo-code is given in [G:4]. The main steps of the
tool-flow are as follows.

Initialization

In this step, we define a variable E_Configs which stores the error and cost char-
acteristics as well as the identities (IDs) of the elementary (2× 2) multipliers.
The error characteristics are stored in the form of an error map (E_Maps), which
contains the output error for each possible input combination of a 2× 2 mul-
tiplier. An example illustration of an E_M a p is shown in Fig. C.2. The cost
characteristics include the area and/or power values of the elementary multipli-
ers.

Step 1

Given the probability distributions of the input operands, i.e., ρx andρy , the first
step involves the input probability computation of all the individual elementary
(i.e., 2× 2 in our case) multipliers in an n× n multiplier. The input probability
distribution of all the elementary modules is stored in a matrix ρ, where each
entity of the matrix represents the input probability distribution of a single
elementary multiplier and has a cumulative sum of 1.

To compute the input probability of all the elementary multipliers, we first
independently compute the probability distribution of the pairs of bits of the
input operands x and y which are the inputs to these elementary multipliers.

133

C
.
2
–
D
e
s
i
g
n
S
p
a
c
e
E
x
p
l
o
r
a
t
i
o
n

Inputs: !, "#, "$, %, &_()*+, ,-+.+

Step 1: Compute " using "#, "$, and the size of
elementary modules

Step 2: DSE with Intermediate Pruning

n0 = 2?
Yes

No

Step 2a: Segment the !3×!3 multiplier into four
56
7
×
56
7

sub-multipliers and for each call Step 2

Step 2b: Fuse the 56
7
×
56
7

multiplier
configurations to build configurations for !3×!3

multiplier → 8!.9:_,-!;<=+

>-. -; ,-!;<=+ <!
8!.9:_,-!;<=+> %?

Intermediate Pruning

Step 2e: Classify the configurations in 8!.9:_,-!;<=+ into four sets
based on whether mean error is positive or negative and @56 is greater or
less than (2BC−1)7. Also, GH_,-!;<=+ and I9J*_,-!;<=+ ← &J*.K

Step 2c: Eliminate configurations having
@56 > 2756

Step 2f: Determine the pareto-optimal configurations from the two sets
having @BC > 256 − 1 7 → I9J*_,-!;<=+

Step 2d: Select all the elementary configurations,
i.e., &_,-!;<=+ → 8!.9:_,-!;<=+

Step 2g: Select at max. 0.25 ∗ % configurations from I9J*_,-!;<=+
using clustering based on mean error and costs → GH_,-!;<=+. Also,

I9J*_,-!;<=+ ← &J*.K

LEGEND:
!: Number of bits of the input operands
"#: Probability distribution of input operand P
"$: Probability distribution of input operand K
%: Maximum number of representative configurations that can be selected in
intermediate pruning stage (pruning threshold)
&_()*+: Error maps of elementary 2×2 multipliers
,-+.+: Area/Power Costs of the corresponding elementary 2×2 multipliers
": Probability distribution matrix containing input distribution of all of the
elementary 2×2 multipliers in an !×! multiplier
HQ._,-!;<=+: Variable for storing output configurations
Local	variable	in	Step	2	(DSE	with	intermediate	pruning):

!3: Bit-width of the operands in an intermediate multiplier
8!.9:_,-!;<=+: Stores the intermediate multiplier configurations
GH_,-!;<=+: Stores optimal/near-optimal configurations
I9J*_,-!;<=+: Stores optimal/near-optimal configurations temporarily

Initialization: &_,-!;<=+ ← {ID, &_()*s, ,-+.s}
HQ._,-!;<=+ ← &J*.K

Yes

Step 2l: Return 8!.9:_,-!;<=+ to Step 2a

Step 3: Determine pareto-optimal configurations based on
absolute mean error and costs → HQ._,-!;<=+

Output: Return HQ._,-!;<=+ as the selected
configurations for the !×n multiplier

No

Step 2h: Determine the pareto-optimal configurations from the sets
having @BC ≤ 256 − 1 7 → I9J*_,-!;<=+

Step 2j: Select at max. % − >-. -; ,-!;<=+ <! GH_,-!;<=+ configurations
from I9J*_,-!;<=+ using clustering based on mean error and costs

No
Yes

!3 = !?
Yes No

Assign !3 = !

,-!;<=+ <! I9J*_,-!;<=+ >
% − ,-!;<=+ <! GH_,-!;<=+?

Step 2i: Remove configurations in I9J*_,-!;<=+ from sets, Add
I9J*_,-!;<=+ to GH_,-!;<=+, and I9J*_,-!;<=+ ← &J*.K

Step 2k: Overwrite 8!.9:_,-!;<=+ with the configurations in
GH_,-!;<=+, i.e., GH_,-!;<=+ → 8!.9:_,-!;<=+

Figure C.1: Design space exploration tool for approximate recursive multipliers.
The tool takes into account the bit-widths and the probability distributions of
inputs, pruning threshold (X), and error & cost characteristics of the elementary
multipliers to return pareto-optimal/near-optimal configurations while using
limited computational and memory resources.

134

A
p
p
e
n
d
i
x
C
–
D
e
s
i
g
n
S
p
a
c
e
E
x
p
l
o
r
a
t
i
o
n
o
f
A
p
p
r
o
x
i
m
a
t
e
M
u
l
t
i
p
l
i
e
r
s
f
o
r
M
A
C

B
A

0 = (00)2 1 = (01)2 2 = (10)2 3 = (11)2

0 = (00)2 0 0 0 0
1 = (01)2 0 0 0 0
2 = (10)2 0 0 0 0
3 = (11)2 0 0 0 -4

(a) M4

Figure 1: Accurate (M).

(Type your content here.)

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

1

Figure C.2: An example of E_M a p (error map) for the M4 elementary multi-
plier shown in Fig. 5.5.

Similar to [75], the probability distribution of a pair of consecutive bits of the
input operand x can be given as:

Px{i}(k) =
2n−2i−2−1
∑

q=0

22i−1
∑

p=0

ρx (q × 22i+2+ k × 22i + p) (C.2)

where i defines the pair of bits in the input operand, i.e., the i t h pair consists
of the bits at locations 2i and 2i + 1, and k defines the combined decimal value
of the bits (i ∈ {0,1,2, ..., n/2−1} and k ∈ {0,1,2,3}). Similarly, the probability
distribution of a pair of consecutive bits (defined by j) of the input operand y
can be given as:

Py{ j }(l) =
2n−2 j−2−1
∑

r=0

22 j−1
∑

s=0

ρy (r × 22 j+2+ l × 22 j + s) (C.3)

where j ∈ {0,1,2, ..., n/2− 1} and l ∈ {0,1,2,3}. Using Eq. C.2 and Eq. C.3,
and assuming x and y as independent random variables, the input probability
distribution of a specific 2×2multiplier (represented byρ{i , j }) can be computed
using the following equation:

ρ{i , j }(k , l) = Px{i}(k)× Py{ j }(l) (C.4)

As an example, consider a 4×4 multiplier that consists of four 2×2 multipliers.
The probability distributions of the four 2× 2 multipliers are given as ρ{0,0},
ρ{0,1}, ρ{1,0}, and ρ{1,1}, where the probability distribution of each 2× 2
multiplier, say ρ{0,1}, has a probability-value for each input combination, i.e.,
ρ{0,1}(0,0), ρ{0,1}(0,1), ρ{0,1}(0,2), ρ{0,1}(0,3), ρ{0,1}(1,0), ...,ρ{0,1}(3,3).

Step 2

The ρ computation step is followed by a recursive step where at each call the
nr ×nr multiplier is divided into four nr/2×nr/2 sub-multiplier units (see Fig.
5.4a for an example of a 4× 4 multiplier) and for each sub-multiplier Step 2 is
called again with the corresponding multiplier size and input distribution (Step

135

C
.
2
–
D
e
s
i
g
n
S
p
a
c
e
E
x
p
l
o
r
a
t
i
o
n

2a). Note that for the very first call to Step 2 (i.e., while moving from Step 1
to 2) the variable nr is initialized with n where nr represents a local variable
that defines the bit-width of the inputs of the multiplier at a particular recursive
stage.

From each intermediate stage, the step returns at maximum X number of highly-
efficient configurations given a defined multiplier size and input probability dis-
tribution. Here X represents a parameter which defines the maximum number
of representative configurations that can be selected from an intermediate recur-
sive stage. It should be noted that a large number of representatives (a high value
of X) results in a big design space when combined for larger multipliers and thus
the design space exploration consumes more time and computational resources.
On the other hand, a small value of X results in fewer pareto-optimal points at
intermediate stages and, thereby, can result in sub-optimal results. Therefore, X
should be chosen as high as possible/feasible for the simulation platform.

The received configurations for all the four sub-multipliers are then combined
to generate the possible configurations for the nr × nr multiplier which are
stored in Inter_Configs (Step 2b). At the same step, the mean error values, the
maximum possible output values, and the costs of the generated configurations
are also computed using the error and cost characteristics of the corresponding
sub-multipliers. The mean error of a configuration of an nr × nr multiplier
composed of four nr/2× nr/2 multipliers can be computed as,

MEnr
=MEa + 2nr /2MEb + 2nr /2MEc + 2nr MEd (C.5)

where MEnr
represents the mean error of the nr × nr multiplier and MEa , MEb ,

MEc andMEd represent themean error of the Ma , Mb , Mc and Md sub-multipliers,
respectively (see Fig. 5.4b for an example of an 8× 8 multiplier). Similarly, the
maximum possible output value of a configuration of an nr × nr multiplier can
be computed using Eq. (5.9).

To compute the area and power costs of the generated configurations, we have
utilized the model discussed in Section 5.3.2. The model estimates the costs of
an overall multiplier by adding the costs of the corresponding sub-multipliers
together with their contribution to the adder trees. Once the configurations
have been generated and all the required characteristics have been computed, the
configurations are then checked for the maximum possible output value to avoid
overflow conditions (Step 2c), as mentioned in Section 5.2.2.

All the configurations having a maximum possible output value greater than
or equal to 22nr (for an nr × nr multiplier) are removed from the Inter_Configs.
At this point, the value of nr is compared with n and if it is equal, all the
configurations are forwarded to Step 3. However, if nr is not equal to n, the
remaining number of configurations is checked and intermediate pruning (Step
2e-2k) is applied if it is greater than a pre-specified threshold, i.e., X . This is
mainly done to reduce the number of possible configurations such that the design

136

A
p
p
e
n
d
i
x
C
–
D
e
s
i
g
n
S
p
a
c
e
E
x
p
l
o
r
a
t
i
o
n
o
f
A
p
p
r
o
x
i
m
a
t
e
M
u
l
t
i
p
l
i
e
r
s
f
o
r
M
A
C

space exploration can be performed using limited computational and memory
resources and in a time-efficient manner.

The recursive function keeps on calling itself unless the size of the sub-multipliers
is equivalent to 2× 2 (i.e., nr = 2), which acts as the termination point for the
recursive calling. At this point, Step 2d is performed where Inter_Configs is
initialized with E_Configs (i.e., all the elementary multiplier configurations)
along with their mean errors and maximum possible output values. The mean
error for each elementary multiplier is computed by taking the dot product
of the error map (E_Map) of the corresponding elementary multiplier with
the input probability distribution matrix. Note that Step 2d is called for each
elementary module location in an n× n multiplier and the probability matrix
used for computing the mean errors of the elementary multipliers is the one
which contains the input probability distribution of that particular location.

Intermediate Pruning (Step 2e - 2k)

Whenever the number of intermediate configurations in Inter_Configs (after Step
2c or Step 2d) is greater than X and nr ̸= n, the intermediate pruning is called
for choosing a subset of X effective configurations which can be used as the
representatives of the complete design space of the sub-multiplier. To achieve
this, at Step 2e, we classify the configurations into four sets based on the mean
error and maximum possible output value of the configurations. Set 1 contains
configurations having mean error > 0 and maximum output value > (2nr − 1)2,
Set 2 contains configurations having mean error <= 0 and maximum output
value > (2nr − 1)2, Set 3 contains configurations having mean error > 0 and
maximum output value <= (2nr − 1)2, and Set 4 contains configurations having
mean error <= 0 and maximum output value <= (2nr − 1)2. The configura-
tions are divided into these four sets because of two main reasons: 1) So that
different number of configurations can be selected from different sets based on
their importance, for example, the configurations having maximum output value
greater than (2nr − 1)2 may result in overflow as mentioned in Section 5.2.2 and,
therefore, should be given less importance; and 2) The configurations having
positive and negative mean error should be given equal importance, as only in
case configurations with both positive and negative mean error are available, the
internal self-healing can be utilized to generate approximate configurations for
larger multipliers that result in zero/near-to-zero mean error.

To select a subset of effective configurations, we first find pareto-optimal config-
urations from sets 1 and 2 based on absolute mean error and cost and store them
temporarily in Temp_Configs (Step 2f). Then, in Step 2g, we check the number
of pareto-optimal configurations. If it is greater than 25% of X , we first select the
two extreme values from the pareto-optimal configurations, i.e., configurations
having minimum and maximum absolute mean error, and then apply k-means
clustering to find 0.25∗X −2 clusters using the rest of the pareto-optimal config-
urations based on mean error and cost. Here, k-means [76] is applied to group

137

C
.
3
–
V
i
a
b
i
l
i
t
y
o
f
o
u
r
a
p
p
r
o
a
c
h

configurations offering nearby error-cost points in the quality-efficiency trade-
off. The configuration closest to the cluster centroid is then selected from each
cluster as its representative. The selected configurations are then stored in a local
variable PO_Configs. Moreover, if the number of pareto-optimal configurations
in Step 2f is less than 0.25 ∗X , all the configurations are selected and stored in
PO_Configs. Also, in the same step the Temp_Configs is re-initialized to empty.

The remaining configurations are selected from sets 3 and 4 using Step 2h, 2i
and 2j. In Step 2h, we find the pareto-optimal configurations from the sets
based on the absolute mean error and the cost of the configurations and store
them in Temp_Configs. If the selected number of configurations from these sets
is greater than the remaining number of configurations (i.e., greater than X−
No. of configurations in PO_Configs), we perform Step 2j to find the remaining
required configurations from Temp_Configs using clustering (similar to Step 2g).
However, if it is less, we perform Step 2i where we remove the configurations
from the sets that are present in Temp_Configs, and we add the configurations
of Temp_Configs to PO_Configs. Finally, we re-initialize Temp_Configs to empty
before moving back to Step 2h.

Then, Step 2h is performed again using the modified sets to find near-optimal
points. This cycle (Step 2h→ Step 2i→ Step 2h) is repeated until the condition
is satisfied (or the sets are empty). This procedure ensures that we select the
most effective (optimal/near-optimal) configurations from the sets as much as
allowed by the X parameter. Afterwards, Step 2j is performed and the selected
configurations are added to PO_Configs. The resultant configurations are for-
warded to Step 2k where Inter_Configs is overwritten with the configurations
in PO_Configs. Then the intermediate pruning function is returned to Step 2l,
where the Inter_Configs are forwarded to the higher stage (Step 2a) for generating
configurations of larger multipliers.

Step 3

From the received configurations the pareto-optimal configurations are found
using their absolute mean error and the area/power cost characteristics. The
resultant configurations are then returned as the final configurations for the n×n
multiplier.

C.3 Viability of our approach

We utilized the above design space exploration tool for finding the pareto-optimal
designs for 4-bit, 8-bit and 16-bit multipliers. Table C.2 shows the runtime of
the simulations (with X = 60) using MATLAB (2017a) on an Intel Core i5-6600
CPU with 16 GB of RAM. We have also simulated the first case (n = 8 and
m = 3) exhaustively which resulted in a simulation runtime of 43 seconds on
our system. Interestingly, the pareto-optimal configurations for the aforesaid
exhaustive simulation are exactly the same as of our algorithm at X = 60, which

138

A
p
p
e
n
d
i
x
C
–
D
e
s
i
g
n
S
p
a
c
e
E
x
p
l
o
r
a
t
i
o
n
o
f
A
p
p
r
o
x
i
m
a
t
e
M
u
l
t
i
p
l
i
e
r
s
f
o
r
M
A
C

Table C.2: Simulation runtime for the design space exploration of multipliers.
While using a general purpose simulation platform, the design space exploration
tool explores a huge design space (S. No. 4) in less than four minutes.

S. No. n m No. of
Configurations

Simulation Time
(Seconds)

1. 8 3 4.3× 107 5
2. 8 5 1.53× 1011 7
3. 16 3 3.43× 1030 138
4. 16 5 5.42× 1044 209

has a simulation runtime of 5 seconds. Moreover, the design space exploration
tool enables us to explore a huge design space (n = 16 and m = 5) in less than
four minutes using a general purpose computer system as a simulation platform.

139

140

141Acronyms

A AAMMP absolute approximate multiplier mirror pair
AASMP absolute approximate squarer mirror pair
Adaptive-
SAM

adaptive statistical approximation model

AER adaptive error resilience
ARC application resilience characterization
ASAC automatic sensitivity analysis for approximate computing
ASIC application specific integrated circuit

C CMOS complementary metal-oxide semiconductor
CPU central processing unit

D DoA degree of approximation
DRAM dynamic RAM
DVFS dynamic voltage and frequency scaling

E EM error mean
EP error predictability
ER error rate
ETA error tolerant adder

F FFT fast Fourier transform
FLOPS floating-point operations per second
FPGA field programmable gate array

I iACT intel’s approximate computing toolkit
IC integrated circuit
ISH internal-self-healing

L LOFAR The low frequency array
LS least squares
LUT look-up table
LVA load value approximation

M MAC multiply-accumulate
ME mean error
MSE mean square error

N NTV near-threshold voltage

P PAC program analysis for approximation-aware compilation
PMFe probability mass function of error

142

A
c
r
o
n
y
m
s

Q QoS quality of service

R RAM random-access memory
RTL register-transfer level

S SAC square-accumulate
SAM statistical approximation model
SDP science data processing
SH self-healing
SKA square kilometer array
SNR signal-to-noise ratio
SRAM static RAM
StEFCal statistically efficient and fast calibration

T TSAM technique specific approximation model

V VLSI very large scale integration

X xMAC approximate multiply-accumulate

143Bibliography

[1] SKA Science. [Online] https://www.skatelescope.org/science/. Last accessed on
June 18, 2020. (Cited on page 4).

[2] IEEE standard glossary of computer hardware terminology. IEEE Std 610.10-1994,
1995. doi: 10.1109/IEEESTD.1995.79522. (Cited on page 13).

[3] R. Airoldi, F. Campi, and J. Nurmi. Approximate computing for complexity
reduction in timing synchronization. EURASIP Journal on Advances in Signal
Processing, 2014(1):155, 2014. (Cited on page 9).

[4] A. Alaghi and J. P. Hayes. Survey of stochastic computing. ACM Transactions on
Embedded computing systems (TECS), 12(2s):92:1–92:19, 2013. (Cited on pages 9,
10, and 29).

[5] A. Alaghi, W. Qian, and J. P. Hayes. The promise and challenge of stochastic
computing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2017. (Cited on page 10).

[6] M. K. Ayub, O.Hasan, andM. Shafique. Statistical error analysis for low power ap-
proximate adders. In Proceedings of the 54th Annual Design Automation Conference
2017, page 75. ACM, 2017. (Cited on pages 58 and 87).

[7] N. Banerjee, G. Karakonstantis, and K. Roy. Process variation tolerant low power
dct architecture. In 2007 Design, Automation & Test in Europe Conference & Exhibi-
tion, pages 1–6. IEEE, 2007. (Cited on page 20).

[8] D. Bankman and B. Murmann. An 8-bit, 16 input, 3.2 pj/op switched-capacitor
dot product circuit in 28-nm fdsoi cmos. In 2016 IEEE Asian Solid-State Circuits
Conference (A-SSCC), pages 21–24. IEEE, 2016. (Cited on page 97).

[9] B. Barrois, O. Sentieys, and D. Menard. The hidden cost of functional approxi-
mation against careful data sizing: a case study. In Proceedings of the Conference
on Design, Automation & Test in Europe, pages 181–186. European Design and
Automation Association, 2017. (Cited on page 64).

[10] C. H. Bennett and R. Landauer. The fundamental physical limits of computation.
Scientific American, 253(1):48–57, 1985. (Cited on page 1).

[11] K. Bhardwaj, P. S. Mane, and J. Henkel. Power-and area-efficient approximate
wallace tree multiplier for error-resilient systems. In Fifteenth International Sympo-
sium on Quality Electronic Design, pages 263–269. IEEE, 2014. (Cited on page 58).

[12] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala. Handbook of signal
processing systems. Springer, 2018. (Cited on page 46).

https://doi.org/10.1109/IEEESTD.1995.79522

144

B
i
b
l
i
o
g
r
a
p
h
y

[13] M. Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-
State Circuits Society Newsletter, 12(1):11–13, 2007. (Cited on page 1).

[14] A.-J. Boonstra. Radio frequency interference mitigation in radio astronomy. PhD
thesis, Delft University of Technology, 2005. (Cited on page 5).

[15] A.-J. Boonstra and A.-J. Van der Veen. Gain calibration methods for radio tele-
scope arrays. IEEE Transactions on Signal Processing, 51(1):25–38, 2003. (Cited on
page 37).

[16] D. Bortolotti, H. Mamaghanian, A. Bartolini, M. Ashouei, J. Stuijt, D. Atienza,
P. Vandergheynst, and L. Benini. Approximate compressed sensing: ultra-low
power biosignal processing via aggressive voltage scaling on a hybrid memory
multi-core processor. In 2014 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 45–50. IEEE, 2014. (Cited on page 20).

[17] R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim. Approx-noc: A
data approximation framework for network-on-chip architectures. In Proceedings
of the 44th Annual International Symposium on Computer Architecture, pages 666–
677, 2017. (Cited on page 19).

[18] L. Breslau and S. Shenker. Best-effort versus reservations: A simple comparative
analysis. In Proceedings of the ACM SIGCOMM’98 conference on Applications, tech-
nologies, architectures, and protocols for computer communication, pages 3–16, 1998.
(Cited on page 9).

[19] P. Broekema et al. Exascale high performance computing in the square kilometer
array. In Proceedings of the Astro-HPC’12, pages 9–16. ACM, 2012. (Cited on
page 4).

[20] M. D. Buhari, G. Y. Tian, R. Tiwari, and A. H. Muqaibel. Multicarrier sar image
reconstruction using integrated music-lse algorithm. IEEE Access, 6:22827–22838,
2018. (Cited on pages 32 and 56).

[21] B. Burke and F. Graham-Smith. An Introduction to Radio Astronomy. Cambridge
University Press, Third Edition, 2010. (Cited on page 5).

[22] L. N. Chakrapani, P. Korkmaz, B. E. Akgul, and K. V. Palem. Probabilistic system-
on-a-chip architectures. ACM Transactions on Design Automation of Electronic
Systems, 12(3):29, 2007. (Cited on page 11).

[23] I. J. Chang, D. Mohapatra, and K. Roy. A priority-based 6t/8t hybrid sram
architecture for aggressive voltage scaling in video applications. IEEE transactions
on circuits and systems for video technology, 21(2):101–112, 2011. (Cited on page 20).

[24] S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E. Akgul, and L. N. Chakrapani.
A probabilistic cmos switch and its realization by exploiting noise. In Proceedings
of International Conference on VLSI, pages 535–541. IFIP, 2005. (Cited on page 11).

[25] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar.
Scalable effort hardware design: Exploiting algorithmic resilience for energy ef-
ficiency. In Proceedings of the 47th Design Automation Conference, pages 555–560.
ACM, 2010. (Cited on page 18).

145

B
i
b
l
i
o
g
r
a
p
h
y

[26] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis and
characterization of inherent application resilience for approximate computing. In
Proceedings of the 50th Annual Design Automation Conference, page 113. ACM, 2013.
(Cited on pages 2, 3, 4, 14, 17, 18, 32, 34, 56, and 85).

[27] S. De, J. Huisken, and H. Corporaal. An automated approximation methodology
for arithmetic circuits. In 2019 IEEE/ACM International Symposium on Low Power
Electronics andDesign (ISLPED), pages 1–6. IEEE, 2019. (Cited on pages 25 and 117).

[28] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, 1974. (Cited on page 1).

[29] J. A. Dickson, R. D. McLeod, and H. C. Card. Stochastic arithmetic implementa-
tions of neural networks with in situ learning. In Proceedings of the International
Conference on Neural Networks, pages 711–716. IEEE, 1993. (Cited on page 10).

[30] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated
circuits. Proceedings of the IEEE, 98(2):253–266, 2010. (Cited on page 20).

[31] S. Dutt, A. Chauhan, R. Bhadoriya, S. Nandi, andG. Trivedi. A high-performance
energy-efficient hybrid redundant mac for error-resilient applications. In 2015 28th
International Conference on VLSI Design, pages 351–356. IEEE, 2015. (Cited on
pages 59, 88, and 89).

[32] J. Echavarria, S. Wildermann, A. Becher, J. Teich, and D. Ziener. Fau: Fast and
error-optimized approximate adder units on lut-based fpgas. In 2016 International
Conference on Field-Programmable Technology (FPT), pages 213–216. IEEE, 2016.
(Cited on pages 21, 25, and 118).

[33] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In 2011 38th Annual international sym-
posium on computer architecture (ISCA), pages 365–376. IEEE, 2011. (Cited on
page 2).

[34] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Power
challenges may end the multicore era. Communications of the ACM, 56(2):93–102,
2013. (Cited on page 1).

[35] D. Esposito, A. G. Strollo, and M. Alioto. Low-power approximate mac unit. In
2017 13th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME),
pages 81–84. IEEE, 2017. (Cited on pages 59 and 88).

[36] B. R. Gaines. Stochastic computing. In Proceedings of the April 18-20, 1967, spring
joint computer conference, pages 149–156. ACM, 1967. (Cited on page 10).

[37] J. George, B. Marr, B. E. Akgul, and K. V. Palem. Probabilistic arithmetic and
energy efficient embedded signal processing. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded Systems, CASES
’06, pages 158–168. ACM, 2006. (Cited on page 11).

146

B
i
b
l
i
o
g
r
a
p
h
y

[38] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy. Impact: im-
precise adders for low-power approximate computing. In Proceedings of the 17th
IEEE/ACM international symposium on Low-power electronics and design, pages
409–414. IEEE Press, 2011. (Cited on page 58).

[39] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power digital signal
processing using approximate adders. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 32(1):124–137, 2012. (Cited on pages 3, 21, 23,
58, and 87).

[40] Q. Hang. Counting the floating point operations (FLOPS). [Online]
https://www.mathworks.com/matlabcentral/fileexchange/50608-counting-the-
floating-point-operations-flops. Last accessed on June 18, 2020. (Cited on
page 38).

[41] M. A. Hanif, R. Hafiz, andM. Shafique. Error resilience analysis for systematically
employing approximate computing in convolutional neural networks. In 2018

Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 913–
916. IEEE, 2018. (Cited on page 3).

[42] S. Hashemi, R. Bahar, and S. Reda. Drum: A dynamic range unbiased multiplier
for approximate applications. In Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, pages 418–425. IEEE Press, 2015. (Cited on
pages 22, 23, 32, 87, and 88).

[43] K. He, A. Gerstlauer, and M. Orshansky. Circuit-level timing-error acceptance
for design of energy-efficient dct/idct-based systems. IEEE Transactions on Circuits
and Systems for Video Technology, 23(6):961–974, 2013. (Cited on page 20).

[44] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011. (Cited on page 12).

[45] H.Hoffmann, S.Misailovic, S. Sidiroglou, A. Agarwal, andM. Rinard. Using code
perforation to improve performance, reduce energy consumption, and respond
to failures. 2009. (Cited on page 18).

[46] J. Hou, Y. Zhu, S. Du, S. Song, and Y. Song. Fpga-based scale-out prototyping
of degridding algorithm for accelerating square kilometre array telescope data
processing. IEEE Access, 8:15586–15597, 2020. (Cited on page 5).

[47] D. Jeon, M. Seok, C. Chakrabarti, D. Blaauw, and D. Sylvester. A super-pipelined
energy efficient subthreshold 240 ms/s fft core in 65 nm cmos. IEEE Journal of
Solid-State Circuits, 47(1):23–34, 2011. (Cited on page 20).

[48] H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approximate radix-8 booth mul-
tipliers for low-power and high-performance operation. IEEE Transactions on
Computers, 65(8):2638–2644, 2015. (Cited on pages 58 and 87).

[49] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han. A comparative eval-
uation of approximate multipliers. In 2016 IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH), pages 191–196. IEEE, 2016. (Cited on
page 58).

147

B
i
b
l
i
o
g
r
a
p
h
y

[50] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han. A review, classification, and
comparative evaluation of approximate arithmetic circuits. ACM Journal on Emerg-
ing Technologies in Computing Systems (JETC), 13(4):60, 2017. (Cited on pages 3,
32, and 117).

[51] R. Jongerius, S. Wijnholds, R. Nijboer, and H. Corporaal. An end-to-end com-
puting model for the square kilometre array. Computer, 47(9):48–54, 2014. ISSN
0018-9162. (Cited on pages 5 and 32).

[52] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pages 1–12. IEEE, 2017. (Cited on page 97).

[53] A. B. Kahng and S. Kang. Accuracy-configurable adder for approximate arithmetic
designs. In Proceedings of the 49th Annual Design Automation Conference, pages
820–825. ACM, 2012. (Cited on pages 21, 58, and 87).

[54] S. Kamdar and N. Kamdar. big. little architecture: Heterogeneous multicore
processing. International Journal of Computer Applications, 119(1), 2015. (Cited
on page 32).

[55] G. Karakonstantis, D. Mohapatra, and K. Roy. System level dsp synthesis using
voltage overscaling, unequal error protection & adaptive quality tuning. In 2009

IEEEWorkshop on Signal Processing Systems, pages 133–138. IEEE, 2009. (Cited on
page 20).

[56] U. R. Karpuzcu, I. Akturk, andN. S. Kim. Accordion: Toward soft near-threshold
voltage computing. In High Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on, pages 72–83. IEEE, 2014. (Cited on
page 32).

[57] J. Kim and S. Tiwari. Inexact computing using probabilistic circuits: Ultra low-
power digital processing. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 10(2):16, 2014. (Cited on page 11).

[58] Y.-C. Kim andM. A. Shanblatt. Architecture and statistical model of a pulse-mode
digital multilayer neural network. IEEE Transactions on Neural Networks, 6(5):
1109–1118, Sep 1995. ISSN 1045-9227. (Cited on page 10).

[59] A. Kourfali and D. Stroobandt. Superimposed in-circuit debugging for self-healing
fpga overlays. In 2018 IEEE 19th Latin-American Test Symposium (LATS), pages
1–6. IEEE, 2018. (Cited on pages 6 and 56).

[60] A. Krapukhin. Approximate least squares accelerator. Essay (M.Sc.), University of
Twente, 2019. (Cited on page 46).

[61] P. K. Krause and I. Polian. Adaptive voltage over-scaling for resilient applications.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011,
pages 1–6. IEEE, 2011. (Cited on pages 20, 31, and 33).

148

B
i
b
l
i
o
g
r
a
p
h
y

[62] S. Kuang and J. Wang. Low-error configurable truncated multipliers for multiply-
accumulate applications. Electronics letters, 42(16):1, 2006. (Cited on pages 59, 64,
and 88).

[63] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power with an
underdesigned multiplier architecture. In 2011 24th Internatioal Conference on
VLSI Design, pages 346–351. IEEE, 2011. (Cited on pages 3, 16, 24, 26, 28, 58, 59,
69, 74, 77, 78, 87, 88, 89, and 91).

[64] P. Kulkarni, P. Gupta, and M. D. Ercegovac. Trading accuracy for power in
a multiplier architecture. Journal of Low Power Electronics, 7(4):490–501, 2011.
(Cited on page 26).

[65] K. Y. Kyaw, W. L. Goh, and K. S. Yeo. Low-power high-speed multiplier for error-
tolerant application. In 2010 IEEE International Conference of Electron Devices
and Solid-State Circuits (EDSSC), pages 1–4. IEEE, 2010. (Cited on page 58).

[66] M. S. e. a. Lau. Modeling of probabilistic ripple-carry adders. In Proceedings of the
Electronic Design, Test and Application, DELTA’10. IEEE, 2010. (Cited on page 11).

[67] S. Lee, L. K. John, and A. Gerstlauer. High-level synthesis of approximate hard-
ware under joint precision and voltage scaling. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, pages 187–192. IEEE, 2017. (Cited
on page 26).

[68] V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and M. Oskin. Architec-
ture considerations for stochastic computing accelerators. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2277–2289, 2018.
(Cited on page 97).

[69] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi. Approximate hybrid high
radix encoding for energy-efficient inexact multipliers. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 26(3):421–430, 2017. (Cited on pages 58, 87,
and 117).

[70] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu. Joint precision optimization and
high level synthesis for approximate computing. In Proceedings of the 52nd Annual
Design Automation Conference, pages 1–6, 2015. (Cited on page 26).

[71] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet. Energy parsimo-
nious circuit design through probabilistic pruning. In 2011 Design, Automation &
Test in Europe, pages 1–6. IEEE, 2011. (Cited on pages 11, 20, and 29).

[72] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: saving dram
refresh-power through critical data partitioning. In Proceedings of the sixteenth
international conference on Architectural support for programming languages and
operating systems, pages 213–224, 2011. (Cited on page 19).

[73] I. L. Markov. Limits on fundamental limits to computation. Nature, 512(7513):
147, 2014. (Cited on pages 1 and 2).

149

B
i
b
l
i
o
g
r
a
p
h
y

[74] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel. Probabilistic error
modeling for approximate adders. IEEE Transactions on Computers, 66(3):515–530,
2016. (Cited on pages 58, 87, 125, and 127).

[75] S. Mazahir, O. Hasan, R. Hafiz, and M. Shafique. Probabilistic error analysis
of approximate recursive multipliers. IEEE Transactions on Computers, 66(11):
1982–1990, 2017. (Cited on pages 26, 58, 87, 88, 91, 125, and 134).

[76] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel execution frame-
work for recognition and mining applications. In Parallel & Distributed Process-
ing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.
(Cited on pages 4, 9, 32, and 136).

[77] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling and synthesis of
quality-energy optimal approximate adders. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, ICCAD ’12, pages 728–735. IEEE,
2012. (Cited on pages 20, 21, 29, and 32).

[78] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service pro-
filing. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 25–34, 2010. (Cited on pages 3, 14, and 34).

[79] S. Misailovic, S. Sidiroglou, and M. C. Rinard. Dancing with uncertainty. In
Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore
and manycore scalability, pages 51–60. ACM, 2012. (Cited on page 18).

[80] A. K. Mishra, R. Barik, and S. Paul. iact: A software-hardware framework for
understanding the scope of approximate computing. InWorkshop on Approximate
Computing Across the System Stack (WACAS), 2014. (Cited on pages 3, 15, and 34).

[81] S. Mittal. A survey of techniques for approximate computing. ACM Computing
Surveys (CSUR), 48(4):62, 2016. (Cited on pages 3 and 9).

[82] D. Mohapatra, G. Karakonstantis, and K. Roy. Significance driven computation: a
voltage-scalable, variation-aware, quality-tuning motion estimator. In Proceedings
of the 2009ACM/IEEE international symposium on Low power electronics and design,
pages 195–200, 2009. (Cited on page 20).

[83] A. Momeni, J. Han, P. Montuschi, and F. Lombardi. Design and analysis of
approximate compressors for multiplication. IEEE Transactions on Computers, 64
(4):984–994, 2014. (Cited on pages 58 and 87).

[84] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
pages 114–117, 1965. (Cited on page 1).

[85] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han. Scalable construction
of approximate multipliers with formally guaranteed worst case error. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, (99):1–5, 2018. (Cited on
pages 26, 32, 87, 96, and 98).

150

B
i
b
l
i
o
g
r
a
p
h
y

[86] S. Naghibzadeh, A. Sardarabadi, and A. van der Veen. Radioastronomical im-
age reconstruction with regularized least squares. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3316–3320. IEEE, March
2016. (Cited on pages 32 and 56).

[87] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda. Automated high-level
generation of low-power approximate computing circuits. IEEE Transactions on
Emerging Topics in Computing, 7(1):18–30, 2016. (Cited on page 25).

[88] E. Nogues, D. Menard, and M. Pelcat. Algorithmic-level approximate computing
applied to energy efficient hevc decoding. IEEE Transactions on Emerging Topics
in Computing, 2016. (Cited on pages 56 and 85).

[89] V. T. Olafsson, D. C. Noll, and J. A. Fessler. Fast spatial resolution analysis
of quadratic penalized least-squares image reconstruction with separate real and
imaginary roughness penalty: Application to fmri. IEEE transactions on medical
imaging, 37(2):604–614, 2017. (Cited on pages 32 and 56).

[90] K. V. Palem. Energy aware algorithm design via probabilistic computing: from
algorithms and models to moore’s law and novel (semiconductor) devices. In Pro-
ceedings of the 2003 international conference on Compilers, architecture and synthesis
for embedded systems, CASES ’03, pages 113–116. ACM, 2003. (Cited on page 10).

[91] K. V. Palem. Energy aware computing through probabilistic switching: A study of
limits. IEEE Transactions on Computers, 54(9):1123–1137, 2005. (Cited on pages 10
and 11).

[92] D. Palomino, M. Shafique, A. Susin, and J. Henkel. Thermal optimization using
adaptive approximate computing for video coding. In 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1207–1212. IEEE, 2016.
(Cited on page 18).

[93] A. Parsons, D. Backer, C. Chang, D. Chapman, H. Chen, P. Crescini, C. De Jesus,
C. Dick, P. Droz, D. MacMahon, et al. Petaop/second fpga signal processing for
seti and radio astronomy. In 2006 Fortieth Asilomar Conference on Signals, Systems
and Computers, pages 2031–2035. IEEE, 2006. (Cited on page 5).

[94] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. Strollo. Truncated
binary multipliers with variable correction and minimum mean square error.
IEEE Transactions on Circuits and Systems I: Regular Papers, 57(6):1312–1325, 2009.
(Cited on pages 32, 59, 64, and 88).

[95] N. Pinckney, K. Sewell, R. G. Dreslinski, D. Fick, T. Mudge, D. Sylvester, and
D. Blaauw. Assessing the performance limits of parallelized near-threshold com-
puting. In Proceedings of the 49th Annual Design Automation Conference, pages
1147–1152, 2012. (Cited on page 20).

[96] N. Pinckney, D. Blaauw, and D. Sylvester. Low-power near-threshold design:
Techniques to improve energy efficiency. IEEE Solid-State Circuits Magazine, 7(2):
49–57, 2015. (Cited on page 20).

151

B
i
b
l
i
o
g
r
a
p
h
y

[97] B. S. Prabakaran, S. Rehman, M. A. Hanif, S. Ullah, G. Mazaheri, A. Kumar, and
M. Shafique. Demas: An efficient design methodology for building approximate
adders for fpga-based systems. In 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 917–920. IEEE, 2018. (Cited on pages 25, 32,
58, 87, and 118).

[98] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić. Digital integrated circuits: a
design perspective, volume 7. Pearson Education Upper Saddle River, NJ, 2003.
(Cited on page 20).

[99] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan. Aslan:
Synthesis of approximate sequential circuits. In 2014Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2014. (Cited on page 25).

[100] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan. Ap-
proximate storage for energy efficient spintronic memories. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2015.
(Cited on page 19).

[101] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel. Architectural-
space exploration of approximate multipliers. In Proceedings of the 35th Interna-
tional Conference on Computer-Aided Design, page 80. ACM, 2016. (Cited on
pages 3, 16, 23, 24, 26, 28, 58, 66, 87, 88, 89, and 91).

[102] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener. Programming with
relaxed synchronization. In Proceedings of the 2012 ACM workshop on Relaxing
synchronization for multicore and manycore scalability, pages 41–50. ACM, 2012.
(Cited on page 18).

[103] M. Rinard and P. Stanley-Marbell. Reducing serial i/o power in error-tolerant
applications by efficient lossy encoding. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2016. (Cited on page 19).

[104] A. Roldao-Lopes, A. Shahzad, G. A. Constantinides, and E. C. Kerrigan. More
flops or more precision? accuracy parameterizable linear equation solvers for
model predictive control. In Field Programmable Custom Computing Machines,
2009. FCCM’09. 17th IEEE Symposium on, pages 209–216. IEEE, 2009. (Cited on
pages 4, 32, and 39).

[105] P. Roy, R. Ray, C. Wang, and W. F. Wong. Asac: Automatic sensitivity analysis
for approximate computing. In ACM SIGPLAN Notices, number 5, pages 95–104.
ACM, 2014. (Cited on pages 15 and 34).

[106] P. Roy, J. Wang, and W. F. Wong. Pac: program analysis for approximation-aware
compilation. In Proceedings of the 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, pages 69–78. IEEE Press, 2015.
(Cited on pages 15, 16, and 34).

[107] S. Salvini and S. J. Wijnholds. Fast gain calibration in radio astronomy using
alternating direction implicit methods: Analysis and applications. Astronomy &
Astrophysics, 571:A97, 2014. (Cited on pages 4, 5, 32, 37, 38, 39, 56, 80, and 104).

152

B
i
b
l
i
o
g
r
a
p
h
y

[108] A. Sampson. Hardware and software for approximate computing. PhD thesis,
University of Washington, 2015. (Cited on pages 14, 32, and 34).

[109] J. San Miguel, M. Badr, and N. E. Jerger. Load value approximation. In 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 127–139.
IEEE, 2014. (Cited on page 19).

[110] J. Schlachter, V. Camus, K. V. Palem, and C. Enz. Design and applications of
approximate circuits by gate-level pruning. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(5):1694–1702, 2017. (Cited on pages 11, 20, and 29).

[111] M. L. Schmatz, R. Jongerius, G. Dittmann, A. Anghel, T. Engbersen, J. van
Lunteren, and P. Buchmann. Scalable, efficient asics for the square kilometre
array: From a/d conversion to central correlation. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7505–7509.
IEEE, 2014. (Cited on pages 97 and 104).

[112] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
and M. L. Scott. Energy-efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling. In Proceedings Eighth International
Symposium on High Performance Computer Architecture, pages 29–40. IEEE, 2002.
(Cited on page 20).

[113] M. Shafique and S. Garg. Computing in the dark silicon era: Current trends and
research challenges. IEEE Design & Test, 34(2):8–23, 2016. (Cited on page 2).

[114] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low latency generic accuracy
configurable adder. In 2015 52ndACM/EDAC/IEEEDesign Automation Conference
(DAC), pages 1–6. IEEE, 2015. (Cited on pages 3, 21, 58, and 87).

[115] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel. Invited: Cross-
layer approximate computing: From logic to architectures. In Design Automation
Conference (DAC), 2016 53rd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016. (Cited on
pages 2, 3, 16, 32, and 33).

[116] D. Shin and S. K. Gupta. Approximate logic synthesis for error tolerant applica-
tions. In 2010Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), pages 957–960. IEEE, 2010. (Cited on pages 20 and 29).

[117] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, pages 124–134. ACM, 2011. (Cited on page 18).

[118] P. Stanley-Marbell and M. Rinard. Efficiency limits for value-deviation-bounded
approximate communication. IEEE Embedded Systems Letters, 7(4):109–112, 2015.
(Cited on page 19).

[119] P. Stanley-Marbell, M. Rinard, et al. Error-efficient computing systems. Founda-
tions and Trends in Electronic Design Automation, 11(4):362–461, 2017. (Cited on
page 9).

153

B
i
b
l
i
o
g
r
a
p
h
y

[120] M. B. Sullivan and E. E. Swartzlander. Truncated error correction for flexible
approximate multiplication. In 2012 Conference Record of the Forty Sixth Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), pages 355–359. IEEE,
2012. (Cited on page 58).

[121] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh, J. Park, G. Mu-
ruru, O. Mutlu, and T. Mowry. Rollback-free value prediction with approximate
loads. In 2014 23rd International Conference on Parallel Architecture and Compila-
tion Techniques (PACT), pages 493–494. IEEE, 2014. (Cited on page 19).

[122] S. L. Toral, J. M. Quero, and L. G. Franquelo. Stochastic pulse coded arithmetic.
In IEEE International Symposium onCircuits and Systems., volume 1, pages 599–602,
2000. (Cited on page 10).

[123] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif, M. Shafique,
and A. Kumar. Area-optimized low-latency approximate multipliers for fpga-
based hardware accelerators. In Proceedings of the 55th Annual Design Automation
Conference, page 159. ACM, 2018. (Cited on pages 58 and 87).

[124] M. Van Haarlem, M. Wise, A. Gunst, G. Heald, J. McKean, J. Hessels,
A. De Bruyn, R. Nijboer, J. Swinbank, R. Fallows, et al. Lofar: The low-frequency
array. Astronomy & Astrophysics, 556:A2, 2013. (Cited on pages 5, 38, 46, 52, 74,
80, 104, and 117).

[125] G. V. Varatkar and N. R. Shanbhag. Energy-efficient motion estimation using
error-tolerance. In Proceedings of the 2006 international symposium on Low power
electronics and design, pages 113–118, 2006. (Cited on page 20).

[126] B. Veenboer, M. Petschow, and J. W. Romein. Image-domain gridding on graphics
processors. In 2017 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pages 545–554. IEEE, 2017. (Cited on pages 5 and 118).

[127] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. Salsa:
systematic logic synthesis of approximate circuits. In DAC Design Automation
Conference 2012, pages 796–801. IEEE, 2012. (Cited on page 25).

[128] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan. Approximate
computing and the quest for computing efficiency. In Proceedings of the 52nd
Annual Design Automation Conference, page 120. ACM, 2015. (Cited on page 2).

[129] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib. Scalable-effort clas-
sifiers for energy-efficient machine learning. In Proceedings of the 52nd Annual
Design Automation Conference, page 67. ACM, 2015. (Cited on page 18).

[130] A. K. Verma, P. Brisk, and P. Ienne. Variable latency speculative addition: A new
paradigm for arithmetic circuit design. In Proceedings of the conference on Design,
automation and test in Europe, pages 1250–1255. ACM, 2008. (Cited on pages 21,
58, and 87).

[131] Q. Wu, Y. Zhu, X. Wang, M. Li, J. Hou, and A. Masoumi. Exploring high
efficiency hardware accelerator for the key algorithm of square kilometer array
telescope data processing. In 2017 IEEE 25th Annual International Symposium on

154

B
i
b
l
i
o
g
r
a
p
h
y

Field-Programmable Custom Computing Machines (FCCM), pages 195–195. IEEE,
2017. (Cited on page 5).

[132] Q. Xu, T. Mytkowicz, and N. S. Kim. Approximate computing: A survey. IEEE
Design & Test, 33(1):8–22, 2016. (Cited on pages 2 and 9).

[133] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On reconfiguration-oriented
approximate adder design and its application. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 48–54. IEEE, 2013. (Cited
on page 21).

[134] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong. Design of low-
power high-speed truncation-error-tolerant adder and its application in digital
signal processing. IEEE transactions on very large scale integration (VLSI) systems,
18(8):1225–1229, 2009. (Cited on pages 21 and 22).

155List of Publications

[G:1] G.A. Gillani and A.B.J. Kokkeler. Improving error resilience analysis methodol-
ogy of iterative workloads for approximate computing. In 14th ACM International
Conference on Computing Frontiers. ACM, 2017.

[G:2] G.A. Gillani, A. Krapukhin, and A.B.J. Kokkeler. Energy-efficient approximate
least squares accelerator. In 16th ACM International Conference on Computing
Frontiers. ACM, 2019.

[G:3] G.A. Gillani, M.A. Hanif, M. Krone, S.H. Gerez, M. Shafique, and A.B.J.
Kokkeler. Squash: Approximate square-accumulate with self-healing. IEEEAccess,
6:49112–49128, 2018.

[G:4] G.A. Gillani, M.A. Hanif, B. Verstoep, S.H. Gerez, M. Shafique, and A.B.J.
Kokkeler. Macish: Designing approximate mac accelerators with internal-self-
healing. IEEE Access, 7:77142–77160, 2019.

[G:5] G.A. Gillani and A.B.J. Kokkeler. Go green radio astronomy: Approximate
computing perspective: Opportunities and challenges: Poster. In 16th ACM
International Conference on Computing Frontiers. ACM, 2019.

[G:6] L. Oudshoorn, G.A. Gillani, and A.B.J. Kokkeler. Impact of delay propagation
on ntv pcmos design. ICT-ENERGY Letters, 2016.

[G:7] P. Stanley-Marbell, A. Alaghi, M. Carbin, E. Darulova, L. Dolecek, A. Gerstlauer,
G.A. Gillani, D. Jevdjic, et al. Exploiting errors for efficiency: A survey from
circuits to applications. ACM Computing Surveys (CSUR), 53(3), 2020.

This thesis

@phdthesis{gillani2020:thesis,
author={Gillani, G.A.},
title={Exploiting Error Resilience For Hardware Efficiency -- Targeting

Iterative and Accumulation Based Algorithms},
school={University of Twente},
year={2020},
number={DSI Ph.D. Thesis Series No. 20-004},
issn={2589-7721},
isbn={978-90-365-5011-6},
doi={10.3990/1.9789036550116}

}

BibTEX of this thesis

543619-L-os-Ghayoor543619-L-os-Ghayoor543619-L-os-Ghayoor543619-L-os-Ghayoor Processed on: 12-6-2020Processed on: 12-6-2020Processed on: 12-6-2020Processed on: 12-6-2020

G.A. Gillani

EXPLOITING ERROR RESILIENCE
FOR HARDWARE EFFICIENCY
TARGETING ITERATIVE AND ACCUMULATION BASED ALGORITHMS

EXPLOITING ERROR RESILIENCE FOR HARDW
ARE EFFICIENCY

TA
RG

ETIN
G

 ITERATIV
E A

N
D

 A
CCU

M
U

LATIO
N

 BA
SED

 A
LG

O
RITH

M
S

 G.A. Gillani

	Book Cover Front
	Front cover
	Colophon
	Abstract
	Samenvatting
	Acknowledgements
	Contents
	Introduction
	Approximate Computing and Hardware Efficiency
	Approximate Computing
	Error Resilience
	Hardware Efficiency

	Problem Statement
	Research Objective
	Radio Astronomy Processing
	Contributions
	Thesis Outline and Organization

	Background
	Inexact Computing
	Stochastic Computing
	Probabilistic Computing
	Approximate Computing

	Terminology
	Efficiency
	Performance
	Quality
	Accuracy and Precision
	Quality-Efficiency Trade-off
	Pareto Optimal Designs and Pareto Front

	Error Resilience Analysis
	Quality of Service Profiler
	Intel's Approximate Computing Toolkit
	Automatic Sensitivity Analysis for Data
	Statistical Error Resilience Analysis

	Approximate Computing Techniques
	Software Level Techniques
	Architecture Level Techniques
	Hardware-/Circuit-Level Techniques

	Approximate Recursive Multipliers
	Evaluation

	Exploiting Error Resilience of Iterative Algorithms
	Related Work
	Adaptive Accuracy Techniques
	Error Resilience Analysis Techniques

	Error Resilience Analysis of Iterative Algorithms
	Adaptive Statistical Approximation Model (Adaptive-SAM)
	High-level Error Resilience Analysis
	Significance of Quality Function Reconsideration

	Energy Efficient Accelerator Design for Iterative Algorithms
	Design of a Heterogeneous Least Squares Accelerator
	Experimental Results

	Conclusions

	Error Cancellation in Accumulation Based Approximate Accelerators
	Related Work
	Self-Healing Methodology for Approximate Square-accumulate (SAC)
	Terminology
	Employing Self-Healing for Approximate SAC Architecture

	Analysis of Approximate SAC Composed of Truncated Squarer
	Mathematical Analysis of Truncated Squaring
	Quality Analysis of Various Truncation Alternatives

	Absolute Approximate Squarer Mirror Pair (AASMP)
	Design of 22 Absolute Approximate Mirror Pairs
	8 8 AASMP Design
	n n AASMP Design

	Designing an Optimal Approximate SAC Accelerator
	Experimental Setup and Results
	Experimental Setup for Quality-efficiency Trade-off Study
	Quality-efficiency Trade-off of 88 Squarer Pairs in a SAC Accelerator
	Radio Astronomy Calibration Processing – A Case Study
	Discussion and Future Work

	Conclusions

	Internal-Self-Healing Methodology for Accumulation Based Approximate Accelerators
	Related Work
	Designing an Approximate MAC with the Internal-Self-Healing (ISH) Methodology
	Approximate Multiplier for MAC
	Overflow Handling
	Comparison of the proposed ISH with the conventional approximate computing methodology

	Experimental Results
	Experimental Setup
	Design Space Exploration of the Proposed ISH methodology
	Scalability and Comparison of the ISH with the Conventional Methodology
	Case Study: Radio Astronomy Calibration Processing
	Synthesis based comparison
	Discussion and Future Work

	Conclusions

	Conclusions and Recommendations
	Contributions
	Error Resilience Analysis Of Iterative Algorithms
	Exploiting Error Resilience Of Iterative Algorithms
	Designing Approximate Accelerators For Accumulation Based Algorithms
	Radio Astronomy Calibration Processing – A Case Study

	Recommendations for future work

	88 Squarer Construction
	Quality Evaluation for Approximate Squarers
	Design Space Exploration of Approximate Multipliers for MAC
	Huge Design Space - A Challenge
	Design Space Exploration
	Viability of our approach

	Acronyms
	Bibliography
	List of Publications
	Book Cover Back

