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a b s t r a c t

This paper extends sequencing games as introduced by Curiel et al. (1989) to the setting with a
position-dependent learning effect. We show that these games are balanced, and analyze the family
of equal gains sharing (EGS) rules. In contrast to games without learning effect, we show that only a
specific class of EGS rules leads to core allocations. This allocation rule is characterized axiomatically,
and we also study its relationship with the β-rule, earlier introduced by Curiel et al. (1994).
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1. Introduction

Research on the intersection of cooperative game theory and
scheduling was initiated by [7]. They introduced a class of co-
operative games called sequencing games. They arise from the
following single machine sequencing problem: There is one single
machine set up to process a finite number of n jobs, together
with an initial given order of these jobs. Each job has a processing
time and is owned by one agent, and each agent is interested in
minimizing its own job’s completion time. Since the initial order
is usually not the optimal one for minimizing the total costs of
all players, any coalition of agents can in principle realize cost
savings by changing their relative positions in the schedule. In
this situation, one of the fundamental questions in cooperative
sequencing games is how the globally optimal solution can be
supported by redistributing the total cost savings among the
agents so that no coalition has an incentive to deviate from it.
These stable allocations are precisely the core of the underlying
cooperative game.

[7] showed that such sequencing games are convex and there-
fore core allocations exist. They also introduced and characterized
the equal gain splitting (EGS) rule, which can be interpreted as an
algorithmic procedure to compute a core allocation. During the
past few decades, different types of variations of sequencing situ-
ations and games have been presented in the literature, including
ready times [11], due dates [2], multiple machines [3,12,17],
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grouped jobs [4,10] multistage situations [5,6] and sequencing
situations without an initial order [13].

A common assumption in all of the above works is that the
processing times of jobs are constants and independent of their
positions during the scheduling process. However, it is a com-
mon assumption that facilities such as workers, or computers
augmented with artificial intelligence can improve their perfor-
mance over time, by processing jobs. As a result, the processing
time will be shorter if a job is scheduled in a later position.
This phenomenon is well known in the literature as a ‘‘learning
effect’’, which was introduced e.g. by [1] who considers the actual
processing time of a job as a decreasing power function of its
position in the schedule.

The purpose of this note is to extend cooperative sequencing
games to the situation where a position-dependent learning ef-
fect exists, meaning that the processing time of a job also depends
on the number of jobs that are scheduled before it. We call these
games LE (learning effect) sequencing games. The question that
we ask is whether the results obtained by [7] for (ordinary) se-
quencing games will still hold in situations with a learning effect.
In brief, the answer is yes, but with some non-trivial extensions
and modifications of earlier ideas and proof techniques. Let us
next sketch the major contributions of this note.

For sequencing games, [7] defined the worth of a coalition as
the maximal cost savings it can obtain by admissible reordering
the members of this coalition. However, a problem arises if we
adopt this definition to LE sequencing games: the non-members
who are placed later than the coalition in consideration will
also benefit from the cooperation of this coalition, that is, their
completion times will be reduced. We propose, in Section 3, how
the worth of a coalition can be defined in LE sequencing games.
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How much of the ‘‘external’’ benefits of cooperative behavior
should be allocated to the cooperative coalition, will be measured
by a share function, introduced in Section 3. We show, maybe
unsurprisingly, that the resulting LE sequencing games are bal-
anced, hence have a nonempty core. In particular, LE sequencing
game in which the cooperating coalition obtains the full benefits
of cooperation, are even convex.

In Section 4, we then analyze how core allocations can be com-
puted through adjacent exchanges of positions and EGS allocation
rules. The main difficulty, in contrast to earlier works, lies in the
fact that the cost savings contributed by an adjacent exchange
does not only depend on the processing times of the two players
involved, but also on the positions where these two players
are in the schedule. This means that the outcomes could differ
depending on the orders of neighbor switches. Unlike with [7],
who showed that EGS rules always yield a core allocation no
matter in which order the adjacent exchanges are realized, we
show that not all LE-EGS rules lead to core elements for LE se-
quencing games. Interestingly, though, we identify one particular
order of adjacent exchanges, and prove that it ensures that the
corresponding LE-EGS rule yields a core element. This particular
allocation rule is called the Γ -rule, and we provide its axiomatic
characterization. We finally discuss the relationship between the
Γ -rule and the β-rule that was earlier introduced by [9].

At the end of the paper, in Section 5, we discuss two possi-
ble extensions of LE sequencing games. Section 2 contains the
notation and basic definitions.

2. Preliminaries

2.1. Cooperative game theory

A cooperative game is a pair (N, v), where N is a nonempty,
finite set and v : 2N

→ R is a characteristic function satisfying
v(∅) = 0. An element of N (notation: i ∈ N) and a subset S of N
(notation: S ∈ 2N with S ̸= ∅) are called a player and coalition
respectively. The associated real number v(S) is called the worth
of coalition S. The core of a cooperative game (N, v) is defined by

C(N, v) =

{
x ∈ Rn

⏐⏐⏐x(N) = v(N), x(S) ≥ v(S) for all S ⊆ N
}

,

where x(S) =
∑

i∈S xi. The core is the set of efficient allocations of
v(N) such that there is no coalition with an incentive to split off
from the grand coalition. The core of a game can be empty and
a game which has a nonempty core is called balanced. A game
(N, v) is called superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for any
S, T ∈ 2N with S ∩ T = ∅. A game (N, v) is said to be convex if
v(T ∪ {i}) − v(T ) ≥ v(S ∪ {i}) − v(S) for every i ∈ N and for every
S ⊆ T ⊆ N\{i}.

2.2. Sequencing situations

There is a queue of n players, each of whom owns a single job
which has to be processed on a machine. Player and job will be
used interchangeably. The finite set of players is denoted by N
where |N| = n. A processing order on the players is defined by a
bijection σ : N → {1, . . . , n}, where σ (i) = j means that player i
is in position j. The initial, given order is denoted by σ0 and the
set of all orders on N is denoted by ΠN . For every i ∈ N , player i
has a processing time pi.

We call a coalition S ⊆ N connected with respect to σ ∈ ΠN
if for all i, j ∈ S and k ∈ N such that σ (i) < σ (k) < σ (j) it holds
that k ∈ S. A σ -component of S is a maximally connected subset
of S with respect to σ . Given a coalition S, S/σ denotes the set of
σ -components of S. Finally, the set of coalitions that are con-
nected with respect to σ is denoted by con(σ ).

The set of predecessors of player j with respect to σ is defined
by P(σ , i) = {j ∈ N | σ (j) < σ (i)} and the set of successors of
player i with respect to σ is defined by F (σ , i) = {j ∈ N | σ (j) >
σ (i)}. We also define P̄(σ , i) = P(σ , i)∪ i and F̄ (σ , i) = F (σ , i)∪ i.
Given σ0, a processing order σ ∈ ΠN is called admissible for S if
it satisfies the following condition:

P(σ0, j) = P(σ , j) for all j ∈ N\S.

This means that only players inside σ0-components of S are
allowed to exchange their relative positions with each other, and
in particular, all players outside S remain at the same positions as
in σ0. The set of all admissible orders for a coalition S is denoted
by ΠS .

An SPT order (shortest processing time first) is the order in
which the jobs are arranged according to non-decreasing process-
ing times. Denote by σS the order which is attained from σ0 by
reordering the members in each σ0-component of S with respect
to the SPT order, i.e., (i) σS(i) = σ0(i) for every i ∈ N\S, and (ii)
σS(i) < σS(j) for every i, j ∈ T and every T ∈ S/σ0 such that
pi < pj.

Let σ0 ∈ ΠN . A cooperative game (N, v) is called σ0-component
additive if it satisfies the following three conditions:

(i) v(i) = 0 for all i ∈ N ,
(ii) (N, v) is superadditive, and
(iii) v(S) =

∑
T∈S/σ0

v(T ) for all S ∈ 2N .

[14] showed that σ0-component additive games are always bal-
anced.

3. Sequencing games with a learning effect

In a sequencing situation with learning effect, the machine has
the ability to improve (by processing jobs). As a result, the later a
job is scheduled in the sequence of jobs, the shorter its processing
time. We assume that each player i ∈ N has a nominal processing
time pi. Given an order σ ∈ ΠN , the actual processing time of any
job i decreases as a function of its position, and it equals

σ (i)api,

where a ≤ 0 is the so-called learning index [1]. In this paper,
we assume that there is no idle time between jobs. Hence, the
completion time of player i is

C(σ , i) =

∑
σ (j)≤σ (i)

σ (i)api,

which equals the cost of a job i under sequence σ . In other words,
the cost of a job equals the time it spends in the system.

Define an LE sequencing situation by a 4-tuple (N , σ0, p, a),
where N = {1, . . . , n} is the set of n players, σ0 ∈ ΠN the initial
order on the jobs, p = (pi)i∈N ∈ Rn

+
the vector representing the

nominal processing times, and a the learning index.
For any order σ ∈ ΠN , the total costs of all players with

respect to σ is
∑

i∈N C(σ , i). σ is called optimal if the total costs
of all players with respect to σ is minimized. [1] proved that
if the jobs are arranged according to non-decreasing nominal
processing times, i.e. in SPT order, the total costs of all players
are minimal.

The following example shows that, in LE sequencing situations
(with given σ0), even if σ ∈ ΠS , that is, σ is admissible for
coalition S, player set S may have an ‘‘external’’ effect also on
players outside S, because of the learning effect.

Example 1. Let N = {1, 2, 3}, σ0 = (1, 2, 3), p = {3, 2, 1}, and
a = −1. Consider the coalition S = {1, 2}. If players 1 and 2 are
willing to switch their positions, the total costs of coalition {1, 2}
can be reduced by 1.5. At the same time, this switch decreases
the completion times of {1, 2} by 0.5. Now, because there is no
idle time, player 3 enjoys cost savings of 0.5, too.
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Consequently, the question arises if and how much of these
‘‘external’’ cost savings should be attributed to coalition S? We
suggest to capture this issue by defining a share function λ : 2N

→

[0, 1]. This mapping represents a ‘‘tax rate’’ that is imposed by
coalition S, on the members outside S. That said, we can fully
define an LE sequencing game (N, vλ) by defining the worth of a
coalition S ⊆ N by

vλ(S) = max
σ∈ΠS

⎧⎨⎩∑
i∈S

∆C(σ , i) + λ(S)
∑
j∈N\S

∆C(σ , j)

⎫⎬⎭ , (1)

where ∆C(σ , i) = C(σ0, i) − C(σ , i). In particular, if λ(S) =

0 for all S ⊆ N , the definition of the worth of coalitions in
LE sequencing games concurs with those of earlier works. For
notational simplicity, in the following we denote by (N, v) the LE
sequencing games when λ(S) = 1 for all S ⊆ N .

As [15] proved that the SPT rule also solves the makespan
minimization problem with a (positional) learning effect, it fol-
lows that the order that achieves the maximal cost savings, and
hence defines the worth of a coalition S, is exactly the SPT
order. Recalling that σS is the order which is attained from σ0 by
reordering the members in each σ0-component of S with respect
to the SPT order, the following is an easy exercise.

Theorem 1. Let (N, σ0, p, a) be an LE sequencing situation and
(N, vλ) any corresponding LE sequencing game. Then for any S ⊆ N,

vλ(S) =

∑
i∈S

∆C(σS, i) + λ(S)
∑
j∈N\S

∆C(σS, j).

It is also not hard to check that LE sequencing games (N, v) are
σ0-component additive, and thus they are balanced. Moreover,
for any core element x ∈ C(N, v), we have for any S ⊆ N ,∑

i∈S xi ≥ v(S) ≥ vλ(S). So we can conclude that LE sequencing
game (N, vλ) is balanced for any λ.

Theorem 2. Let (N, σ0, p, a) be an LE sequencing situation and
(N, vλ) the corresponding cooperative game. Then (N, vλ) is bal-
anced.

[2] provided a simple expression for the coefficients in the
unique linear decomposition of a σ0-component additive game
into unanimity games. By using this result, we can also give an
expression for the value of these coefficients for an LE sequencing
game (N, v) since it is σ0-component additive. In fact, these
coefficients can be proved to be nonnegative. Since unanimity
games are convex, we therefore obtain that also (N, v) is convex.
The proof of Theorem 3 is only technical but similar to that in [2],
so we relegate it, together with the proofs of Theorems 1 and 2,
to the supplement.

Theorem 3. Let (N, σ0, p, a) be an LE sequencing situation. Then
the corresponding LE sequencing game (N, v) is convex.

4. The family of LE-EGS rules and the Γ -rule

Motivated by the fact that core allocations for (N, v) are also
core allocations for (N, vλ) for any λ, we focus on LE sequencing
games (N, v). This is the setting where the worth of a coalition
S includes all additional benefits that their cooperative behavior
generates. In that sense, the constraints that define the core
of (N, v) are tightest, and this version of the game could be
considered as the ‘‘hardest’’. One could also consider variations of
the game (N, vλ) where an additional player (a system designer)
obtains the taxes implied by λ, but this would go beyond the
scope of this note.

4.1. The family of LE-EGS rules

Let (N, σ0, p, a) be an LE sequencing situation. A pair (i, j) is
inverted in S if i, j ∈ S, σ0(i) < σ0(j), and pi > pj. Given a
connected coalition S ⊆ N , let us denote by IS the number of
all inverted pairs from S with respect to σ0. An adjacent exchange
is a mapping τ : ΠN → ΠN , and we denote the set of all adjacent
exchanges by Λn. W.l.o.g. we can overload notation and assume
that τ exchanges the jobs on positions τ and τ +1 (i.e., we simply
represent elements of Λn by the first position τ of the adjacent
exchange). To be precise, given σ ∈ ΠN , if τ (σ ) = σ ′, we have
σ−1(τ ) = σ ′−1(τ +1), σ−1(τ +1) = σ ′−1(τ ), and σ−1(k) = σ ′−1(k)
for any k ̸= τ , τ + 1.

The difference in total costs before and after an adjacent
exchange τ on order σ can be easily calculated. If we assume that
σ (i) = τ and σ (j) = τ + 1, it will later be convenient to refer to
this difference as g(τ , σ , i, j). It equals

g(τ , σ , i, j) := (pi − pj)
[
(n − τ + 1)(τ )a − (n − τ )(τ + 1)a

]
. (2)

Notice that the cost savings obtained by an adjacent exchange
depends not only on the processing times of the two jobs i
and j, but also on the position τ of the adjacent exchange. The
earlier the position, the larger the cost savings. For later use, it is
convenient if we define

θ (τ ) :=
[
(n − τ + 1)(τ )a − (n − τ )(τ + 1)a

]
. (3)

Any order σ can be obtained from any σ0 by successive ad-
jacent exchanges. We define a permutation process as an ordered
set of adjacent exchanges ρ = {τ1, . . . , τm}, τ1, . . . , τm ∈ Λn such
that τ1(σ0) = σ1, τ2(σ1) = σ2, . . . , τm(σm−1) = σ . Let us write
ρ(σ0) = σ if permutation process ρ ends in σ . Moreover, recall
that σS is the order attained from σ0 by reordering the members
in each σ0-component of S in SPT order, and IS is the number of
inverted pairs in S with respect to σ0. Let us call a permutation
process feasible if ρ(σ0) = σS and |ρ| = IS . That is, ρ successively
exchanges inverted pairs of S. Finally, by P(σ0, σS) we denote the
set of all feasible permutation processes for S and σ0.

We now introduce the LE-EGS family, which is inspired by the
equal gain splitting (EGS) rule defined and characterized in [7].
The idea of the EGS rule is to divide the cost savings obtained by
an adjacent exchange equally between the two involved players.
Here, we adopt this idea and define the LE-EGSρ rule as follows.
Let ρ = {τ1, . . . , τIN } ∈ P(σ0, σN ) be a feasible permutation
process so that ρ(σ0) = σN , σk = τk(σk−1) for any 1 ≤ k ≤ IN , and
let ik = σ−1

k−1(τk), jk = σ−1
k−1(τk + 1) be the two players involved in

the kth adjacent exchange. Then let the allocation to player i ∈ N
be

LE-EGSρ

i (N, σ0, p, a) =
1
2

IN∑
k=1

g(τk, σk−1, ik, jk)δi(ik, jk),

where δi is simply an indicator variable to collect the payments
made to player i,

δi(ik, jk) =

{
1 if ik = i or jk = i
0 otherwise .

The family of all LE-EGS rules is defined by

LEF (N, σ0, p, a) = {LE-EGSρ(N, σ0, p, a) | ρ ∈ P(σ0, σN )}.

At this point, it is interesting to know whether any member of
this family yields a core allocation. The following example shows
that the answer is negative.

Example 2. Let (N, σ0, p, a) be an LE sequencing situation, where
N = {1, 2, 3}, σ0 = (1, 2, 3), p = {3, 2, 9

5 } and a = −1. Then it
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Fig. 1. The feasible permutation processes ρ1 and ρ2 .

Table 1
Worths of the LE sequencing game (N, v).
S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

v(S) 0 0 0 2 0 2
15

16
5

can be observed that σN = (3, 2, 1), IN = 3 and there are two
feasible permutation processes ρ1 = {τ1, τ2, τ3}, ρ2 = {τ ′

1, τ
′

2, τ
′

3}

which are illustrated in Fig. 1.
We can easily compute that LE-EGSρ1 = ( 75 ,

6
5 ,

3
5 ) and LE-

EGSρ2 = ( 2315 ,
2
5 ,

19
15 ). The worths of the corresponding LE se-

quencing game (N, v) are displayed in Table 1. We can see that
LE-EGSρ1 ∈ C(N, v), but LE-EGSρ2 /∈ C(N, v).

4.2. The Γ -rule

We now introduce a particular feasible permutation process
ρ ∈ P(σ0, σN ) which actually yields a core allocation. It is defined
by the following sequence of adjacent exchanges:

Step 1. Set k = 1.
Step 2. Find the earliest two neighboring jobs ik, jk that are in-

verted in order σk−1. If no such pair exists, then stop (and
σk−1 = σN ). Formally,

ik := argmin{σk−1(ℓ) | pℓ > pj, σk−1(j) = σk−1(ℓ) + 1}.

Step 3. While (ik, jk) is an inverted pair in σk−1:

• Exchange ik with jk to obtain σk from σk−1, add the
adjacent exchange τk with τk(σk−1) = σk to ρ

• Let k = k + 1
• Let ik := ik−1, let jk := σk−1(ik) + 1 be the next job

after ik (break while if σk−1(ik) = n)

Step 4. Goto Step 2

It is obvious that the so-computed permutation process ρ is
feasible. For notational convenience, let us call the EGS rule that
is based on this permutation process ρ the Γ -rule. We define for
all i ∈ N

Γi(N, σ0, p, a) = LE-EGSρ

i (N, σ0, p, a),

with ρ being the permutation process computed as above. In
order to show that the Γ -rule of any LE sequencing situation
yields a core element for the corresponding LE sequencing game,
we derive the following lemmas.

The first lemma gives a new expression of v(S) for any S ∈

con(σ0), which is the sum of the gains of adjacent exchanges in a
feasible permutation process for S.

Lemma 1. Let (N, σ0, p, a) be an LE sequencing situation and (N, v)
the corresponding LE sequencing game. For any S ∈ con(σ0) and any
feasible permutation process ρ ∈ P(σ0, σS),

v(S) =

IS∑
k=1

g(τk, σk−1, ik, jk).

Proof. From Theorem 1, we have that for any S ⊆ N ,

v(S) = max
σ∈ΠS

∑
i∈N

∆C(σ , i) =

∑
i∈N

∆C(σS, i).

Since ρ = {τ1, τ2, . . . , τIS } is feasible, we have σIS = σS . Hence,∑
i∈N

∆C(σS, i) =

∑
i∈N

[C(σ0, i) − C(σS, i)]

=

∑
i∈N

IS∑
k=1

(C(σk−1, i) − C(σk, i))

=

IS∑
k=1

∑
i∈N

(C(σk−1, i) − C(σk, i))

=

IS∑
k=1

g(τk, σk−1, ik, jk). □

The second lemma shows that in a feasible permutation pro-
cess for N , the total gains of players in S are not less than v(S).

Lemma 2. Let (N, σ0, p, a) be an LE sequencing situation and (N, v)
the corresponding LE sequencing game. If ρ ∈ P(σ0, σN ) is a feasible
permutation procedure computed by Γ , then for any S ∈ con(σ0)∑
k=1,...,IN
ik,jk∈S

g(τk, σk−1, ik, jk) ≥ v(S).

Proof. Let ρ ′
= {τ ′

1, . . . , τ
′

IS
} be a feasible permutation process

by adopting procedure Γ for coalition S. Let τ ′

k(σ
′

k−1) = σ ′

k
for any 1 ≤ k ≤ IS and σ0 = σ ′

0. For every τ ′

k ∈ ρ ′, the
associated exchange players are denoted i′k and j′k. Then according
to Lemma 1, we have

v(S) =

IS∑
k=1

g(τ ′

k, σ
′

k−1, i
′

k, j
′

k).

So, we are done if we can show that∑
k=1,...,IN
ik,jk∈S

g(τk, σk−1, ik, jk) ≥

IS∑
k=1

g(τ ′

k, σ
′

k−1, i
′

k, j
′

k). (4)

Intuitively, this inequality should hold: First, every fixed inverted
pair i, j ∈ S appears exactly once in each of the two sums. Second,
since at the moment that we do an adjacent exchange of a fixed
inverted pair i, j ∈ S, due to the procedure Γ , the position at
which that exchange happens in ρ can only be earlier than in ρ ′.
Remembering (2), this yields the claim.

More formally, let i, j be a fixed inverted pair of jobs in S. Note
that pi > pj. Let k be the iteration in ρ so that ik = i, jk = j, and
let k′ be the corresponding iteration in ρ ′ so that i′k = i, j′k = j.
Define sets U ′, M ′, D′ and U as follows

U ′
= P(σ0, i) ∩ {z ∈ S | pz > pi},

M ′
= P(σ0, j) ∩ F (σ0, i) ∩ {z ∈ S | pz ≥ pi},

D′
= P(σ0, j) ∩ F (σ0, i) ∩ {z ∈ S | pz < pi}.

U = P(σ0, i) ∩ {z ∈ N | pz > pi},

Then by definition of procedure Γ , in σ ′

k′−1, all jobs in U ′
∪M ′

must be in positions later than j. Moreover, all jobs in D′ must be
in positions before i. Hence, we conclude that

σ ′

k′−1(i) = σ0(i) + |D′
| − |U ′

|.
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Likewise, we have that

σk−1(i) = σ0(i) + |D′
| − |U |.

Since U ′
⊆ U , it follows that σk−1(i) ≤ σ ′

k′−1(i). Recalling (2), we
conclude

g(τk, σk−1, i, j) ≥ g(τ ′

k′ , σ
′

k′−1, i, j).

Inequality (4) now follows, since each inverted pair i, j ∈ S
appears exactly once in both of the sums of (4). □

As promised, we now show that the Γ -rule yields a core
element for any LE sequencing game (N, v).

Theorem 4. Let (N, σ0, p, a) be an LE sequencing situation and
(N, v) the corresponding LE sequencing game. Then the Γ -rule gives
a core element of (N, v).

Proof. Let again ρ = {τ1, τ2, . . . , τIN } be the permutation process
derived from Γ . Note that∑
i∈N

Γi(N, σ0, p, a) =

∑
i∈N

1
2

IN∑
k=1

g(τk, σk−1, ik, jk)δi(ik, jk)

=

IN∑
k=1

g(τk, σk−1, ik, jk)

= v(N),

where the third equality follows from Lemma 1. For any S ∈

con(σ0),∑
i∈S

Γi(N, σ0, p, a) =

∑
i∈S

1
2

IN∑
k=1

g(τk, σk−1, ik, jk)δi(ik, jk)

≥

∑
i∈S

1
2

∑
k=1···IN
ik,jk∈S

g(τk, σk−1, ik, jk)δi(ik, jk)

=

∑
k=1···IN
ik,jk∈S

g(τk, σk−1, ik, jk)

≥ v(S) ,

the last inequality following from Lemma 2. From σ0-component
additivity, we finally conclude Γ (N, σ0, p, a) ∈ C(N, v). □

4.3. A characterization of the Γ -rule

Generally spoken, an allocation rule φ assigns to each LE
sequencing game an allocation x ∈ Rn. We now aim at charac-
terizing the Γ -rule in terms of (more or less) natural properties
imposed on φ. To that end, for given (N, σ0, p, a), denote the set
of successors of a player’s job i with smaller nominal processing
time than that of player i, by D(σ0, i), i.e., D(σ0, i) := F (σ0, i) ∩

{j | pj < pi}. Player i is a D-equivalence player with respect to
LE sequencing situations (N, σ0, p, a), (N, σ1, p, a) if F (σ0, i) =

F (σ1, i), and for any k, l ∈ D(σ0, i), σ0(k) < σ0(l) implies σ1(k) <

σ1(l). We say that an inverted pair (i, j) is a head pair with respect
to (N, σ0, p, a) if σ0(i) = σ0(j)−1 and for any k ∈ P(σ0, i), pk ≤ pi.
Consider the following properties.

• D-equivalence: Let (N, σ0, p, a), (N, σ1, p, a) be two LE se-
quencing situations. If some player i ∈ N is a D-equivalence
player with respect to these two LE sequencing situations,
then φi(N, σ0, p, a) = φi(N, σ1, p, a).

• Head switch property: Let (N, σ0, p, a), (N, σ1, p, a) be two
LE sequencing situations and i, j ∈ N be such that σ0(i) =

σ0(j) − 1, σ1(i) = σ0(j), σ1(j) = σ0(i) and σ1(k) = σ0(k)

for any k ∈ N\{i, j}. If (i, j) is a head pair with respect to
(N, σ0, p, a), then

φi(N, σ1, p, a) − φi(N, σ0, p, a)
= φj(N, σ1, p, a) − φj(N, σ0, p, a).

These two properties are the variations of equivalence and
switch property introduced by [9] for characterizing the EGS rule.
In the next theorem we show that the Γ -rule satisfies efficiency,
the dummy property, D-equivalence and the head switch prop-
erty. Since the proof of the characterization of the Γ -rule is along
the same line as that of the corresponding result of [9] for the EGS
rule, we relegate it to the supplement.

Theorem 5. The Γ -rule is the unique allocation rule for LE
sequencing situations that satisfies efficiency, the dummy property,
D-equivalence and the head switch property.

4.4. Relationships between the Γ -rule and the β-rule

Let (N, v) be a cooperative game and σ0 an initial order of
players. The β-rule is defined as follows [9]:

βi(v) =
1
2

[
v(P̄(σ0, i)) − v(P(σ0, i)) + v(F̄ (σ0, i)) − v(F (σ0, i))

]
,

for all i ∈ N . [9] showed that if (N, v) is σ0-component additive,
then the β-rule is in the core of (N, v).

Since the LE sequencing game (N, v) is σ0-component additive,
we can deduce that β(v) must be in the core of (N, v). Since
the Γ -rule gives a core element of (N, v), too, we next discuss
the relationships between these two allocation rules. The follow-
ing theorem provides two conditions for the coincidence of the
Γ -rule and the β-rule.

Theorem 6. Let (N, σ0, p, a) be an LE sequencing situation and
(N, v) the corresponding LE sequencing game.

(i) When a = 0, Γ (N, σ0, p, a) = β(v).
(ii) When a < 0, Γ (N, σ0, p, a) = β(v) if and only if there are

no three players i, j, k ∈ N satisfying σ0(i) < σ0(j) < σ0(k)
and pi > pj > pk.

Proof. (i) Obviously, the LE sequencing games coincide with the
sequencing games defined by [7] and all LE-EGS rules coincide
with the EGS rule when a = 0. Since [8] have shown that the EGS
rule is equivalent to the β-rule in sequencing games, the result
follows.

(ii) We first give another, equivalent formulation of the Γ -
rule. Let (N, σ0, p, a) be an LE sequencing situation. Define g r

ij as
the total cost savings generated from the adjacent exchange of
players i, j with σ0(i) = σ0(j) − 1 and σ0(i) = r . For player i ∈ N
fixed, let

U(σ0, i) := P(σ0, i) ∩ {k | pk > pi} = {u1, . . . , uh1}

with pu1 ≥ · · · ≥ puh1 and

D(σ0, i) = F (σ0, i) ∩ {j | pj < pi} = {d1, . . . , dh2}

with σ0(d1) < · · · < σ0(dh2 ). We claim that, due to the definition
of the Γ -rule, Γi can then be expressed in the following way:

Γi(N, σ0, p, a) =
1
2

( h1∑
m=1

g r−m
um i +

h2∑
m=1

g r−h1+m−1
idm

)
, (5)

for all i ∈ N . To see why, recall how Γ is defined, and observe that
for any 1 ≤ m ≤ h1, jobs um and i cannot become adjacent before
u1, . . . , um−1 have moved to positions behind i. Hence, um is
exactly in position (r −m) when the adjacent exchange of um and
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i takes place. This continues until uh1 is on a position somewhere
behind i. Consequently, i will be in positions r −h1, r −h1 +1, . . . ,
r − h1 + h2 − 1 when the adjacent exchanges with d1, d2, . . . , dh2
take place. After i and dh2 have exchanged their positions, i will
remain at its position. Observe that the order in which jobs
U(σ0, i) exchange with i, only depends on the (nominal) sizes
of u1, . . . , uh1 , while the order in which i exchanges with jobs
D(σ0, i), only depends on the order of d1, . . . , dh2 in σ0.

For any three orders σ1, σ2, σ3 ∈ ΠN , any ρ1 = {τ1, . . . , τm} ∈

P(σ1, σ2) and ρ2 = {τ ′

1, . . . , τ
′

k} ∈ P(σ2, σ3), we define the
connection of ρ1 and ρ2 by

ρ1 ▷ ρ2 = {τ1, . . . , τm, τ ′

1, . . . , τ
′

k}.

Clearly, ρ1 ▷ ρ2(σ1) = σ3..
(if). Fix any i ∈ N , and assume σ0(i) = r . Recall the above

definitions of U(σ0, i) and D(σ0, i). For convenience, we denote
P(σ0, i), P̄(σ0, i), F (σ0, i), and F̄ (σ0, i) by Pi, P̄i, Fi, and F̄i.

Case 1: Suppose that U(σ0, i) = ∅. Let τm be the adjacent
exchange for players i and dm with i being at the (r + m − 1)-
th position, where 1 ≤ m ≤ h2. Since there are no three players
i, j, k ∈ N satisfying σ0(i) < σ0(j) < σ0(k) and pi > pj > pk,
it follows that pd1 ≤ · · · ≤ pdh2 . Then we must have for any
ρ ∈ P(σ0, σFi ), ρ ▷ {τ1, . . . , τh2} ∈ P(σ0, σF̄i ). From Lemma 1,
it holds that

v(F̄i) − v(Fi) =

h2∑
m=1

g(τm, σm, i, dm) =

h2∑
m=1

g r+m−1
idm , (6)

where σ1 = σFi . Furthermore, since U(σ0, i) = ∅, we have that

v(P̄i) − v(Pi) = 0. (7)

It follows from (5)–(7) that

βi(v) =
1
2

[
v(P̄i) − v(Pi) + v(F̄i) − v(Fi)

]
=

1
2

h2∑
m=1

g r+m−1
idm

= Γi(N, σ0, p, a).

Case 2: Suppose that U(σ0, i) ̸= ∅. Then there is at least one player
in P(σ0, i) whose nominal processing time is larger than pi. Since
there are no three players i, j, k ∈ N satisfying σ0(i) < σ0(j) <
σ0(k) and pi > pj > pk, we must have that D(σ0, i) = ∅. Clearly, it
follows that

v(F̄i) − v(Fi) = 0. (8)

Let τm be the adjacent exchange for players um and i with i being
at the (r − m + 1)-th position, where 1 ≤ m ≤ h1. Then for any
ρ ∈ P(σ0, σPi ), we must have ρ▷{τ1, . . . , τh1} ∈ P(σ0, σP̄i ). From
Lemma 1, it holds that

v(P̄i) − v(Pi) =

h1∑
m=1

g(τm, σm, um, i) =

h1∑
m=1

g r−m
um i , (9)

where σ1 = σPi . Then it follows from (5), (8) and (9) that

βi(v) =
1
2

[
v(P̄i) − v(Pi) + v(F̄i) − v(Fi)

]
=

1
2

h1∑
m=1

g r−m
um i

= Γi(N, σ0, p, a).

(only if). We prove this part by contradiction. Suppose that
Γ (N, σ0, p, a) = β(v) and there are three players i, j, k ∈ N
satisfying σ0(i) < σ0(j) < σ0(k) and pi > pj > pk. Define

i∗ = argmin {σ0(i) | ∃j, k ∈ N such that σ0(i) < σ0(j) < σ0(k)
and pi > pj > pk

}
.

It is easy to see that then, U(σ0, i∗) = ∅. Let D(σ0, i∗) =

{d1, . . . , dh2} = {d′

1, . . . , d
′

h2
} be two orderings of D(σ0, i∗) with

σ0(d1) < · · · < σ0(dh2 ) and pd′
1

≤ · · · ≤ pd′
h2
. Assume that i∗ is in

position r∗ in σ0. We first show that
h2∑

m=1

g r∗+m−1
i∗dm <

h2∑
m=1

g r∗+m−1
i∗d′

m
. (10)

What (10) expresses is that the benefits of successive adjacent
exchanges of i∗ with jobs in D(σ0, i∗) is larger, if the jobs in
D(σ0, i∗) are ordered by nominal processing times (SPT).

To prove (10), it suffices to show that the two successive
adjacent exchanges (i∗, k) and (i∗, j) (in this order) are better than
(i∗, j) and (i∗, k), whenever pj > pk. Formally, this is expressed by

g r
i∗j + g r+1

i∗k < g r
i∗k + g r+1

i∗j for any r∗
≤ r ≤ n − 1. (11)

But this is true, as

g r
i∗k − g r

i∗j + g r+1
i∗j − g r+1

i∗k = θ (r)(pi∗ − pk) − θ (r)(pi∗ − pj)

+ θ (r + 1)(pi∗ − pj)
− θ (r + 1)(pi∗ − pk)

= θ (r)(pj − pk) + θ (r + 1)(pk − pj)
= [θ (r) − θ (r + 1)](pj − pk)
> 0,

where θ (r) is defined in (3). Note that the inequality in (10)
is strict, because of the choice of i∗, and since this implies the
existence of j, k with σ0(i∗) < σ0(j) < σ0(k) and pi∗ > pj > pk.

Therefore, (11) holds, and it follows that (10) holds. Let τm
be the adjacent exchange for players i∗ and d′

m with i∗ being at
the (r + m − 1)-th position, where 1 ≤ m ≤ h2. Then for any
ρ ∈ P(σ0, σFi∗ ), ρ ▷ {τ1, . . . , τh2} ∈ P(σ0, σF̄i∗

). Similar to (6), we
have

v(F̄i∗ ) − v(Fi∗ ) =

h2∑
m=1

g(τm, σm, i∗, d′

m) =

h2∑
m=1

g r∗+m−1
i∗d′

m
,

where σ1 = σFi∗ . Since U(σ0, i∗) = ∅, we have that

v(P̄i∗ ) − v(Pi∗ ) = 0.

Thus,

βi∗ (v) =
1
2

[
v(P̄i∗ ) − v(Pi∗ ) + v(F̄i∗ ) − v(Fi∗ )

]
=

1
2

h2∑
m=1

g r∗+m−1
i∗d′

m
.

From (5), we have that

Γi∗ (N, σ0, p, a) =
1
2

h2∑
m=1

g r∗+m−1
i∗dm .

Then it follows from (10) that βi∗ (v) > Γi∗ (N, σ0, p, a), a
contradiction. □

We can immediately conclude the following corollary from (9)
in the proof of Theorem 6.

Corollary 1. For LE sequencing situation (N, σ0, p, a), let (N, v) be
the corresponding LE sequencing game and in = σ−1

0 (n) be the last
player in σ0. Then Γin (N, σ0, p, a) = βin (v).

5. Final remarks

One of the limitations of this paper is the restriction of the
sequencing model to learning indices and cost functions which
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are identical for all players. We briefly discuss extensions of the
model to these more general cases.

First, assume different players have different learning indices
(but identical cost functions). That is, any player i ∈ N will
have her own learning index ai. We can define an LEα sequencing
situation by a 4-tuple (N, σ0, p, ā), where ā = (ai)i∈N ∈ Rn

≤0. Then
the corresponding LEa sequencing game (N, uλ) can be defined by
letting, for all S ⊆ N ,

uλ(S) = max
σ∈ΠS

{
c ′

σ0
(S) − c ′

σ (S) + λ(S)
[
c ′

σ0
(N\S) − c ′

σ (N\S)
]}

.

where c ′
σ (S) =

∑
i∈S
∑

σ0(j)≤σ0(i)
σ0(i)aipi. [16] showed that the

problem of finding the optimal order for the LEα sequencing sit-
uation can be solved in O(n3) by formulating it as an assignment
problem. By applying the same method, we can also prove that
the optimal order for obtaining uλ(S) can be found in polynomial
time. Thus, uλ(S) for any S is well-defined. Let (N, u) be the LEα

sequencing game with the share function λ satisfying for S ⊆ N ,
λ(S) = 1. One can easily verify that (N, u) is σ0-component
additive, and thus any corresponding LEa sequencing game is
balanced and has a non-empty core. However, it is not clear how
to extend the EGS rule to LEα sequencing situations, since there
is no fixed principle for the optimal order.

Second, consider the possibility to allow different players to
have different cost coefficients but identical learning indices. An
LEα sequencing situation is then described by a 5-tuple (N, σ0, α,

p, a), where α is a vector of cost coefficients, i.e., α = (αi)i∈N ∈

Rn
≥0. That is to say, the cost of player i ∈ N is now αiC(σ , i).

Analogous to the definition of LE sequencing games, we can
define the corresponding LEα sequencing game (N, wλ) by letting,
for all S ⊆ N ,

wλ(S) = max
σ∈ΠS

{
c∗

σ0
(S) − c∗

σ (S) + λ(S)
[
c∗

σ0
(N\S) − c∗

σ (N\S)
]}

,

where c∗
σ (S) =

∑
i∈S αi

∑
σ0(j)≤σ0(i)

σ0(i)api.
However, finding an optimal order for minimizing the total

costs of all players in an LEα sequencing situation may be NP-
hard in general, in which case there is not much hope to find
a closed form for working with wλ(S). One way to circumvent
this problem is to restrict to LEα sequencing situations with
agreeable weights, which says that for any i, j ∈ N , pi ≤ pj
implies αi ≥ αj. [18] showed that the total costs of all players
in an LEα sequencing situation with agreeable weights can be
minimized by the WSPT rule (weighted shortest processing time
first, i.e., sequence jobs in non-decreasing order of pi/αi). In this
case, one can work with closed form expressions for wλ(S), like
in the present paper. However, the agreeability condition is quite
strong. Further work is needed to get results for more general
settings.
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