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Abstract: Applicability of satellite rainfall products must be explored since rain gauge networks have limitations to provide adequate spatial
coverage. In this study, Climate Hazards InfraRed Precipitation (CHIRP) satellite-only product was evaluated for rainfall-runoff modeling
whereas the simulated runoff served as input to simulate the water levels of Lake Ziway from 1986 to 2014. CHIRP dataset was bias-corrected
using power transformation and used as input to Hydrologiska Byrans Vattenbalansavdelning (HBV) model to simulate streamflow of Meki
and Katar catchments. Results showed that gauged catchments of Meki and Katar contributed 524 and 855 mm to the annual lake inflow,
respectively. The estimated runoff from ungauged catchments is 182 mm that amounts to approximately 8.5% of the total lake inflow over
the period 1986-2000. The results of lake level simulation show good agreement from 1986 to 2000, but deteriorating agreement after
2000, which is mainly attributed to errors in water balance terms and human-induced impacts. For the period 1986-2000, the water
balance closure error for the lake was 67.5 mm per year, which accounts for 2.9% of the total lake inflow from rainfall and river inflow.
This study shows bias correction increases the applicability of CHIRP satellite product for lake water balance studies. DOI: 10.1061/(ASCE)
HE.1943-5584.0001965. © 2020 American Society of Civil Engineers.
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Introduction

Accurate rainfall data at high spatial and temporal resolution is
highly desirable for rainfall-runoff modeling. However, consistent
rainfall measurements are not available or readily accessible in
many less developed countries like Ethiopia (Ashenafi and Hailu
2014). Satellite rainfall products may complement rain gauge
data. Therefore, satellite rainfall estimation algorithms are exten-
sively being explored to produce reliable and accurate satellite
rainfall estimates (SREs) that are meaningful for hydrological
assessments. Evaluation studies on the accuracy of SREs show
that estimates are subjected to systematic and random errors (Haile
et al. 2013; Fuka et al. 2014; Habib et al. 2014; Bhatti et al. 2016).
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Hence, the systematic error (bias) should be removed before
the products can be used for hydrological and water resources
applications.

Satellite rainfall products have become available over the past
decades at global coverage. Examples are the Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA; Huffman et al. 2007), Climate Prediction Center (CPC)
morphing technique (CMORPH; Joyce et al. 2004), Precipitation
from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN; Sorooshian et al. 2000), and Climate Hazards
Group (CHG) InfraRed Precipitation (CHIRP; Funk et al. 2015).
Comparison studies have shown that the performance of these
products varies considerably across geographic locations and over
time periods.

Bias correction of satellite rainfall is advantageous as reported
in recent studies. Krakauer et al. (2013) indicated that bias correc-
tion increases the match between rainfall amounts from satellite
products and rain gauge records. Yuan et al. (2017) reported that
the application of bias-corrected satellite rainfall product in runoff
modeling resulted in substantial improvements in capturing both
runoff volume and hydrograph pattern. Yong et al. (2014) found
the use of bias-corrected rainfall product as model input instead
of uncorrected products revealed better performance on rainfall-
runoff simulation. Similar results were also reported by others
(Ebert et al. 2007; Habib et al. 2014; Dembélé and Zwart 2016;
Worqlul et al. 2018).

Subject to availability of products, studies have used products
mostly at an application period of 10 years or shorter. Some satellite
rainfall products are available for time periods longer than 10 years.
Among these products, the CHIRP satellite-only product and
CHIRP combined with stations observations (CHIRPS) are avail-
able at relatively high space-time resolutions (5.5 km, daily) (Funk
et al. 2014, 2015).
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Several recent studies have investigated the accuracy of
CHIRP and CHIRPS products across the world. For instance,
Le and Pricope (2017) demonstrated the applicability of CHIRPS
product for streamflow simulation over Nzoia basin, Western
Kenya. The authors reported that the use of CHIRPS data as input
into the hydrological model significantly improved streamflow
simulation compared to rainfall from gauge observations. However,
such results might be attributed to poor quality and inadequate rain
gauge data coverage over the study area.

Duan et al. (2016) showed that CHIRPS performed better
compared to eight high-resolution satellite rainfall products over
Adiga basin (Ttaly). Hessels (2015) compared 10 satellite rainfall
products over the Nile basin. Their findings suggest that CHIRPS
is suited for water resources assessment studies. Dinku et al. (2018)
evaluated CHIRP and CHIRPS satellite products and compared
them against other two satellite products [i.e., ARC2 (African
Rainfall Climatology V2) and TAMSAT (Tropical Application of
Meteorology using SATellite)]. Authors reported that both CHIRP
and CHIRPS products better performed than ARC2 and TAMSAT
at decadal and monthly time scales.

Khandu et al. (2015) reported CHIRP performed relatively bet-
ter in flat regions with elevation ranges from 150 to 1,500 m.a.s.1l.
Similarly, Shrestha et al. (2017) showed that CHIRP satellite-only
product was found to better perform at lower elevation regions of
Koshi basin in Nepal than CHIRPS product. Furthermore, studies
indicated that products are also subjected to substantial biases. For
instance, CHIRP underestimated the observed rainfall magnitude by
200-240 mm per month over Bhutan (Khandu et al. 2015). Their
results also showed the bias correction of the CHIRP satellite sig-
nificantly improved the accuracy of the products.

In Ethiopia, previous evaluation of satellite products for runoff
simulation mostly focuses on the upper Blue Nile and Awash basin
(Haile et al. 2013; Habib et al. 2014; Gebere et al. 2015). Similar
studies are lacking over Central Rift Valley (CRV) lakes basin of
Ethiopia for application in hydrological and water resources man-
agement. Dinku et al. (2014) reported that CHIRP satellite-only
product better performed than CHIRPS over Ethiopia. Similar
findings are reported in studies for the upper Blue Nile basin of
Ethiopia (Ayehu et al. 2018). However, there is no study that dem-
onstrated the applicability of CHIRP in data-scarce regions like
Lake Ziway in Ethiopia with the objective to simulate lake water
levels by lake water balance assessment. Therefore, the main ob-
jective of this study is to simulate river inflow and lake level using
bias-corrected CHIRP satellite-only rainfall product. CHIRP will
be used at daily temporal and 0.05° x 0.05° spatial resolutions for
the period 1984-2014.

To address the main objectives of this study, i.e., to simulate lake
level and the lake water balance, long-term rainfall data series is
needed. By lack of sufficient rain gauge data we selected CHIRP
satellite rainfall products to complement and complete rainfall time
series data. CHIRP data has the longest time series that goes back to
1981 and still is made available until near present time. An advan-
tage of using CHIRP in this study is its fine spatial resolution
(0.05° x 0.05°) than other products (Dinku et al. 2014; Khandu
et al. 2015; Shrestha et al. 2017). In addition, previous intercom-
parison and performance assessment of satellite products have
shown that CHIRP product better performed in different regions
as compared to other satellite products. Furthermore, CHIRP uses
thermal infrared (TIR) data, which provide consistent time series
data. Hence, in this study we selected to use CHIRP satellite-only
rainfall estimate. The study area is Lake Ziway in the CRV Lake
basin of Ethiopia. As such, this study will contribute to the appli-
cability of CHIRP satellite product for estimating lake balance and
lake level simulation in data-scarce regions.

© ASCE

05020024-2

Study Area

Lake Ziway subbasin is located in the CRV Lakes basin of
Ethiopia. The subbasin has a total surface area of 7,022 km?, of
which the land surface covers 6,572.5 km?. Lake Ziway is the high-
est of a chain of four lakes in the CRV basin with a surface area
covering 445 km? and an island area of 4.5 km?. The lake subbasin
is situated between latitudes of 7°25'30"-8°34'30"N and longitudes
of 38°12'00"-39°15'00"E (Fig. 1).

The topography of the sub basin is characterized by mountain-
ous terrain over eastern and western margins, with an elevation
variation from 4,200 to 1,600 m.a.s.] (Fig. 1). According to a
bathymetric map of 2013, the maximum and average depth of
the lake was 8 and 3 m, respectively, with an average volume
of 1,148 Million Cubic Meter (MCM) at an average elevation
of 1,636 m.a.s.l. The lake level rises during the rainy season
(July to September) with highest levels in October, at the end
of rainy season. Lowest water levels occur in December through
March.

Meki and Katar catchments, which drain the western and eastern
plateaus, respectively, provide a major inflow to Lake Ziway. The
two catchments cover a total gauged area of 5,783 km?2, with an
ungauged catchment area of 785 km?. The lake outflow drains to-
ward Lake Abijata via Bulbula River and is monitored at Kekersitu
gauge station.

The mean annual temperature of the lake ranges from 18.2°C to
21.6°C, with tropical climate. The average annual rainfall of Lake
Ziway varies between 454 and 995 mm as estimated for the period
1984-2014, while annual lake evaporation during the same period
ranges from 1,775 to 1,969 mm. The average annual rainfall and
evaporation from the lake is 746 and 1,870 mm, respectively for
the specified period. The major land uses in the subbasin includes
intensive agriculture cultivation land (both rain-fed and irrigated),
wetland, and water bodies. Fig. 1 indicates the location of the study
area including elevation variation, meteorological, and river gauge
stations.

Datasets: Observed Data

Daily meteorological data from 20 rain gauge stations were
obtained from the National Meteorological Agency (NMA) of
Ethiopia. The data covers the period from 1984 to 2014. The data-
set includes rainfall, maximum and minimum temperature, wind
speed, relative humidity, and sunshine duration.

In this study, the quality of the observed rainfall was assessed
using outlier, homogeneity, stationary, and consistency tests. The
analysis showed that rainfall data of only 14 ground stations (6 for
Meki and 8 for Katar catchments) were found complete and con-
sistent for use in this study. After screening about 26% of missing
records were identified. Missed data were filled using arithmetic
and normal ratio methods mainly for potential evaporation estima-
tion. For bias correction of the satellite product, only the available
rainfall data of the selected stations were used while days with
missing records were ignored.

The Ministry of Water, Irrigation, and Electricity (MoWiE) of
Ethiopia provided the lake water level (at Ziway station), stream-
flow data at five stations (Meki at Meki town, Katar at Abura and
Sagure, and Chiufa at Arata and Timala near Sagure), and lake out-
flow discharge (Kekersitu station at Bulbula River) (Fig. 1). Daily
observations of water level and streamflow were made available to
us for the period 1984-2014. Stations of small tributaries (such as
Sagure, Chiufa, and Timala) had short records, and hence data from
those stations were not considered.
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Fig. 1. Location map of Lake Ziway subbasin, including elevation, meteorological, lake level, and river gauge stations.

Digital Elevation Model (DEM) of advanced space-borne ther-
mal emission and reflection (ASTER) radiometer global digital
elevation model version 2 (GDEM V2) was downloaded from a
freely available data source (https://lpdaac.usg.gov.dataaccess).
The DEM has a spatial resolution of 30 x 30 m and was used
to delineate the watershed. Land use/land cover data was obtained
from MoWiE for the year 1992 and 1996. MoWiE also provided
the lake bathymetric data of 1984 and 2013 and are used in
this study.

Satellite Rainfall Product

CHIRP data is a near real-time product which is available since
1981 up to the present time. The data covers the region that is
situated between 50°S and 50°N latitude and all longitudes (Funk
et al. 2014, 2015).

CHIRP estimates precipitation data in two stages based on
two global geosynchronous TIR archives i.e., the 1981-2008 glob-
ally gridded satellite from National Oceanic and Atmospheric
Administration (NOAA) and the 2000-present NOAA CPC data-
set. First, optimal temperature threshold for Cold Cloud Duration
(CCD) of a given region was defined as a percentage of pentads
(or five-day averages at 0.05° x 0.05°) with respect to their long-
term (1981-2012) climatology. Then, a regression relationship
is developed to translate CCD values into estimates of precipi-
tation depth. This produces CHIRP satellite-only gridded pre-
cipitation dataset. In our study area, the precipitation is only in
the form of rainfall. Thus, this study will use the term rainfall
instead of precipitation. The CHIRP rainfall satellite data can
be obtained freely from http:chg.geog.uscb.edu/data. Refer to
Funk et al. (2015) for more details about CHIRP satellite rainfall
estimate.
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Methods: Bias Correction of CHIRP Satellite
Product

The accuracy of CHIRP rainfall product was evaluated using gauge
rainfall as a reference. First, a comparison of satellite and gauge
rainfall amounts through visual inspection of scatter plots was per-
formed. Then, performance indicators of relative bias (BIAS) and
mean error (ME) were estimated to evaluate bias of CHIRP satellite
estimates at monthly average time scale. For a more detailed per-
formance assessment of CHIRP satellite product at various spatio-
temporal scales, refer to Goshime et al. (2019).

The ME describes the average difference between satellite es-
timate and rain gauge observations. BIAS represents the systematic
error of the satellite-based rainfall estimate as a percentage of the
observed rainfall. A positive ME and BIAS indicates an overesti-
mation, whereas a negative value indicates underestimation by the
satellite. The ME and BIAS are expressed by

1 n
ME =~ (S; - G; 1
n;( i—Gi) (1)
BIAS :Mx 100% (2)
2.1 G

where G; and §; = rainfall values from gauged-based and satellite
product, respectively; and n = number of rainfall pair time series in
the sample.

In this study, a nonlinear power transformation bias correction
method was applied to remove the systematic error in CHIRP sat-
ellite estimates. For bias correction 14 rain gauge stations were
available after screening. The nonlinear power equation reads

P = aP} (3)
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where P, = bias-corrected CHIRP rainfall amount; P, = uncor-
rected CHIRP rainfall amount; and a and b = bias factors.

The approach was selected as it accounts for the first and second
statistical moment (mean and standard deviation) of rainfall time
series and following (Lafon et al. 2013; Pratama et al. 2018). How-
ever, it is noted that there is no sufficient evidence in the scientific
literature that guide best selection of a bias correction method.
A power transformation bias correction has been applied for satel-
lite rainfall bias correction at various previous studies. For instance,
Leander and Buishand (2007) and Terink et al. (2010) applied
power law for European river basins. The authors reported that
a nonlinear bias correction revealed better performance than com-
monly used linear bias correction method. Gumindoga et al. (2019)
applied power law in comparison with other methods for bias cor-
rection of CMORPH rainfall estimates in the Zambezi River basin.
We also refer to recent studies (Wagesho et al. 2013; Goshime et al.
2019) that applied a nonlinear power bias correction method for the
Rift Valley Lakes basin of Ethiopia. Therefore, we have chosen to
apply a power transformation bias correction method to remove the
systematic errors of the CHIRP satellite estimate.

The bias factors are determined iteratively until the statistics
(mean and coefficient of variation) of the satellite estimates match
with the observed rainfall amount at a monthly time step. First,
daily data of both data sources were arranged for each month over
the period from 1984-2000. Then, the values of a and b were
estimated using the Excel solver function at selected 14 grid pixels
that overlay the locations of the rain gauge stations.

The bias correction algorithm was verified for an independent
period from 2001 to 2007. The verification was conducted to evalu-
ate the applicability of the bias factors outside the bias correction
data periods. The bias-corrected rainfall estimate was compared
against observed rainfall amount using a plot of average monthly
aggregate values for Meki and Katar catchments. The bias factors
were spatially interpolated to other CHIRP grid pixels, which did
not contain rain gauges, using Inverse Distance Weighting (IDW)
method across the watershed. A similar approach was also adopted
by Yong et al. (2010). Finally, the interpolated bias factors (a and b)
were used in Eq. (3) to estimate bias-corrected satellite rainfall data.

HBYV Rainfall-Runoff Modeling

The potential evapotranspiration (PET) was estimated using
Penman-Monteith (Allen et al. 1998) and Hargreaves method
(Hargreaves and Allen 1985) at four principal stations (Ziway,
Kulumsa, Bui, and Merero). To correct for overestimation of
Hargreaves estimate, we established a linear regression relationship
(i.e., y =mx+ c¢) between Penman-Monteith and Hargreaves
values at the four mentioned stations.

The slope of the regression line (c) and its intercepts (m) at the
four stations were transferred to the location of the seven ordinary
stations (recording only temperature and rainfall) using the IDW
method. Next, the error of the PET estimates from the Hargreaves
method was corrected at the seven stations using the estimates of
Penman-Monteith method. The catchment average areal PET was
then computed from 11 stations in the watershed from an estimate
of Penman-Monteith using Theissen polygon, which was then used
as input to the hydrological model. The potential evapotranspira-
tion estimation approach applied in this study is based on the study
of Ayalew (2010) who applied a simplified regional potential
evapotranspiration estimation method for Abbay River basin in
Ethiopia. The author evaluated at 23 selected meteorological
stations based on available maximum and minimum temperature.
The authors reported that the method revealed satisfactory results
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and recommended as alternative approach to estimate PET in un-
gauged areas. Similar work has been done in South Africa by Pike
(1988) and in Tanzania by Moges et al. (2003).

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model
has been widely applied in various countries for runoff simulation,
climate change, and water accounting studies (Bergstrom 1992).
The HBV model was selected due to its performance in simulating
streamflow in a different Ethiopian river basin (Rientjes et al. 2011;
Worqlul et al. 2015). Furthermore, operational and scientific appli-
cations of this model have been reported from more than 50 coun-
tries around the world (Johansson 2013). The HBV model reads
rainfall, temperature, PET, and land cover (forest, field, and water)
as main inputs. Observed streamflow data is used as reference data
for model calibration.

The model consists of four subroutines for precipitation, soil
moisture, runoff routine, and routing routine. Precipitation routine
controls precipitation either to be simulated as snow or rain depend-
ing on a specified temperature threshold value. Precipitation is only
in the form of rainfall in the Lake Ziway subbasin.

The soil moisture controls the formation of runoff (both direct
and indirect). Direct runoff occurs when the simulated soil moisture
(SM) in the soil moisture reservoir exceeds the maximum field
capacity (FC). The indirect runoff in the system is expressed using
power relationship as follows:

SM\ BETA

where R = indirect runoff (mm); /N is water infiltrating amount
(mm); SM is soil moisture storage (mm); and F'C is the field capac-
ity at maximum soil moisture (mm). BETA is a parameter that ac-
counts for a nonlinearity of indirect runoff from the soil layer.

In SM routine, the actual evapotranspiration (E,) equals the
PET when the actual SM exceeds a certain threshold which is
defined by LP. LP is a dimensionless parameter that represents the
limit for potential evaporation. When water is available in the upper
zone, percolation (PERC) will occur to the lower zone at approx-
imately constant rate. PERC represents a constant percolation rate
that occurs when water is available in the upper storage zone.

At runoff routine three parameters such as capillary transport
(Cy) to the SM reservoir, percolation to the baseflow reservoir
and runoff relationships are governed in the model. Capillary trans-
port is determined as a function of maximum SM storage, FC, and
maximum capillary flow (CFLUX), which is a calibrated model
parameter. The relationship reads

(5)

FC—SM
C;=CFLUX x [ ————

Excess water is transformed from the SM zone to runoff. The
summation of runoff from the upper and lower storage zones yields
the total runoff. The runoff from the upper and lower storages
reads:

0,=K,x Uz(l-%—Alfa) (6)

0=KyxLZ (7)

where Q, and Q,; = runoff components from the upper and lower
storage zones, respectively; UZ = actual storage in the upper zone;
LZ = actual storage in the lower zone; and K, and K, = storage
(recession) coefficients in the upper and lower zone, respectively.
Alfa is a measure of the nonlinearity of the flow in the upper stor-
age zone.
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Table 1. Selected model parameters for calibration including their description and plausible range

Parameter Description Unit Minimum Maximum Initial value
Alfa Coefficient for non-linearity of flow — 0 1.5 0.6
BETA Exponent in drainage from soil layer — 1 4 2.5
CFLUX Maximum capillary flow mm 0 2 0.5
FC Field capacity mm 100 1,500 200

K4 Recession coefficient for lower zone d! 0.001 0.1 0.01
Khq Recession coefficient for upper zone d-! 0.005 0.5 0.1

LP Limit for potential evaporation — 0.1 1 0.9
PERC Percolation capacity mmd~! 0.01 6 0.5

We selected eight parameters (Alfa, BETA, CFLUX, FC, LP,
K4, Khq, and PERC) for calibration based on recommendations
in the literature (Wale et al. 2009; Rientjes et al. 2011) and HBV
model documentation. Initial values of these model parameters
were specified based on HBV model documentation (Johansson
2013). In Table 1, selected model parameters and their ranges are
shown. For more detail descriptions of the HBV model reference is
made to Lindstrom et al. (1997) and Johansson (2013).

Model Calibration and Evaluation

Sensitivity analysis was conducted to find the parameters for which
model response is sensitive to aid model calibration. The default
model values of the parameters were used in the model as reference
to decide the sensitive model parameter. Parameter values were
then varied within their allowable range by changing the value of
one parameter at a time by a constant increment. The parameter
for which the model is sensitive was determined based on Nash-
Sutcliffe efficiency (NSE) and relative volume error (RVE) objec-
tive functions following Dessie et al. (2014).

In this study, the HBV model was initialized for the study area
with a two-year warm-up period (1984-1985). The model was then
calibrated for the period 1986 to 1991 using bias-corrected CHIRP
rainfall input. This calibration period was selected since water ab-
straction for this period is limited. The calibration period covered
normal, flood, and dry weather periods so the calibrated model is
considered as representative to simulate lake streamflow inflows.

The model performance was evaluated in terms of visual inspec-
tion of the hydrographs and quantitatively through objective
functions. Two objective functions were used to assess the model
performances which are NSE and RVE. NSE is a measure of a
degree of match between the pattern of simulated and observed
hydrographs. The equation reads

,r'l:] (Q.rim,i - Qohs.i)2
Z?:l (Qobs.i - QObS)2

where Q;,, and Q,;,, = simulated and observed daily streamflow,
respectively (m3s™!') and the overbar symbol denotes the mean of
the statistical values; i = time step; and n = number of days in the
sample. NSE is a dimensionless value, ranges from —oo to 1, a
value of 1 indicates a perfect fit.

RVE measures the average tendency of the simulated runoff
to be larger (overestimation) or smaller (underestimation) than the
observed values. The equation reads

Z?:l(Qsim,i - Qob&i)
Z?:] Qobs,i

RVE ranges between —oo and oo, but the model performs best
when a value of O is generated. A value between —5% and +5%

NSE=1-

(8)

RVE = x 100%

©)
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indicates that a model performs very well while a value between
+5% and +10% indicates that a model has reasonably good
performance.

The performance of the calibrated model was validated using
the rainfall input for the period 1996 to 2000. Again, NSE and
RVE were used to evaluate performance for the validation period.
The streamflow data recorded from 1992 to 1995 was not consid-
ered either for calibration or validation due to incomplete data
records.

Next, three (3) rainfall datasets were constructed, namely gauge,
uncorrected CHIRP, and bias-corrected CHIRP rainfall to evaluate
the effect of bias correction on streamflow simulation. The cali-
brated model parameters from bias-corrected CHIRP satellite rain-
fall inputs were used in all model simulation. Note that parameter
recalibration was not performed for a model with different rainfall
inputs. The simulated streamflows from 1996 to 2000, which is
outside the calibration period for the three datasets, were compared
to observed streamflow as a reference to assess the effect of bias
correction of CHIRP satellite estimates.

Lake Water Balance and Lake Level Simulation

This study followed (Wale et al. 2009; Rientjes et al. 2011) who
assessed water balance closure of Lake Tana, Ethiopia. The inflow
and outflow from all sources were estimated at daily time step and
estimated net inflow at daily time step (t) as follows:

AV

Ap = [(R(1) = E(1))] < A(h) + Qin(1) = Qou 1)

+ Gin(t) = Gou(t) + (1) (10)
where AV /At represents net inflow volume over time (m3d~');
R and E = lake rainfall and evaporation, respectively (md~');
Q,, = lake streamflow inflow (m*> d~'); Q,,,, = lake streamflow out-
flow (m*d™"); G,;, and G,,, = groundwater inflow and outflow,
respectively (m® d~!); A(h) = lake surface area in m” as a function
of water level; and € = closure error in water balance arising from
errors in the data or other terms in (m?d~'). The water balance
closure term is an error term that cannot be accounted for directly,
and hence it is estimated as water balance flux that closes the lake
water balance.

Due to lack of piezometric groundwater data underneath and
around the lake, the groundwater component was ignored in the
water balance as shown in other studies as well (Vallet-Coulomb
et al. 2001; Ayenew 2007; Seyoum et al. 2015; Desta et al. 2017).
These studies argued that significant interaction is unlikely to occur
due to the very shallow nature of the lake with flat topography and
substantial sediment loads of inflowing rivers. As such, we ne-
glected the groundwater contribution in the lake water balance of
this study. Therefore, Eq. (10) is simplified as follows:
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Ay = R0 = E(0)} x Ah) + Qin(1) = Qour(1)] (11)
where all water balance terms have been defined in Eq. (10).

The daily areal rainfall over the lake was estimated from bias-
corrected CHIRP satellite data. The bias correction was applied
according to power transformation between satellite and gauge
rainfall data series as described in preceding section. The water
evaporation from the lake was estimated using the Penman method
(Penman 1948). This method was selected as it combines the
energy balance and water vapor transfer. Its input data includes sur-
face air temperature, relative humidity, wind speed, and sunshine
hours. First, open water evaporation was estimated at three stations
Ziway, Ogolcho, and Arata, which are situated close to the lake.
Then, average lake evaporation was estimated using Thiessen poly-
gon. The surface albedo in this study is assumed 0.06 following
Vallet-Coulomb et al. (2001) for Lake Ziway and Dessie et al.
(2015) for Lake Tana in Ethiopia.

The calibrated HBV model was applied to simulate the stream-
flow over the simulation period 1986-2014 from the gauged area
of the two major tributaries. The ungauged part of the subbasin
accounts for 18% of the total subbasin area. The streamflow con-
tribution from ungauged catchment was estimated using the
area-ratio method. This method was selected due to its simplicity.
Furthermore, only about 38% of Lake Tana is gauged whereas a
large parts of (almost 82%) the Lake Ziway catchment is gauged
at major Meki and Katar Rivers. Therefore, applying other methods
for estimating lake inflow from ungauged areas is intricate by the
lack of river gauging stations that constrain the application of ad-
vanced regionalization applied in Wale et al. (2009) and Rientjes
et al. (2011) for the Lake Tana basin area.

The outflow of Lake Ziway is measured at Kekersitu station
which is situated at the head of Bulbula River. Incomplete records
in lake outflow during the analysis period were filled by using
a regression relationship between lake water level and outflow
discharge. A similar approach was applied in other studies for Lake
Ziway (Vallet-Coulomb et al. 2001), Lake Tana (Kebede et al.
2006), Lake Victoria (Nicholson and Yin 2001), and Lake Malawi
(Kumambala and Ervine 2010). The regression relationship be-
tween water level and outflow discharge reads

Qou = CV(H - I—Iu)‘{f (12)

where Q,,, = simulated lake outflow; H = lake water level; H, =
water level at zero reference datum; and « and /3 = constants. The
parameters « and 3 were estimated from the regression relationship
between the lake level and outflow.

The relationship between lake level and outflow were estab-
lished for a period in which complete data was available for the
period 1987 to 2007. From the relationship, values of 1.73 and 3
were adopted for v and 3, respectively. In this study, a reference
datum level of 1,635 m.a.s.] was used for lake level simulation.

For lake level simulation a spreadsheet water balance model was
developed to simulate the lake volume as follows:

Vlake(t) = Vlake(t_ ]) + AV (13)

where V.. (2) = lake volume at day t; V., (t — 1) = lake volume
at previous day (t — 1); and AV represents net inflow volume as
estimated using Eq. (11).

The updated lake volume was then converted to lake level using
the bathymetric relation between lake level and volume. Finally,
comparison of the match of the simulated lake level was evaluated
by comparing against observed counterparts. Note that in the
present study, human-induced impacts such as water abstraction
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are not considered in the rainfall-runoff and water balance model.
Hence, major deviation of the simulated lake level from observed
lake level was assumed to indicate the magnitude of human-
induced impacts. A number of studies have shown that temporal
variation between the model simulated and observed lake level
can vary as a result of climate change, human activities, or both
(Wang et al. 2010; Peng et al. 2013; Seyoum et al. 2015; Zhou
et al. 2018). Furthermore, reference was made from previous stud-
ies that evaluated the extent of land use and land cover changes
between 1973 and 2014 in the study area (Desta et al. 2017).

Results: Evaluation of CHIRP Satellite Product

The scatter plot between the daily gauge observation and CHIRP
satellite-only estimates are shown in Fig. 2. The data plots are
shown for selected stations covering the period from 1984 to 2007.
The scatter plot demonstrates that there is strong disagreement
between the two data sets. Only a few data points are spread along
the 45° slope line, indicating a poor correlation between the CHIRP
satellite-only product and the rain gauge data. The data points are
mostly below the diagonal line, indicating an underestimation of
observed rainfall.

Several data points are spread along the x-axis, indicating that
CHIRP missed observed rainfall. Rainfall amounts up to 80 mm per
day were missed by CHIRP. Similarly, there are several data points
spread along the y-axis, indicating the satellite product reported
false rains.

Table 2 shows the percentage of relative bias (BIAS) of CHIRP
monthly rainfall at six (6) selected rain gauge stations. The satellite
product has a significant bias, which is time and location specific.
We note that overestimation dominates at Ziway and Ogolcho,
whereas underestimation dominates at Kulumsa and Assela sta-
tions. This phenomenon is presumably related to the location of
the stations at relatively low and high altitude regions, respectively.
Khandu et al. (2015) reported similar results over Bhutan where
CHIRP underestimated over higher elevation regions. Overall,
CHIRP has a large bias that reaches up to 73% at rainy seasons. In
terms of ME, the monthly difference between CHIRP satellite-only
and observed rainfall reaches up to 13 mm. Thus, overall bias is
large which indicates that the uncorrected CHIRP product cannot
serve as input to a rainfall-runoff model. Therefore, bias correction
was applied to improve the accuracy of the product. The bias cor-
rection was first performed using the satellite and gauge data from
1984 to 2000 at 14 selected stations.

Figs. 3(a and b) summarize the monthly aggregate rainfall from
the gauge, CHIRP bias-corrected and uncorrected satellite-only
product for Meki and Katar catchments, respectively. The compar-
isons were performed for the verification period 2001-2007. The
bias-corrected CHIRP estimates captured the pattern of the annual
cycle of the observed rainfall. Overall, this study indicates that
bias correction has significantly minimized the systematic error in
CHIRP rainfall estimates as the bias-corrected and observed rainfall
amounts are equal for bias correction period from 1984 to 2000.
The bias correction successfully reduced the bias of the satellite
data even when validated outside the bias correction period 2001—
2007 (Fig. 3). However, there is still some disagreement between
the bias-corrected and gauge data for the validation period. The
disagreement was during the rainy reason, which is most likely
related to the bias of CHIRP satellite rainfall at seasonal scale. Such
disagreement can be caused by the ineffectiveness of the bias cor-
rection algorithm to capture the difference in rainfall characteristics
in the bias calibration and validation period. Note that the period
2001-2007 was relatively wetter than the period 1984-2000.
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Fig. 2. Scatter plots of daily CHIRP satellite-only rainfall estimates against gauge rainfall at six selected main weather stations from 1984

to 2007.

Table 2. Monthly percentage bias between CHIRP satellite-only versus gauged rainfall from 1984 to 2007

Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Ziway 33.0 17.3 30.2 16.4 —-0.4 0.8 29 222 22.9 26.2 63.7
Meki 10.0 —8.4 2.5 31.9 0.0 0.4 —13.7 2.0 28.0 29.5 35.8
Bui -3.5 —43.2 —2.2 16.7 9.8 -11.9 —11.3 3.5 24.8 60.7 42.4
Ogolcho 30.7 3.5 —12.5 —8.9 6.3 1.3 9.1 68.3 —6.3 —21.2 8.0
Kulumsa —25.3 —30.3 —20.7 —29.2 —31.8 —13.3 73.1 61.3 7.2 —39.3 259
Assela 0.4 —4.4 —23.2 —41.1 —25.1 —17.1 3.0 0.6 -31.0 —48.0 —47.1
200 u Gauge We should therefore be very cautious in using the bias correction
160 = CHIRP Bias Corrected method outside the bias calibration period. As a result, we have
T CHIRP uncorrected recalibrated the parameters of the power law equation for the entire
E 120 period 1984-2014.
&
£ 80
" 40 I I I Model Calibration and Sensitivity
0 B I . H = The result of sensitivity analysis indicated that the HBV model of
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec the study area is most sensitive to volume controlling parameters
(@) Months (FC, BETA, and LP). The shape controlling parameters (K4 and
200 Khq) were found to have less effect on streamflow simulation.
m Gauge Parameters Alfa, CFLUX, and PERC showed to have least effect.
160 ® CHIRP Bias Corrected Similar findings were reported in Dessie et al. (2014) and Worglul
g CHIRP uncorrected et al. (2018) over upper Blue Nile basin in Ethiopia.
S’ 120 In Table 3 the calibrated parameter values of the HBV model for
<€ Meki and Katar catchments are tabulated. Note that the values of all
& parameters are within their allowable ranges as specified in the
40 HBYV manual. Values of K4, Khq, and Alfa are almost equal for the
o [ B l | two catchments. However, most sensitive parameters (FC, BETA,
Jan  Feb Mar Apr May Jun  Jul  Aug Sep Oct Nov Dec and LP) values show a noticeable difference between the two catch-
(b) Months ments. The possible reason for this might be the differences in a

Fig. 3. Comparison of monthly average rainfall amount for CHIRP
bias-corrected, uncorrected (satellite-only), and gauge time series from
2001 to 2007: (a) Meki catchment; and (b) Katar catchment.
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rainfall-runoff relationship as affected by variation in rainfall, topo-
graphic, and physiographic properties among catchments.

Fig. 4 shows a comparison of simulated and observed stream-
flow hydrograph for the calibration period (1986—-1991) for Meki
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Table 3. Calibrated values of HBV model parameters using bias-corrected CHIRP satellite data

Parameter Alfa BETA CFLUX FC K4 Khq LP PERC hq
Unit — — mm mm d-! d-! — mmd~! —
Meki 0.8 1.96 0.010 860 0.10 0.10 0.5 1.15 0.83
Katar 1.1 3.05 0.005 820 0.10 0.12 0.7 2.75 1.13

Streamflow (M 3S71)

Time(days)

Rainfall {mm)

Rainfall (mm)

' =d 100
Jan-gt Jan-2
~—— Observed = Simulated [ Rainfall

Fig. 4. Model calibration result of Meki and Katar catchments (1986—1991) using bias-corrected CHIRP rainfall as model input.

and Katar catchments. The model reasonably captured the pattern
of the observed hydrograph of both catchments. The peak and base-
flow were reasonably captured with the exception of a few high
magnitude peak discharges.

Fig. 5 shows a comparison of the simulated and observed hydro-
graph for the validation period (1996-2000) for Meki and Katar
catchments. There is good agreement between the simulated and
observed hydrographs in terms of pattern, volume, and baseflow.

The HBV model performance is satisfactory when evaluated
quantitatively using NSE and RVE (Table 4). The model perfor-
mance is comparable for Meki and Katar catchments during both
the calibration and validation periods. The NSE values are 0.71 and
0.80 whereas RVE values are —1.47% and —1.28% for Meki and
Katar, respectively, for the calibration period. Note that the model
performance efficiency slightly deteriorated in the validation period
as compared to the calibration period. However, its performance is
still very good for the validation period, indicating that the model
can be applied to study rainfall-runoff relations in both catchments.

Effects of Bias Correction on Streamflow Simulation

The simulated streamflow hydrographs are compared using
gauged, uncorrected, and bias-corrected CHIRP rainfall as model
inputs for Meki catchment (Fig. 6). The outputs of the streamflow
from the three datasets were compared with observed streamflow as
a reference. The model missed some observed peak flows when
rain gauge data were used as model input. There is also a noticeable
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difference between the observed and simulated hydrographs when
uncorrected CHIRP satellite-only rainfall is specified as model in-
put. The hydrographs indicated that the model performance showed
improvement when using bias-corrected CHIRP satellite rainfall as
model input. The pattern and volume of simulated hydrograph were
better matched with the observed counterparts.

Fig. 7 presents the simulated streamflow for Katar catchment
when using gauged, uncorrected, and bias-corrected CHIRP rain-
fall data. The figure demonstrates that the bias-corrected CHIRP
product improved the performance of streamflow simulation. The
values of bias correction are shown for Meki than Katar as the
model performance significantly deteriorated in terms of pattern
and magnitudes (peak and low flows) when uncorrected satellite-
only rainfall served as model input instead of the bias-corrected
rainfall estimates. Overall, the study results indicate that CHIRP
bias propagates to streamflow simulation via the HBV model. From
both plots (Figs. 6 and 7), this study indicated that bias-corrected
CHIRP satellite better captured the volume and pattern of observed
hydrograph than the uncorrected satellite-only dataset.

The simulated hydrograph was also evaluated using values of
the objective function from gauged, uncorrected and bias-corrected
CHIRP satellite as model inputs (Table 5). The results revealed
better performance in terms of NSE and RVE when bias-corrected
CHIRP rainfall data serves as model input. Note that the error of
the uncorrected CHIRP satellite rainfall propagated into the HBV
simulation as this input resulted in 10% more volumetric error in
streamflow compared to the bias-corrected CHIRP satellite for the
validation period.
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Fig. 5. Model validation results of Meki and Katar catchments (1996-2000) using bias-corrected CHIRP rainfall as model input.

Table 4. Performance of HBV model in terms of the objective functions
for the calibration (1986-1991) and validation (1996-2000) periods

Catchment Objective functions Calibration Validation

Meki NSE (-) 0.71 0.67
RVE (%) —1.47 3.84

Katar NSE (-) 0.80 0.76
RVE (%) —1.28 3.04

Lake Level Simulation and Temporal Variation of
Water Balance Components

Fig. 8 presents daily estimate of Lake Ziway water balance com-
ponents for a period from 1986 to 2014. The figure indicated

that variation of climatic seasonality over each water balance com-
ponent. The fluctuation/variability of the observed lake level is
more distinct than the long-term gradual change. The level reduced
for the period from 2000 to 2005 and recovered afterwards. We
note that the year 1995, 2002, 2005, and 2011 was relatively a drier
year both in terms of rainfall and discharge. It is plausible that the
lower lake levels in 2000 to 2005 are the result of relatively lower
river inflows being drier years. The decrease of the water levels in
Lake Ziway would also imply that less water is being discharged
into the Bulbula River. As it expected there is a direct relation be-
tween the water level and the outflow into the Bulbula River. In
years with relatively low lake levels (2002 to 2005 and 2009)
the outflow has also been low and decreased dramatically.

After determining the daily water balance terms, Eq. (13) was
used to simulate changes in lake volume by the net inflow volume.

Meki 100
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) —Gauge Simulated  _
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C o 1 e .MM
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Fig. 6. Comparison of observed and simulated streamflow hydrograph for Meki catchment from 1996 to 2000 based on Gauge, CHIRP uncorrected,

and CHIRP bias-corrected rainfall inputs.
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Fig. 7. Comparison of observed and simulated streamflow hydrograph for Katar catchment from 1996 to 2000 based on Gauge rainfall, CHIRP

uncorrected, and CHIRP bias-corrected rainfall inputs.

Table 5. Comparison of model objective functions between the simulated
(based on gauge-only, uncorrected, and bias-corrected CHIRP dataset) to
observed streamflow

Objective CHIRP CHIRP bias
Catchment function Gauge uncorrected corrected
Meki NSE (-) 0.65 0.60 0.67

RVE (%) 3.56 14.2 3.84
Katar NSE (-) 0.70 0.64 0.76

RVE (%) 291 12.8 3.04

The updated lake volume was transformed into a new lake level
using area-elevation-storage relationships. The simulated lake lev-
els were compared with observed lake levels. Fig. 9 shows a time
series of simulated and observed lake level on a daily time scale
from 1986 to 2014.

The simulated lake water level shows a better agreement with
the observed water level from 1986 to 2000. However, the deviation
between the two water levels continuously increased from 2000
onwards. The observed lake level declined while the simulated
level increases for the period 2001-2014. This could be most
likely attributed to an error in any of the water balance terms and
human-induced activities that cannot be represented in model
simulation. According to (Seyoum et al. 2015), human-induced ac-
tivities mostly apply for the period 2001-2014. Furthermore, the
uncertainties related to bias correction of the satellite, lake inputs
obtained by the HBV model, lake outflow obtained by water level-
flow relationships, and overall the cumulative impact might con-
tribute the disagreement between the simulated and observed lake
level.

We also refer to Desta et al. (2017) who evaluated the extent of
land cover changes (conversion of woodlands into agricultural
lands and settlement areas) for the period 1973-2014 in Lake
Ziway catchment areas. Authors reported that agricultural lands
and settlement areas together increased from 57% in 1973 to 75%
in 2014 of the total area. As such impact could contribute to a
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mismatch between observed and simulated lake levels. Overall,
on average 0.90 m annual decline of simulated water level was re-
vealed in the simulation period 2001-2014. The daily maximum
simulated water level deviated from the observed level by up to
2.28 m for both 2013 and 2014 period.

The bias-corrected CHIRP satellite estimates account for an
average annual lake rainfall of 755 mmyear~! for the period
1986-2014. The average annual evaporation of the lake is esti-
mated at 1,875 mmyear~! for the same period. In Table 6 the
summary of Lake Ziway water balance components for the period
1986-2014 are shown. Evaporation from the lake is considerably
larger as it is 2.5 times the rainfall amount over the lake. The
gauged catchment contributes 1,404 mm year~! to the lake inflow
whereas the ungauged catchment contribution is 184 mm year™!
which constitutes 8.6% of the total lake inflow from rainfall and
river inflow. Lake Ziway outflow is 386 mm year~! which consti-
tutes 16.5% of the total lake inflow. Overall, the closure term in
this study over the simulation period 19862014 indicates a water
balance error of 82 mm year™' that accounts for 3.5% of the total
lake inflow from rainfall and river inflow.

Fig. 10 presents the monthly average simulated water balance
components of Lake Ziway from 1986 to 2000 (baseline condi-
tion). The plot indicates that lake inflows (rainfall and river inflow)
mostly occur during the wet season (i.e., June—October), with the
highest inflow in August. Lowest contribution to the inflow occurs
for four months (November—February). The lake outflow due to
evaporation was greater than the river outflow. The larger outflow
through Bulbula River occurs from September to January while
lower river outflow occurs from February to July.

Table 7 shows the mean monthly and annual water level fluc-
tuation for 2013 and 2014. The result indicates a maximum mean
monthly variation of 2.04 m in 2013 (August) and 2.24 m in 2014
(July) during the rainy season. The deviation is small between
September and December. The average annual water level variation
is 1.78 m and 1.97 m in 2013 and 2014, respectively.

Fig. 11 shows the deviation of the simulated lake volume from
observed volume for the period 2001-2014. The difference in lake
volume increased with time except for 2007, which was a drought
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Table 6. Lake Ziway water balance components simulated for the

1984-2014 period

year in the study area. The rate of increase was highest in 2012 and
2013. The highest average annual lake volume difference is 346

Water balance components mm year™! MCM year™! MCM in 2013 and 381 MCM in 2014, which is nearly 25% and
Lake areal rainfall 755.1 336.0 27.5% of the average lake volume from 1986 to 2000, respectively.
Lake evaporation 1,875.1 834.4 The average annual volume difference from 2001 to 2014 is ap-
Gauged river inflow 1,404.0 624.8 proximately 173 MCM, which accounts for 12.5% of the average
Ungauged river inflow 184.8 82.2 volume of the lake from 1986 to 2000 (approximately 1,388.3
gltﬂow discharge 32?3 1;242; MCM). This large volume difference reveals the presence of in-

osure term ’ ’ creased human intervention by water abstraction from Lake Ziway
© ASCE 05020024-11 J. Hydrol. Eng.
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Fig. 10. Monthly average water balance components of Lake Ziway for a period from 1986 to 2000.

Table 7. Mean monthly and annual deviation of the simulated water level from observed levels in 2013 and 2014

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
2013 1.49 1.51 1.55 1.53 1.53 1.69 1.98 2.04 1.97 2.02 1.98 2.02 1.78
2014 2.09 2.04 2.00 1.96 2.14 223 2.24 2.06 1.85 1.75 1.69 1.63 1.97
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Fig. 11. Annual difference of simulated and observed volume and mean annual water level between 2001 and 2014.

and its tributaries. Similar findings are shown (Legesse et al.
2004; Seyoum et al. 2015) for Lake Abiyata situated within
the same climatic zone and fed by the runoff from Lake Ziway
outflow.

In this study, the lake water balance estimation was mainly from
historic climatic conditions. However, it is reported that future
climate change will affect the temporal distribution of rainfall and
runoff in the CRV Lakes basin (Wagesho et al. 2013; Abraham
et al. 2018). This further will affect the water balance components
of the hydrological cycles such as rainfall, evaporation, and runoff
of the lake area. Hence, for future water resources planning and
management of the lake, the projected impacts of climate change
and water abstraction needs to be considered.
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Discussion: Comparison to the Previous Water
Balance Studies

To compare water balance components of findings in this study
to findings in previous studies in the study area, two hydrolog-
ical regimes were constructed for periods 1986-2000 (baseline
natural period) and 2001-2014 (human-induced period). This
classification period was selected based on the finding of this
study and reference was made from previous studies on Lake
Ziway (Seyoum et al. 2015; Desta and Lemma 2017; Desta et al.
2017). To avoid the variation in water balance components
among the studies with respect to the study period comparison
was for baseline natural condition (1986-2000). This period
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Table 8. Comparison of Lake Ziway water balance components of this study with other previous studies (all terms are in mm)

This paper (2019) This paper (2019) Vallet-Coulomb Ayenew Jansen et al.
Water balance terms baseline period human-induced Period et al. (2001) (2004) (2007)
Study period 1986-2000 2001-2014 1969-1995 1970-1996 1990-2000
Lake areal rainfall 760.5 765.8 752.8 734.1 733.9
Lake evaporation 1,869.8 1,881.4 1,875 2,023.0 1,791.0
Gauged river inflow 1,379.3 1,408.6 1,474.1 1,492.0 1,476.4
Ungauged river inflow 181.6 186.2 112.4 109.1 85.4
Lake outflow 384.1 386.3 352.8 386.4 397.8
Closure term 67.5 92.9 111.5 —73.9 107.0

was selected as previous studies of water balance estimation were
up to 2000.

The water balance analysis for the baseline natural period (1986—
2000) resulted in an average annual lake rainfall of 760 mm year™!,
open water evaporation of 1,870 mmyear—!, river inflow from
gauge and ungauged catchments constitutes of 1,561 mm year™!,
and outflow discharge from the lake of 384 mmyear~! (Table 8).
Results of this study show that the Lake Ziway water balance error
of 67.5 mm per year for the baseline natural condition that accounts
for 2.9% of the total lake inflow from rainfall and river inflow. We
note that the water balance components and water balance closure
error for the human-induced period (2001-2014) is slightly attrib-
uted compared to the baseline condition. The variation in some
water balance components reported in these more recent period
points out more water abstraction from the lake and its tributaries.
The water balance closure error for the human-induced period in-
creased by 26 mm compared to the baseline condition, which results
in a water balance closure error of 3.9% of the total lake inflow from
rainfall and river inflow.

Under the baseline period (1986-2000) the average annual lake
rainfall resulted in 760 mm year™'. The lake average annual rainfall
estimated in this study is higher than estimated in (Ayenew 2004;
Legesse and Ayenew 2006; Jansen et al. 2007) (734 mm year™')
but lower than estimated in Desta et al. (2017) (768 mm year™!).
However, the estimate better matches with an estimate in Vallet-
Coulomb et al. (2001), which used three stations (Ziway, Meki
and Abura) situated near to the lake. In most of the previous studies,
lake rainfall estimation is only from Ziway town meteorological
station which is situated close to the lake. In this study, lake areal
rainfall estimation has benefited from the use of bias-corrected
satellite rainfall on the lake surface.

The average annual lake evaporation is estimated at
1,870 mmyear~' for the period 1986-2000. This estimate is
significantly lower than as estimated in Ayenew (2004)
(2,023 mmyear~') and Desta et al. (2017) (1,920 mm year~') but
higher than Melesse et al. (2009) (1,662 mmyear—') and Jansen
etal. (2007) (1,791 mm year™"). Evaporation estimate in this study
is similar to the result obtained in Vallet-Coulomb et al. (2001)
(1,870 mmyear—") who also used the Penman method. In most
of the previous studies, evaporation was estimated at monthly time
step for meteorological time series from Ziway station only. In this
study, the analysis is at daily time step with two additional stations
(Ogolcho and Arata) at the lake shore. Hence, lake evaporation
computations benefited from the additional air temperature data
of stations near the lake. The differences in the estimated lake
evaporation among the studies arise from this fact and other aspects
concern the difference in estimation methods.

Simulated river inflow from major tributaries for the baseline
period indicates 1,379 mm runoff inflow to Lake Ziway (38% of
Meki and 62% of Katar), whereas the contribution of the ungauged
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catchment is 182 mm (8.5% of the total lake inflow from rainfall
and river inflow) (Table 8). The river inflow to the lake estimated in
this study is lower than reported in (Ayenew 2004; Jansen et al.
2007). In this study, the runoff from the gauged catchments is si-
mulated by the use of a rainfall-runoff model using bias-corrected
satellite rainfall estimates as input. However, most of the previous
studies used river gauges streamflow for a shorter period. The
relative difference among the studies originates from the selected
method for estimation of runoff and the dataset used. The lake
outflow obtained in this study was closer to Ayenew (2004) but
higher than estimated in Vallet-Coulomb et al. (2001). The re-
sult revealed higher lake outflow which is related to lake water
levels. Hence, more water abstraction would lead to lower lake
outflow.

Unlike other previous studies, this study applied improved
rainfall data quality by correcting the bias of CHIRP satellite-only
product with rain gauge dataset as a reference. Hence, we advocate
the use of bias-corrected satellite product to overcome the data gap
in water budget studies and to improve accuracy of the research
findings. However, note that there are many sources of uncertainty
in the estimation of each lake water balance component. This study
assumed that lake-groundwater interaction is negligible. Another
source of uncertainty is in the estimation of lake evaporation using
the Penman method from observed data and lake rainfall from
satellite rainfall and bias correction method. There is also error
due to runoff simulation from gauged and ungauged catchments.
Hence, we suggest that future studies consider uncertainties in the
water balance by using improved approaches to represent each
component. Also uncertainties by advanced model calibration ap-
proaches and use of more advanced bias correction algorithms
should be considered.

Conclusions

In this study, the CHIRP satellite-only rainfall product was used to
simulate lake level fluctuation using a combination of HBV
rainfall-runoff modeling and a simple lake water balance model.
The study area is the Lake Ziway subbasin, in the CRV Lakes basin
of Ethiopia. In this study, the estimated lake rainfall and evapora-
tion are expected to have better accuracy than previous studies
(Ayenew 2004; Jansen et al. 2007; Melesse et al. 2009; Desta et al.
2017). That is, since (1) rainfall is estimated from bias- corrected
satellite data using rain gauge data as a reference, and (2) three
stations (Ziway, Ogolcho, and Arata) were considered for evapo-
ration estimation whereas previous studies only used Ziway station.
The following conclusions were drawn based on the findings of
this study:
1. The bias of CHIRP satellite rainfall product is very large and
accounts for 73% over estimation at rainy season. Bias is con-
sidered too high to allow for the direct use of CHIRP product in
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HBYV rainfall-runoff modeling that serves lake inflow simulation
of Lake Ziway. However, the study has shown that the bias can
be significantly reduced using a nonlinear power bias correction
using rain gauge data as a reference. The bias-corrected CHIRP
satellite product better captured the temporal pattern and mag-
nitude of the observed rainfall than uncorrected product.

2. The bias-corrected CHIRP rainfall estimate was used as the
HBYV model input. The HBV model performed adequately when
evaluated in terms of NSE and RVE objective functions for
both the calibration and validation periods. Thus, the streamflow
pattern, peak flows, and baseflow of the simulated hydrograph
agreed with those of the observed hydrograph. A disagreement
between the simulated and observed hydrographs noticeably in-
creased when the uncorrected CHIRP rainfall served as model
input. Small errors in CHIRP data were found to propagate to
relatively larger errors in streamflow simulation by means of the
HBYV model.

3. Under baseline natural conditions (1986-2000), the inflow to
the lake consists of 33% from rainfall over the lake, 59% from
gauged catchments and 8% from ungauged catchments. This
indicates that the gauged catchments are the major contributors
to Lake Ziway inflow. Whereas the outflow consists of 83%
evaporation and 17% outflow through Bulbula River. As such,
evaporation over the lake surface is the major lake water loss
term. Results of this study show a water balance closure error
of Lake Ziway is 67.5 mm per year for the assessment period
1986-2000, which accounts for 2.9% of the total annual lake
inflow by rainfall and river inflow. Since the estimation of
each water balance term must be associated with aspects of un-
certainty, further assessment on the accuracy of the lake water
balance component is required.

4. The lake level simulation indicates good agreement between the
simulated and observed lake levels for the period 1986-2000.
However, there was an increasing disagreement from the year
2000 onwards, which most likely can be attributed to human-
induced influences such as water abstraction. The maximum
difference between simulated and observed lake levels occa-
sionally reached up to 2.28 m in 2013. This suggests that the
actual lake level in 2013 should have been at least 2.28 m
higher than the observed level if there were no human-induced
influences.

5. The observed lake volume is less than the simulated counterpart
by up to 381 MCM in 2014, which accounts for 27.5% of the
average lake volume under the baseline condition. This differ-
ence mainly results from human-induced influences. Overall,
the water balance closure error for the period 2001-2014 is
higher than the baseline natural condition, which could be by
increased water abstraction from the lake itself and from its
tributaries.

In general, this study shows that applying bias-corrected CHIRP
rainfall products is effective to fill the data void in Lake Ziway
water budget studies. Hence, in data-scarce regions, use of bias-
corrected CHIRP data is feasible for lake water level simulation.
The findings of this study indicate a significant human impact
on lake level and volume. Therefore, the study suggests future stud-
ies to explore impacts by projected climate change and anticipated
increasing lake water abstractions.
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