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Robots are expected to enter the everyday lives of people to entertain, educate, or support them. It is therefore

important that people can intuitively understand the behavior of robots. Oftentimes, the behavior of people

is used as a model because of its familiarity. However, it is as yet unclear what the best approach is to design

interaction behaviors for non-humanoid robots. In this article, we explore two different approaches toward

designing behavior for a service robot. The first concerns the commonly used approach of copying human

behavior as closely as possible to the robot (human-translated). The second approach was inspired by product

design methods. The design of the robot’s behavior was optimized for the robot’s interaction capabilities and

hardware modalities (robot-optimized). To evaluate people’s responses to the two behavior sets for a tour guide

robot, an online video study (N = 204) and a two-day in-the-wild study (N > 600) were performed. Results

showed that participants responded slightly more positive to robot-optimized behavior and paid attention to

robot-optimized behavior for longer. However, participants remembered more details when the robot showed

human-translated behavior. Together, the studies show that it is sometimes better for non-humanoid robots

to have robot-optimized behaviors rather than human-translated behaviors.
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1 INTRODUCTION

R2D2 is a famous robot from the Star Wars movies. If we were to encounter R2D2 in the real world,
then we would probably not literally understand the beeps and movements it makes, because R2D2
does not closely resemble people in the way it looks, speaks, or behaves. However, we might be able
to deduce R2D2’s intentions. This implicit understanding may be due to the tendency of people to
project human-like behavior on non-human things, such as robots [22, 25], their social responses
to computers and technology in general [57, 62], and their inclination to interpret behavior of
non-human things as if it were human [32, 41].

Although it is unlikely for us to encounter R2D2 in an everyday situation, it is expected that we
will soon encounter similar service robots that offer services or support us in various settings. This
is due to the fact that more and more tasks and services are, and increasingly will be, automated.
Hence, robots are expected to enter public environments such as museums, hospitals, and shopping
malls in the near future. These settings will require robots to interact with people who probably
have not encountered robots before.

To have meaningful interactions with people, these robots should detect and process behavior
of people as well as react in a normative and social way. Therefore, these robots can be classified as
social robots. This description is in line with the definition as formulated by Bartneck and Forlizzi:
“A social robot is an autonomous or semi-autonomous robot that interacts and communicates with
humans by following the behavioral norms expected by the people with whom the robot is intended
to interact” [5].

So far, a large body of work in Human-Robot Interaction has been focused on designing be-
havior for social robots that closely resemble people (humanoids). However, few researchers have
studied the design of behavior for social robots that do not have human features. As a result, little
knowledge is available on how to successfully design multimodal behaviors for social robots that
lack human-like appearance. In this article, we set out to report and evaluate a systematic approach
to develop behavior for social robots that do not closely resemble people, using design practices
from the field of Industrial Design and Interaction Design. In this article, we will focus on tour
guide robots to understand the influence of robot behavior on people’s understanding and expe-
rience in context. In this context, multimodal communication and interaction between the guide
robots and visitors is important. Also, in this setting the general tendency is to copy human-like
behavior.

The article is structured as follows: In the related work, we discuss how robot behavior is pre-
dominantly designed currently, and we describe the trends in developing tour guide robots. We
then offer our problem statement and describe the two approaches for designing tour guide robot
behavior that we compare in this article. Next, we report on two studies, an online video study
(N = 204) and a two-day in-the-wild study (N > 600) in which we compared the two behavior
sets in terms of participants’ attention and attitude toward the robot. We present the results and
we discuss the findings, drawing parallels to previous research in the field of Human-Robot Inter-
action. We finalize the article with conclusions and directions for future work.

2 RELATED WORK

2.1 Design of Humanoid and Non-human-like Robots and Their Behavior

Humanoid robots are often envisioned to perform tasks in everyday social situations. These hu-
manoids have a similar basic physical structure and kinetic capabilities as people have, and thus
are to some degree physically able to behave as people would. For example, these robots are able
to walk, use their arms and hands to manipulate things, and swivel their heads. Therefore, these
robots seem to be suitable to perform social tasks in everyday environments, such as schools and
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museums. Examples of such robots are: NAO (e.g., used in References [8, 29, 51]) or ASIMO (e.g.,
used in References [56, 67]).

A common strategy to create the behavior for humanoid robots is to copy human behavior.
There are several good reasons to do so; people are already familiar with the behaviors [9], peo-
ple can read the behaviors naturally [61], people seem to expect it from humanoid robots [68],
and this way of developing behavior is shown to work for humanoid robots (e.g., References [47,
48]).

However, humanoid appearances and behaviors for robots might also have disadvantages. De-
veloping non-humanoid robots is typically more cost-effective, and they are more reliable, because
they have physical forms targeting specific tasks [12]. Moreover, anthropomorphic appearances
and behaviors can lead to disadvantages in human-robot (social) interactions. For example, an ex-
tremely human-like appearance can in some cases lead to a frightening robot, especially when it
starts moving [54]. Another disadvantage can be that a humanoid appearance can raise unrealistic
expectations of the abilities of the robot [20, 22]. This can lead to disappointment when the robots
are not as skillful, responsive, and advanced as people expect them to be [14, 25].

Furthermore, the possibilities of creating highly anthropomorphic behaviors and appearances
are often limited by what is technically possible; see also Reference [12]. For example, in the de-
sign of the Snackbot, the width of the head was dictated by the technical components, in this case
a Bumblebee stereo camera [49]. Moreover, the robot did not walk, but it was based on an exist-
ing wheeled platform, and it had bumpers for safety reasons. As another example, alternatives to
copying (human-like) gaze behavior had to be found for the robot Chester, because it did not have
a swiveling head. Nevertheless, effective gaze behavior was created when gaze and orientation
behavior were designed and controlled jointly [73].

Another design option for interactive service robots is to deliberately create robots that do not
resemble people. Creating a robot that does not look like a human does not necessarily limit the
capabilities of this robot to interact with people. Several sources (e.g., References [20, 22]) state
that anthropomorphism is not the only solution to creating effective social robots. According to
DiSalvo, a social robot should leverage robot-ness and product-ness, as well as humanlike-ness, to
avoid false expectations of the machine’s capabilities and to make people feel comfortable using
the product, while the interaction is socially engaging [20]. As such, the robot-ness, product-ness,
and humanlike-ness need to be balanced and should be recognizable in appearance and behavior
of the robot.

Even though a non-humanoid appearance might be an advantage for robots, there is no validated
method available to design behavior for such robots. Currently, the approach is to also copy from
human behavior. However, we question whether it is indeed logical to use this human-behavior-
translated-to-robot strategy for all kinds of social robots, specifically for robots that do not at all
resemble people.

We argue that robot behavior can be optimized for the robot’s morphology and modalities. This
concept is not new to the field of Human-Robot Interaction. For example, Embgen et al. [23],
Bretan, Hoffman, and Weinberg [10], and Cha, Matarić, and Fong [13] already proposed to use
abstracted robot-specific behavior consisting of body movement and displaying colored lights, to
show a robot’s emotion and intentions. Szafir, Mutlu, and Fong explored the design of “natural”
and “intuitive” flight motions to improve assistive free-flying robots’ abilities to communicate in-
tent while simultaneously accomplishing tasks [71]. Vázquez et al. found that not only a copy of
human orientation behavior (attentive orientation) but also an optimized orientation (middle ori-
entation) can be an effective starting point for robot orientation behavior [73]. Sabanovic, Reeder,
and Kechavarzi have shown that social behavior, not copied from humans, was preferred over
alarm type behavior for minimalistic desk robots [66]. However, guidelines and approaches on
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how such behaviors should be designed, to our knowledge are scarce. Ju and Leifer proposed a
framework to design implicit interactions for non-living objects, which provides a starting point
to create non-verbal behavior [40]. Building on that, we present an approach to develop nonverbal
behavior for non-humanoid robots, as an alternative to copying human behaviors.1

The motivation for the proposed approach is that the design of appearance, interaction and be-
havior of social robots finds many parallels in the design of smart interactive products, studied
in the fields of product design and interaction design. Similar to social robots, some smart prod-
ucts interact with people in a social and personalized manner. However, to design the appearance
and behavior of smart products, industrial designers generally do not rely on copying human be-
havior or appearance. Instead, they often take a desired user experience as the starting point for
design.

Several interaction design and product design researchers provide guidelines on designing the
user experience of products, which may be applicable to Human-Robot Interaction. Useful guide-
lines are for instance given by Forlizzi and Ford, who state that to design a successful product, the
focus should be on the user, the product and the context of use [28]. Similarly, Hummels states that
not only a product, but a “context for experience” should be designed [38]. The interaction does
not have to be as simple as possible, but it should be engaging and the product should encourage
to explore the context with all senses to gain rich experiences (e.g., pressing the play button on
a cd-player is less engaging than cleaning a LP and putting the needle in the groove to play the
music).

In line with these approaches, Hekkert, Mostert, and Stompff used the user experience of
“a dance” as the starting point for designing the interaction with a photo copier to stimulate sev-
eral senses in a surprising way [33]. Desmet, Ortíz Nicolás, and Schoormans successfully created
intended interaction experiences, dominant vs. elegant, for two similarly looking devices devel-
oped for their study [18]. Because these experiences were not visible in the device, they only were
perceived through interaction style, indicating that it is possible to design interaction devices with
different product personalities.

In these examples, the designers did not copy human behavior for their product. Instead, they
focused on the desired interaction experience that needs to be realized. Because of this, we expect
that taking a desired user experience and a robot’s functional goals as starting points, is a promising
alternative to copying human behavior in the design of socially interactive robots.

So far, the focus was on robot appearance, behavior and user experience in general. In this
article, we will focus on behavior for a tour guide robot, therefore, in the next section, we give
an overview on the influence of appearance and behavior of tour guide robots on Human-Robot
Interaction.

2.2 The Influence of Appearance and Behavior of Tour Guide Robots on
Human-Robot Interaction

We focus on non-humanoid robots, because there is no evidence that a guide robot needs to be hu-
manoid in appearance to effectively guide people. Also, a non-humanoid appearance will generally
ensure a less complex and challenging development process. Although we focus on non-humanoid

1While the existence of other robot appearances, such as zoomorphic, is acknowledged, this article mainly focuses on

human-like aspects of the robot’s appearance and behavior design. Notably, research in human robot interaction is often

carried out on early prototypes, that look mechanical or machinelike (e.g., see References [35, 74]). While results from such

studies are considered, these robot platforms are not included as examples of either humanoid or non-humanoid robot

types for the reason that they are unfinished concepts rather than final designs.
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tour guide robots, we expect the findings to be generalizable to other domains of Human-Robot
Interaction. In this article, we give a brief overview of the development of tour guide robots. For
a more extensive overview of tour guide robots and how their behavior influences Human-Robot
Interaction, see Reference [42].

The first tour guide robots (developed before 2002) were generally basic in appearance. Examples
are Rhino [11] and the three entertainment robots in the “Museum für Kommunikation” in Berlin
[31]. Some did have more sophisticated humanlike bodies (e.g., Reference [7]) and facial features
such as Minerva [72]. What these robots have in common is that technical challenges as well as
challenges in navigation and localization were the main focus of the research groups developing
and deploying the robots. However, some investigations into people’s responses to the robots were
carried out. These observations showed people’s tendency to “abuse” or “try out” the robots by
blocking their path, pressing buttons, and so on [11, 63]. The first tour guide deployments were a
novelty [59], and as a result people were unfamiliar with the abilities of robots and the services
they provided [11, 31]. This indicates that to guide people through a robust sense making process,
and to ensure optimal usage, tour guide robots require careful design.

Even though the tour guide robots developed later than 2002 were equipped with more capa-
bilities than their predecessors, the visitors’ experience interacting with the guide robots in the
museum did not seem to improve significantly. It is interesting that while robots had increas-
ingly humanlike features and more sophisticated capabilities, these tour guide robots still evoked
boundary-searching or “bullying” behaviors from users [15, 69]. This could indicate that while
tour guide robots were endowed with more human-like interaction capabilities, insufficient effort
has been spent in designing the behaviors to optimize people’s understanding, expectations and
interaction experience.

Recent studies performed with humanoid tour guide robots focused on the evaluation of singled-
out robot behavior, meaning the copy of only one specific behavior to communicate something,
such as human-like gaze behavior [77], pointing behavior [6], and orientation behavior [48]. Find-
ings showed that people recognized and responded naturally to the singled-out humanlike be-
havior the robot performed [6, 36, 48, 77]. This seems to be an argument for identifying effective
singled-out behaviors from people and translating these one-to-one to robots. However, as Gehle
et al. discussed, when behavior that the robot had to show became more complex (not one singled-
out behavior but a combination of behaviors), the interaction between the robot and the visitors
became less smooth [29]. We believe this might be due to two reasons. First, singled-out behavior
may be effectively translated to a robot, but when combinations of behaviors are needed to dis-
play more complex behavior, the combination may not be what people expect and may therefore
be more difficult to understand. Second, a one-to-one translation of behavior is not always pos-
sible because of the technical limitations of the robot, which leads to unsynchronized combined
behaviors.

From our previous studies with tour guide robots, we similarly found that an exact copy of
human behavior to robots cannot always be made due to restrictions in the behavior modalities
available on the robot (e.g., having no arms for safety reasons, while humans have two), or due to
the limitations posed by the robot modalities (e.g., a swiveling head that humans have, but a robot
might lack) [45]. This indicates that human-like behavior is usually not optimal for robots that do
not closely resemble people. Therefore, we argue that for non-humanoid robots, behavior that is
specifically designed for the robot’s modalities should be used.

In the remainder of this article, when we refer to robots, we mean robots that do not closely
resemble people; we will use the term humanoid robots to indicate robots that closely resemble
people.
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3 RESEARCH QUESTION

We hypothesize that visitors, in general, will be more positive toward a guide robot with multi-
modal behavior specifically designed for the modalities of the robot compared with a robot with
behavior copied from people. We expect that “human-translated” behavior will be appropriate for
highly anthropomorphic robots, but that this behavior might be perceived as uncanny, inappropri-
ate or difficult to understand for non-humanoid robots. Especially when a one-on-one translation
from human to robot is not possible, which is the case when a robot does not closely resemble
people. Therefore, we assume that “robot-optimized” behavior that is specifically designed for the
morphology of the robot will be perceived as a better fit for robots that do not closely resemble
people.

Based on the expectations described above, our main research question is: “Do people respond
more positively to a robot displaying robot-optimized behavior compared with a robot displaying
human-translated behavior?” To answer this question, we focus on people’s attention and attitudes
toward the robot’s behavior to measure its effectivity. To answer the overall research question, we
have formulated two hypotheses.

The first hypothesis concerns the way that the robot’s behavior will influence the attention of
the visitor. We expect that visitors will pay more attention to the robot in the robot-optimized
condition. Also, we expect visitors to remember more of the information the robot provided. This
leads to the following hypothesis:

H1: Robot behavior optimized for the modalities of a tour guide robot that does not closely resemble
people will lead to longer periods of attention and higher recall of the information provided by the
robot.

The second hypothesis concerns the way that the robot’s behavior will influence the experience
and attitudes toward the robot of the visitors. We expect that visitors will have a more positive
attitude toward the robot with robot-optimized behavior. This leads to the following hypothesis:

H2: Robot behavior optimized for the modalities of a tour guide robot that does not closely resemble
people will lead to more positive attitude toward the robot.

In the following section, we will first explain the two approaches to design the multimodal
behavior that we have used, before we describe the methods for evaluation in Section 5 and results
in Section 6.

4 TWO APPROACHES TOWARD THE DESIGN OF MULTIMODAL ROBOT BEHAVIOR

To test the assumption outlined above, we developed two sets of behaviors for the robot following
two different design approaches. We state that copying human-like behavior to a robot that does
not resemble people, limits the options for behavior design, while our newly proposed approach
optimizes the use of the robot modalities.

In Figure 1, we present how our newly proposed approach relates to the conventional approach
to design multimodal behavior for socially interactive robots. As can be seen from Figure 1, both
design approaches start from the observed human tour guide behavior. This is especially valuable
when the robot performs social interaction tasks that previously were only performed by people,
as is the case for guiding. The right side of Figure 1 shows how the robot morphology may limit
the opportunities for behavior when human-like behavior is translated to the robot. This is due
to the fact that the robot might not have the modalities or technical features to perform behavior
exactly the way that people do. This approach might lead to poor imitation of human behavior
or behavior that cannot be performed will be left out. We call this approach “human-translated.”
On the left side, we present the robot-optimized approach. In this approach, the behavior of a
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Fig. 1. Schematic view of the two different design approaches—robot-optimized behavior and human-

translated behavior—both stem from observed human behavior.

human tour guide is analyzed to understand the interactional outcomes. Interactional outcomes
are the effects of multimodal actions that human tour guides aim for with specific guide behaviors
during their tour. For each of the multimodal actions a human tour guide performs, we defined
the interactional outcome (see Appendix 1). For example, “focus visitor attention on the exhibit”
is the interactional outcome of a guide’s action “gaze toward the exhibit while pointing toward
the exhibit.” Subsequently, multimodal behavior that fits the modalities of the robot is designed to
accomplish the same interactional outcomes, without necessarily showing the same behavior as a
human tour guide would. We call this approach “robot-optimized.”

The robot we used in our studies is the FROG robot (see Figure 2), and a small model of it.
The FROG is developed within the EU FP7 project FROG, which stands for Fun Robotic Outdoor
Guide. FROG was developed as a tour guide robot to guide small groups of visitors and engage
and educate them at tourist sites. At an earlier stage in the project, we used other robot platforms
and the model used for the first study presented in this article to try out and change behaviors
and to inform the design of the final FROG robot. FROG has some human-like characteristics.
Nevertheless, looking at the full appearance and abilities of the robot, it was clear that FROG does
not resemble a person and has a lot of limitations to copy human-like behavior. Therefore, this
robot was deemed suitable for the studies we wanted to perform.
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Fig. 2. FROG robot.

The design of the two sets of behaviors was done by a small group of designers who together
decided how to implement the behavior, of which the process will be explained in the following
sections. The implementation of design relates balancing real-world validity and controlled lab
studies. For this study, we decided to deal with this balance by using a combination of studies and
a robot behavior design that was created and evaluated by designers.

4.1 Approach 1: Human-translated Behavior

The human-translated approach was to translate human behavior as similarly as possible to the
robot. As explained previously, this is an approach that is commonly used in the field of Human-
Robot Interaction to design social robot behavior.

The resulting set of behavior cues mimicked the observed behaviors of human tour guides stud-
ied in [43] as much as possible (see Table 1 for an impression, and see Appendix 1 for a full ex-
planation of the interactional outcomes and sets of behaviors for the robot). For example, when a
guide would blink with the eyes, an animation in FROG’s eyes was added to imitate the blinking,
and when a guide would swivel his head to look toward all visitor, the robot would make a full
body movement as FROG could not swivel its head to focus on all visitors. The actions of the robot
were timed at similar moments as the actions of human tour guides would happen. For example,
when human guides want to go to the next exhibit, they were observed to break eye-contact with
the group of visitors before they started to move to the next exhibit. We translated this behavior
as closely as possible to the robot: When a robot finished providing information about an exhibit,
the animation in the eyes of the robot looked downwards, indicating a break of eye-contact before
it moved to another exhibit.

4.2 Approach 2: Robot-optimized Behavior

As an alternative to the human-translated approach to designing robot behavior, we propose the
robot-optimized approach. This approach is based on principles that are common in product design
and interaction design. Starting points for this approach are the robot’s functional specifications
and the desired user experience of the Human-Robot Interaction.

The interactional outcomes of observed human tour guide behavior (see Reference [43] for de-
tails on guide behaviors) were used to design robot-optimized behavior. Moreover, we have studied
the visitor experiences of following a human guided tour. By designing behavior for the robot tour
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Table 1. Example of Robot Behaviors Derived from Interactional Outcomes
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guide, we emphasized the parts of behavior that evoked positive experiences and limited the neg-
ative experiences. To do so, we selected the interactional outcomes to design multimodal behavior
for based on expected positive visitor experiences. For example, visitors did not like too long ex-
planations, thus the explanations would be kept short. For details on visitor experiences in tourist
sites, see Reference [44].

In this article, we will mainly focus on the functional specifications of the robot as a starting
point for the design of robot’s behavior. To explore different options for the robot-optimized be-
havior set, we used a morphological chart [39]. This is a method taken from Industrial Design
to systematically come to design options. By using this method, several ideas on how to use a
modality to communicate the intention of the robot (interactional outcome) were generated.

Figure 3 is an example of one of the morphological charts we created. In this example, we gen-
erated different options for the behavior set for “finishing at an exhibit.” For each interactional
outcome, a morphological chart was created. For each modality of the robot, several ideas for
behavior were generated. Together the designers evaluated which combination of behaviors of
the different modalities would be the best option for the behavior set for each of the interac-
tional outcomes. The resulting behavior sets were implemented in the robot. Examples of robot-
optimized behavior are: The robot scans for visitors with its pointer camera, instead of making a
full body movement; the robot uses two different types of animations for the eyes, one attention-
attracting for the drive-mode and a more subtle one for the explain-mode; the screen of the ro-
bot did not continuously show a face but also showed additional information, instructions or
intentions.

Using a morphological chart leads to one specific design for a set of behaviors while other com-
binations might also be effective and successful. The behavior set we have chosen and evaluated
with several designers for the tour guide robot is one of many possibilities. In this article, we ex-
plore whether this alternative approach to designing behavior for social robots might be useful and
how it influences the effectivity and understandability of social robots in interaction with people
when compared to behavior designed following a human-translated approach. Independent of the
specific set of behaviors chosen for the robot, it is important to create behavior that is consistent
over time during the complete interaction between people and the robot.

5 METHODS FOR EVALUATION

To check whether participants responded differently toward the sets of behaviors, we prepared
an online video study and an in-the-wild interaction study. The online video study allowed us to
collect a more controlled response to the two sets of behavior of the robot and the in-the-wild
observations were less controlled by nature but offer richer insights into people’s experiences
when encountering a service robot in a semi-public place, as we will explain below. Furthermore,
Ju and Takayama suggested that the use of different experimental methods can address or mitigate
potential limitations inherent in each method [41]. In this section, the methodology of each study
will be reported separately, while the results of the two studies will be jointly reported in the
results section, because both studies offer insight in different aspects of the hypotheses.

Video studies in Human-Robot Interaction research are an efficient way to collect data on vis-
itors’ perception of the robot, understandability of the robot behavior sets and visitor attitudes
toward the robot [24, 50, 53, 76]. A video of isolated tour guide behaviors was not expected to pro-
vide an experience similar to experiencing an actual robot in an actual cultural site. However, by
showing videos of the different sets of robot behaviors, we were able to find whether and which dif-
ferences participants observed between the sets of robot behavior and how participants perceived
and evaluated the different sets of behaviors in terms of (product) characteristics.
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Fig. 3. Example of morphological chart.

In-the-wild studies in Human-Robot Interaction elicit valuable insights into how people will
interact with robots in unstructured settings [65]. In our study, we observed reactions from visitors
that encountered and joined the robot for a guided tour. Furthermore, some of these visitors were
randomly invited to participate in a short interview, in which they were asked for their experiences.
As a result, the in-the-wild study gave us the opportunity to find out how spontaneous visitors
reacted to the robot and how they experienced a tour of FROG.

5.1 Manipulation of the Robot’s Behavior in Both Studies

We developed human-translated behavior and robot-optimized behavior for the FROG robot. To
control for the number of different behaviors, we developed the two sets of behaviors for the same
interactional outcomes. In Table 1, we present two examples of interactional outcomes, how human
tour guides perform them, and how we translated and optimized them for the robot. Note that these
images only give an impression of the differences in the behavior sets, because the behaviors of the
guide and the robot are very dynamic and difficult to grasp in stills. Table 1 presents the behaviors
using images from the video study only, the behaviors in the in-the-wild study were similar. See
also Appendix 1 for an exhaustive list of behaviors used in both studies, and see Appendix 2 for
an overview of the different eye-animations of the robot.

5.2 Method of the Online Video Study

The video study had a between-subjects design with robot behavior design as the independent
variable. For this purpose, we developed two videos, one with the human-translated robot behavior
and the other with the robot-optimized behavior set.

5.2.1 The Robot. The robot that we used as a tour guide in both videos was a small 3D model
(approximately 30cm in height) of the actual robot developed in the EU FP7 project FROG. We
made this model to closely resemble the design of the robot used in the project, since we specifi-
cally wanted to understand the effect of behavior rather than that of appearance. The robot model
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was made of cardboard, foam, colored paper, and plastic sheets. This model allowed us to use the
following modalities of the robot simulate different behaviors in the videos: animated eyes, pointer
on top, visuals on “screen,” whole body movement and driving.

The robot itself would not talk, but in the video a voice-over was used for the explanations.
The voice-over was a computer voice (female) with speech generated by a text to speech engine
(NaturalReader with US Crystal voice). See Table 2 for an overview of the main differences between
the human-translated and the robot-optimized behavior used for the robot in the online video
study.

5.2.2 Participants. A total of 204 participants (132 males, 58 females, 14 preferred not to dis-
close, aged 15–58, mean age 31.6 years) evaluated the stimuli. All participants were recruited
through Crowdflower, a crowdsourcing site, which allowed and stimulated the involvement of
a wide range of participants. The participants came from different continents (most from Europe
42% and Asia 31%). Of the participants, 69.1% had no previous experience with social robots, 15.7%
had little previous experience with social robots, 7.4% had much previous experience with social
robots, 1% answered “other,” and 6.9% did not answer the question. Of all participants, 146 par-
ticipants (71.6%) rated their level of English “good” to “very good,” 40 participants (19.6%) rated
their level of English as “average,” only 5 participants (2,5%) rated their level of English as “bad”
to “very bad,” and 6.5% of the participants did not answer the question.

5.2.3 Measures. In line with our research questions and hypotheses, we prepared a question-
naire that focused on participant’s attitudes toward the robot behavior and on participant’s atten-
tion. Measures that focused on participant’s attitudes included constructs of the Godspeed ques-
tionnaire [4] and the Source Credibility Scale [64] as well as four items that were added to mask the
intention of the questionnaire (obviousness, novelty, being qualified and reliability of the robot).
The constructs of the Godspeed that were used were Anthropomorphism, Likeability, Animacy
and Perceived Intelligence. The constructs of the Source Credibility Scale that we used were So-
ciability, Extraversion, Competence and Character. Three items (“artificial-lifelike,” “unfriendly-
friendly,” and “unintelligent-intelligent”) were asked once in the questionnaire, but used in two
different constructs during analysis, because they appeared in constructs of the Godspeed and the
Source Credibility Scale. Furthermore, the participants were asked to rate the behavior of the robot
on the product personality scale [30, 55].

Questions that focused on participant’s attention included nine questions that evaluated
whether participants had understood and/or were distracted by the behavior of the robot and
four questions to measure the recollection of details. We used information related to two paint-
ings, which were the Mona Lisa by da Vinci and the Girl with the Pearl Earring by Vermeer. These
paintings were chosen because many people are familiar with these paintings but would be inter-
ested to learn details about them that are not widely known. This way, the information provided
would be new and interesting. Also, it allowed to test for recall of details afterwards. The actual
recollection of details was measured by presenting the participants four multiple choice questions
to test whether people had remembered the details of the story that the robot told (four options,
of which one was always “I can’t remember”). The story and questions were based on the story
used for the study presented in Reference [45].

Participants who observed both videos were asked to answer four questions. One was a question
on preference for one of both robot behavior sets, the other three were open questions examining
why participants preferred a specific set of behavior and what differences they found between
the behaviors. Participants who observed both videos were not invited to fill out the same ques-
tionnaire again for the second video, as participants would have been biased after seeing the first
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Table 2. Overview of Differences Between Human-translated and Robot-optimized Behavior Sets

video, and they would already know the story, making questions about recall, for example, unre-
liable. However, remarks of these participants about whether they observed differences and what
the differences were according to them gave us valuable information about the quality of our ma-
nipulations. Last, all participants were asked some demographical details, such as age, gender,
education level, profession, and experience with social robots.
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5.2.4 Procedure. Participants were asked to watch a video and to fill out a questionnaire about
the behavior of a robot that gave a tour in a small art gallery. They were informed that the questions
would be about the behavior of the robot and the information the robot gave.

Two short stop-motion videos (1:37min and 1:39min) were prepared; one for the human-
translated condition and one for the robot-optimized condition. Both videos showed the robot
presenting two artworks in a museum-like setting. For both videos, the story line was kept the
same and the same sound file (a voice offering explanations about the paintings in English) was
used. Only the multimodal behavior sets were different. Furthermore, the videos were controlled
for robot activity to ensure that the robot was not more active in one of both conditions, as this
seemed to be the cause of the found differences in a previous study [45].

The videos and online survey were distributed through a link on Crowdflower that led to Survey-
monkey. On the first page of the questionnaire, the participants were asked for their consent. After
that, the online questionnaire started with a video of either the robot in the human-translated con-
dition or of the robot in the robot-optimized condition. The participants were randomly assigned
to one of the two conditions. After seeing the video, the participants were asked to evaluate the
behavior of the robot and how they experienced the behavior of the robot. The items in the ques-
tionnaire were presented on 5-point Likert scales or 5-point semantic differentials, unless stated
otherwise. The items of the constructs and other questions in the questionnaire were randomized
per page, unless order of the questions was important.

After the participants had finished the evaluation, they could decide to see the video of the other
condition as well. Participants who decided to see the second video were asked to indicate which
of the two sets of robot behaviors they preferred, and they answered three open questions about
why they preferred a specific behavior, what the main differences between the robot’s behaviors
in the two videos were and whether they had any suggestions for the behavior of the robot. After
seeing the second video and responding to the 4 items, participants were directed to the last page.
When participants chose not to see the other video, they were redirected to the last page directly.

On the last page of the questionnaire, all participants were asked demographical information.
The questionnaire contained 83 questions in total (participants had to fill in 79 questions when
they did chose to not see the other condition). After participants completed the questionnaire they
received a code to obtain a small payment for their participation.

5.2.5 Data Preparation. After preparing the data, a total of 204 participants were left (from
the original 251 who started the questionnaire). The participants originally were evenly divided
over the two conditions. However, some participants were removed from analysis, because they
either did not complete the questionnaire or they responded with the same answer to all items,
for example they always chose 5. Hence, due to the fact that 47 participants were removed from
analysis, we had 114 cases for the human-translated condition, and 90 cases for the robot-optimized
condition. Out of the remaining 204 participants, 166 (81% of all participants) compared both sets
of robot behaviors.

5.2.6 Reliability of Measures. We used Cronbach’s Alpha to check the reliability of our scales.
A Cronbach’s Alpha above 0.7 is considered reliable [60]. Therefore, we only were able to use
the combined scales for the constructs Likeability, Perceived Intelligence, Sociability, and Under-
standability of robot behavior in the analyses. See Table 3 for an overview of the found Cronbach’s
Alphas for each of the constructs. Furthermore, we analyzed results for all individual items of the
questionnaire.

5.2.7 Manipulation Check. As a manipulation check for differences between both behavior sets,
one item asked the subset of participants who observed both sets of robot behavior, whether they
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Table 3. Cronbach’s Alpha for Constructs

Measurement # items Found Alpha α
Godspeed – Anthropomorphism 5 0.69
Godspeed – AnimacyMechanical – Organic was left
out to increase the Cronbach’s Alpha.

5 0.69

Godspeed – Likeability 5 0.83
Godspeed – Perceived Intelligence 5 0.70
Source Credibility Scale – Sociability 3 0.72
Source Credibility Scale – Extraversion 3 0.44
Source Credibility Scale – Competence 3 0.67
Source Credibility Scale – Character 3 0.67
Understandability of robot behavior 7 0.85

found any differences between both robot behaviors and if so, then which. In the comparison
of both sets of robot behaviors, 37 did not answer the questions or gave answers unrelated to
the questions and were therefore removed from the sample. Of the remaining 129 participants,
95 participants (73.6% of the participants who saw both videos) stated they saw differences in the
robot behavior after seeing both videos. Thirty-four participants (26.4%) stated that they did not
see any differences. The condition, age or nationality was not found to influence these results.
Therefore, we concluded that the manipulation was merely successful.

In the following section, we describe the method of the in-the-wild study, before we report on
the combined results of both studies.

5.3 Method of the In-the-wild Study

In the in-the-wild study the robot gave tours to spontaneous visitors in the Royal Alcázar in Seville,
Spain.

5.3.1 The Robot. The robot used for the in-the-wild study was the FROG platform; see Figure 4.
The different sets of behaviors were programmed on this platform. To drive around FROG was
controlled remotely. The controller of the robot was the same for all sessions performed during
the study. FROG had enough battery power to give tours for approximately 90min. Afterwards the
robot needed to recharge for several hours.

The robot was designed to attract and keep the attention of the visitors using its body move-
ments, the eyes (sequences played with the LED-lights in the eyes), the pointer on top of the robot
(pointing at things and sequences played with the LED-lights in the pointer), a touchscreen that
was used to show pictures and movies, and prerecorded synthesized speech. In this experiment,
the visitors were not asked to use the touchscreen. Furthermore, the robot would not understand
the visitors if they should talk to it. See Table 4 for an overview of the differences between the
human-translated and the robot-optimized behavior used for the robot in the in-the-wild study.

5.3.2 Participants. All visitors of the Royal Alcázar were potential participants for the in-the-
wild study, because they were all free to join or to ignore the robot. Based on chance, visitors
participated in the study.

We estimated that in each condition about 300 participants joined the robot at some point during
the tours (approximately 15 tours in human-translated condition, and approximately 14 tours in
robot-optimized condition). We did this by counting participants who joined the FROG tour and
interacted with the robot. Interactions with the robot could range from joining the robot for the
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Fig. 4. FROG in the Hall of Festivities (in human-translated condition).

explanation of one point of interest to an entire tour of explanations at five points of interest or
longer. Only visitors who joined the tour for at least one explanation were counted in this number.
People who stood close to the robot, but also people who followed the tour from a distance, were
counted.

5.3.3 Procedure. One short tour was prepared for the study, while two different sets of be-
haviors were prepared. In the first condition the robot communicated its intentions with human-
translated behaviors, in which human behaviors were mimicked as closely as possible. In the sec-
ond condition the robot showed robot-optimized behavior, in which the behavior was optimized
for the modalities of the robot. The sets of behaviors were largely similar to the sets of behaviors
used in the online video study. However, the behaviors were now performed by a functional ro-
bot and used in a different heritage setting. The multimodal behaviors were therefore performed
at other moments in time than in the video study. The two sets of behaviors were controlled for
activity of the robot to ensure that the robot was not more active in one of both conditions.

The tour consisted of five explanations at five different points of interest, which took about 20s.
The total duration of the tour was 3–5min. Deviations in duration of the tours occurred, because
the robot had to wait for visitors to step aside or to navigate around visitors present in the room
to reach the next point of interest. See Figure 5 for a layout of the tour.

Table 4 shows an example of how an explanation was given at a point of interest in the tour, in
the two conditions. In this example, in the human-translated condition the robot moves its body
toward the visitors to attract attention, while in the robot-optimized condition, it uses its pointer
to obtain a similar effect. The camera images clearly show visitor reactions (and therefore allowed
us to observe differences in reactions between conditions), while the differences in robot eye and
screen behavior are less well observable.

The robot was brought into the room at three timeslots on two different days. Before the robot
started the guided tours, the researchers set up the camera and placed signs to provide visitors with
information about the study and about consent. Visitors who joined the tour of the robot were not
further informed about the study before the tour started. If people decided to enter anyway, then
they automatically gave their consent for the use of the obtained video data for academic research.
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Table 4. Overview of the Differences in one Explanation at One Point of Interest of the Tour Between

Human-translated and Robot-optimized Behavior in the Wild

It was stated that this included use of the material for publications. If visitors did not wish to be
recorded, then they were advised to contact one of the researchers who could be identified by their
FROG project badge.

According to protocol, if this happened, then the camera would be stopped and recordings would
be destroyed. However, none of the visitors made such a request.

A camera (that was within visitors’ sight and not hidden) was used to record the visitors’ reac-
tions. The camera was placed at a height of 2m.

The main aim of the in-the-wild study was to observe visitors’ reactions and interactions with
the robot. Additionally, to improve our understanding of the observations, several visitors were
interviewed about their experiences of following a robot guided tour. For the interviews, we ran-
domly chose from the pool of visitors who joined the robot tour for at least one full explanation
at one point of interest. The interviews were held in groups of one to three visitors who vis-
ited the Royal Alcázar together and joined the robot together. In the human-translated condition,
6 interviews (10 people) were recorded. In the robot-optimized condition, 11 interviews (16 people)
were recorded.
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Fig. 5. Layout of the tour.

The interviews had a semi-structured set-up. Questions included: “Which aspect of the robot or
the tour got your attention first?” “Can you describe your experience of following the robot guided
tour, similar to how you would tell it to your friends and family at home?” “Can you describe the
robot in three words?” “In what way is the robot guided tour different from information boards,
audio guides or tour guides?” “Imagine the Royal Alcázar would decide to use these kinds of robots
in other areas of the site as well, what would you think of that?” “Do you have suggestions for
the robot or other remarks?” The interviews took approximately 2–5min. The interviews were
recorded using a voice recorder when people gave consent to record, otherwise only notes were
taken, which was the case for only one interview. The interviews were performed in English or
occasionally in Dutch.

5.3.4 Data Analysis. We analyzed the video data by using DREAM (Data Reduction Event Anal-
ysis Method), a method we developed to annotate rich video data in a focused and fast manner
and to anticipate for too early interpretations. The method is based on “thin slices of behavior”
[1], “the grounded theory method” [16], and coding with multiple coders. For the analysis of the
video data of in-the-wild Human-Robot Interaction, only “thin slices,” sequences of three stills of
the video of each of the robot’s explanation at a point of interest, were used to analyze the data.
Going from video data to sequences of stills implies a large reduction of data, which speeds up the
data analysis. Nevertheless, the outcomes still are reliable.2

The advantage of using this method is that only the moments of interaction are analyzed, by the
use of three images per action. This led to a series of sequences of three images to be annotated.
The time that the robot was going from one point to the next was not taken into account in this
analysis.

To analyze the sequences, two researchers (#1 and #2) discussed the definition of the codes and
created an affinity diagram [17], on which the final code scheme was based. The found codes (53)
were clustered into 10 categories, of which each category contained several codes. For example,

2The full description about the development and evaluation of DREAM can be found in Reference [42].
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the category FORMATIONS contained 8 codes: 1 person as close as possible, 2 people as close as
possible, 2 different groups of 2 or more people, group resembles a large guide group with more
than 11 people, people stand far away, formation is a line, formation is a semi-circle, formation of
group is unstructured (note: each of these codes should be used once when visitors perform these
actions, and more than one code of this category can be applied to a sequence).

Atlas.ti [3] was used to code the data and the inter-rater reliability was calculated with CAT [52].
The main researcher (#1) annotated the dataset with the codes from the code scheme. Afterwards
a third researcher (#3) was asked to annotate 25% of the sequences using the same codes. The
annotations of researchers #1 and #3 were compared to calculate the inter-rater reliability. The
inter-rater reliability was κ = 0.61 (Fleiss Kappa), which indicates that the codes applied were
considerably consistent between researchers.

Overall, the robot gave a similar number of explanations at points of interests in both conditions
(73 explanations at point of interests in human-translated condition and 71 explanations at points
of interests in the robot-optimized condition), so, we could compare the numbers found with the
annotation of the data. For the current study, we used the cumulative numbers of annotations
of all explanations at points of interests taken together, because we wanted to find the general
differences in visitor actions and reactions between the robot behavior sets.

Because of the small number of interviews, the interview data of the in-the-wild study was
mainly used to illustrate the observations with experiences from real visitors. Nevertheless, anal-
ysis of the number of similar remarks made provided some insights in the reason why people chose
to join or leave the robot.

5.3.5 Manipulation Check. To check for successful manipulation of the behavior sets, we
searched for observable differences in the behavior of the visitors between conditions that we
will present in the results section. As we found differences between the behavior sets in the video
study, and the behavior sets for the video study and the in-the-wild study were similar of set up,
we assumed visitors would observe these differences as well. Moreover, we do not have indica-
tions that these observed differences in visitors behaviors were introduced due other factors than
the two sets of robot behavior. Therefore, based on the results of the online video study and the
in-the-wild study, we state that we were largely successful in creating two different types of robot
behavior.

6 RESULTS

To answer the main research question, we focused on two aspects. These two aspects are the
participant’s attention during the explanation of the robot at an exhibit and participant’s attitudes
toward the robot during the explanations at points of interests of the FROG guided tour. We ana-
lyzed these aspects through the questionnaire data of the online video study and observations as
well as interviews of the in-the-wild study. In this section, we present the combined results of both
studies.

6.1 Attention

H1: Robot behavior optimized for the modalities of a tour guide robot that does not closely resemble
people will lead to longer periods of attention and higher recall of the information provided by the
robot.

First, to gain insight into how visitor attention was influenced by the different behavior sets,
we analyzed the quantitative data of the online video study. To check whether participants felt
distracted by one of both behavior sets, we performed Mann-Whitney tests with the items of the
attention scale as dependent variables and the condition as independent variable. We found no
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significant differences in self-reports on how participants understood the robot’s stories or partic-
ipants’ distraction or attention to the artworks between conditions.

Furthermore, we analyzed to what extent participants remembered correctly the details pro-
vided by the robot. We did this by summing up correct answers per participant, incorrect answers
per participant, and “I can’t remember” answers per participant. For each of the categories par-
ticipants could score between 1 and 4 as there were 4 questions. Note that the sum of the three
categories for each participant also was 4 (unless they did not fill out all questions). We used
these items in Mann-Whitney tests to check for differences between conditions. We found that
participants who observed the human-translated behavior set (M = 2.18, SD = 1.44) gave sig-
nificantly more correct answers than participants in the robot-optimized condition (M = 1.78,
SD = 1.34) U = 4280, Z = −1.977, p = 0.048. And vice versa, we found that participants in the
robot-optimized condition (M = 1.32, SD = 1.25) gave significantly more incorrect answers than
participants who observed the robot with the human-translated behavior set (M = 0.91, SD = 1.03)
U = 4178.5, Z = −2.291, p = 0.022.

Second, we analyzed the actions of the visitors based on the coded video data of the in-the-
wild study. To check which of both robot behavior sets kept the user attention for a longer time
span we counted the number of explanations at points of interests that visitors joined the robot
in each condition. In the human-translated condition, we observed more often that people left the
tour after one explanation at one point of interest (23 times), compared with the robot-optimized
condition (16 times). Contrarily, in the human-translated condition, we observed less often that
people left the tour after two explanations at two points of interest (8 times), compared with the
robot-optimized condition (15 times). Furthermore, in the robot-optimized condition, we observed
visitors following the robot for more than five explanations at points of interest, which was more
than one full tour (5 times), where we only found this one time in the human-translated condi-
tion. No differences between conditions were found for joining the robot for 3–5 explanations at
different points of interest.

To check whether one of both behavior sets was more understandable to visitors, we counted
in which condition visitors complied better with the requests of the robot to come closer. Those
requests were verbally asked by the robot, but in the robot-optimized condition the request was
also visible on the screen of the robot. We evaluated the compliance of the visitors by checking
how visitors reacted to the robot’s request to come closer. We found that when one visitor followed
the robot, this visitor in the robot-optimized condition complied better to the request “please come
closer” (23 times of 71 explanations at points of interest in this condition) than single visitors in
the human-translated condition (6 times of 73 explanations at points of interest in this condition).
We did not find differences for compliance of groups of 2 or more people to come closer to the
robot.

Third, we analyzed the interview data of the in-the-wild study. To check whether the different
behavior sets had influence on the understanding of the visitors, we analyzed whether visitors
reacted differently to the question "did you understand the behavior of the robot?" We found that
in both conditions visitors stated that they understood the behavior. However, in 5 interviews
out of 11 in the robot-optimized condition, visitors explicitly added to their answers what they
understood the robot’s intentions and instructions were. In contrast, visitors in human-translated
condition never added such remarks.

As a result, H1 is partly supported. The robot in robot-optimized condition was better able to
keep the visitors attention for a longer time span, people seemed to comply more to the robot with
robot-optimized behavior and people seemed to understand the robot-optimized behavior better,
meaning that the first part of H1 is supported. However, visitors recalled less details of the story
of the robot correctly when the robot used robot-optimized behavior, thus the second part of H1
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was not supported. Overall, the robot-optimized and human-translated behaviors both score well
on different aspects, indicating that both behaviors are suitable to use for a robot that does not
resemble people.

6.2 Attitude Toward the Robot

H2: Robot behavior optimized for the modalities of a tour guide robot that does not closely resemble
people will lead to more positive attitude toward the robot.

To gain insight into the aspects that influence visitors’ attitudes toward the robot, we again
started with the analysis of the online questionnaire data. To test whether one of both conditions
was evaluated more positively, we performed Mann-Whitney tests with condition as independent
variable and the reliable constructs of the Godspeed and Source Credibility scales as dependent
variables. We did not find any statistical differences for the constructs of the Godspeed and the
Source Credibility scale.

We also performed Mann-Whitney tests with condition as independent variable and the individ-
ual items of the Product Personality scale, and all individual items of the Godspeed and the Source
Credibility scales as dependent variables. We found that the robot with the human-translated be-
haviors (Mdn = 4, SD = 0.98) scored significantly higher on the item ‘serious’ from the product
personality scale than the robot with the robot-optimized behaviors (Mdn = 3, SD = 1.04) U =
4220.5, Z = −2.283, p = 0.022. Moreover, we found statistical differences on the item Mechanical-
Organic from the Godspeed scale U = 2789.5, Z = −5.8, p < 0.001. Participants rated the robot
with the human-translated behavior (Mdn = 2, SD = 0.95) as more mechanical and the robot with
the robot-optimized behavior (Mdn = 3, SD = 1.14) as significantly more organic.

Furthermore, to check which robot behavior set participants preferred, we compared the an-
swers to the corresponding question. We found that of the participants who observed both behav-
ior sets, 76 participants (45.8%) preferred the robot with the human-translated behaviors, while
90 participants (54.2%) preferred the robot with robot-optimized behaviors. We did not find that
age, gender, nationality, or education level had influence on these outcomes.

Moreover, to check what factors play a role in the preference for one of both behavior sets, we
analyzed the answers to the open questions of the questionnaire data. We found no clear distinction
for participants’ preferences based on the answers to the open questions.

Second, we used the coded video data of the in-the-wild study to analyze the visitors’ attitudes
toward the robot behaviors. To check whether one of both behavior sets elicited visitors to behave
more attracted to the robot, we counted the times that visitors took pictures of the robot. We found
that in robot-optimized condition, visitors took a picture 20 times (of 71 explanations at points of
interest in this condition), while in human-translated condition, visitors took a picture of the robot
only 6 times (of 73 explanations at points of interest in this condition).

Finally, we analyzed the interviews to gain insight into the attitude of visitors toward the robot.
To check whether the robot attracted the same kind of visitors between conditions, we asked them
if they would prefer a human tour guide over the robot tour guide. We found that more frequently
during interviews in the human-translated condition (2 out of 6 interviews), than during interviews
in the robot-optimized condition (1 out of 11 interviews) visitors stated they would prefer a human
tour guide. Even though we did not specifically ask for, in 5 out of 11 interviews, visitors in the
robot-optimized condition mentioned that they really did not like human tour guides and the large
groups, against no remarks like this during the interviews out of 6 with the visitors in the human-
translated condition. Also, we found that in 4 out of 11 interviews, visitors in the robot-optimized
condition mentioned that they liked the fact that they could leave the robot when they wanted to
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go somewhere else or when they wanted to focus on something else, without offending the guide,
while in none of 6 interviews did visitors in the human-translated condition make this remark.

Thus, H2 is partially supported, as we found only small differences between people’s attitudes
toward the different robot behaviors. The robot-optimized behaviors seemed to fit the robot bet-
ter, and people liked a robot tour guide with robot-optimized behavior better, but when people
observed both behavior sets for the robot, preferences for one of both behavior sets were evenly
divided. Therefore, we argue that the robot-optimized behavior was slightly more preferred over
human-translated behavior but did not lead to a significantly more positive attitude toward the
robot.

7 DISCUSSION

In this section, we will first discuss the results of both studies, we then go on to discuss the im-
plications of using the robot-optimized design approach to design behavior for robots that do not
look like people, and finally we will discuss the use of mixed methods for the evaluation of robot
behavior.

7.1 Discussion of the Results

The combined results of our study show that even though we only found small differences between
both conditions, participants seemed to be slightly more positive toward the tour guide robot with
robot-optimized behavior. Therefore, we argue that using a robot-optimized approach to develop
behavior for robots that do not closely resemble people in appearance is promising next to using
a human-translated approach.

People recalled more details correctly when the robot showed human-translated behavior. This
might be because they recognized the human-translated behavior and were distracted by the robot-
optimized behavior. Also, people were attracted for longer by the robot-optimized behavior, prob-
ably because it was new and surprising. This novelty effect might have influenced the results and
should be further studied.

Nevertheless, we also found that the robot-optimized behavior was perceived as more organic
for the robot. This may indicate that robot-optimized behavior better fits the morphology of a
non-humanoid robot than human-translated behavior. Moreover, the robot-optimized behavior
was perceived less serious compared to human-translated behavior and preferred by people who
do not like human tour guides. This might explain why people who joined the robot guided tour
reacted slightly more positive toward the robot with robot-optimized behavior.

In the studies, we did not find major differences on effectiveness of either the human-translated
behavior set or the robot-optimized behavior set in terms of participant’s attention and attitudes
toward the robots. However, we had expected to find clear differences between the two behavior
sets. This could be explained by the degree of humanlike-ness of FROG. Possibly, the modalities of
FROG were not perceived as very distinct from human modalities (e.g., because FROG has dynamic
eyes, and a pointer that could be interpreted as one arm). Hence, FROG’s characteristics might have
led to behavior sets that were perceived as being quite similar.

Based on this explanation, we expect that perceived differences between the behavior sets we
applied may be more extreme when they are applied to robots that look much less human-like and
use modalities that are very distinct from human modalities. For example, the use of light, sound,
and projection might give more options to create a distinct design for robot-optimized behavior.
Furthermore, the use of modalities that are not a replacement for human modalities might lead
to more creative behavior design for robots. Using different robot platforms in a study similar to
the studies presented here would further strengthen insights in the differences between human-
translated behavior and robot-optimized behavior, and in the effectiveness of human-translated
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behavior for robots that do not closely resemble people. Compared to other studies in which robot
behavior was developed and evaluated, the differences we found in responses toward the two sets
of behavior may seem marginal. However, there are two main differences between our study and
previously performed studies.

First, multimodal behavior strongly influences Human-Robot Interaction. Vázquez et al., for
example, show in their paper that gaze and orientation should be designed jointly [73]. Even
though some researchers have implemented multimodal behaviors in their robots (e.g., References
[37, 73]), knowledge on how to effectively design a set of intuitive and unambiguous multimodal
behaviors for social robots is limited. In previous research, behavior cues have been mostly stud-
ied in isolation. For instance, it was studied how gaze [2], gestures [19], or body movement [48]
separately influence Human-Robot Interaction. This has led to valuable insights, however, the in-
terplay between modalities has not been a topic in these studies. When more modalities are used
at the same time, which is almost always the case in “natural” behavior, the effectiveness of spe-
cific behaviors might be different than suggested in these kinds of studies. However, this manner
of studying effectiveness of behavior also introduces a limitation as it becomes more difficult to
understand what causes the differences influenced by the different behavior sets. Thus, a combi-
nation of both approaches might be necessary to fully understand the effect of robot behavior on
Human-Robot Interaction.

Second, with this study, we venture beyond previous studies on behavior design for social robots
(e.g., References [45, 48, 70]), because in these studies human-like robot functional interaction
behavior is compared to random or no interaction behavior (control condition). As a result, the
developed functional interaction behavior was in all situations perceived better than the lack of
behavior or randomly performed behavior. Therefore, the only conclusion that can be drawn from
these studies is that designing behavior for a robot is better than not designing behavior for a ro-
bot. In contrast, in this article, we explored behavioral cues in multimodal form and evaluated two
carefully and functionally designed alternatives to find which set of behaviors would be preferred.
Based on our findings, we concluded that both designed sets of behaviors (the human-translated as
well as the robot-optimized behavior set) work for the robot. However the robot-optimized behav-
iors seemed to fit the non-humanoid robot FROG slightly better than human-translated behavior.

7.2 Design Approach to Develop Robot Behavior

The field of Human-Robot Interaction is a relatively young field. Because of this, methods and
knowledge from other fields are used extensively. Human Robot Interaction strongly relies on
knowledge from Social Sciences, Behavioral Sciences, Psychology, and Human-Computer Interac-
tion. So far, the fields of product and interaction design have had a modest influence on Human-
Robot Interaction, although there are some good examples of the contribution of industrial design
on Human-Robot Interaction. Examples are the development and evaluation of the Hug [21], the
development of the Snackbot [49] and a study in which new behavior for a Roomba vacuum cleaner
was designed starting from a defined user experience [34]. These studies were all performed by
product design or interaction design researchers. By presenting our alternative design approach
to design robot behavior, we contribute to transferring knowledge from product and interaction
design to Human-Robot Interaction and show what opportunities this field offers.

During our studies of state-of-the-art literature, we found that usually no methodological ap-
proach is used to create behavior for social robots. As a result, the multimodal behavior of the robot
might be inconsistent and unpredictable. This is a problem, because several researchers state that
robot behavior should be consistent over time [22, 46, 58, 74, 75]. Currently, creating consistent
robot behavior is usually done by adding a human-like personality to the robot. This personality
profile informs how behaviors should be performed (e.g., the use of a large amplitude for gestures
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for an extravert robot). Despite the limitations, we used an imitation of human-like behavior to
create human-translated behavior for the robot.

In the robot-optimized approach, we used the morphological chart to systematically develop be-
havior for the different modalities of the robot. The morphological chart makes the design choices
visible which makes it easier for designers to discuss the best options. Additionally, the use of
images instead of text only to describe behavior of the robot, helps designers to agree on what the
behavior of the robot will look like and it will make early interpretation on how the behavior will
be experienced more feasible. Furthermore, this way of working ensures the documentation of de-
sign choices throughout the project and more systematic improvements for the behavior. For these
reasons, we found that the creation of the morphological chart and all possible options for robot
behaviors was worth the effort, and we would use this method again when developing behaviors
for a robot that does not closely resemble people or that lacks human-like modalities.

The behavior we developed for FROG was multimodal in both cases, meaning that the robot
used more than one modality at the same time to communicate. Cha et al. argue that it is difficult
to create multimodal redundant behavior, as non-humanoid robots only have a few communica-
tion channels [12]. Nevertheless, in human-human communication, but also in human-machine
interaction (e.g., traffic lights changing position and color), often redundant signals are used to
make sure everyone can understand the signal given. Therefore, we have chosen to create mul-
timodal behavior that is redundant, so that people interacting with the robot can understand the
behavior, even if they might miss some cues.

We argue that the added value of this article is to start designing robot behavior from the point
of view of realizing interactional outcomes rather than copying humanlike behavior to a robot (as
we showed in Figure 1). Actually, not the specific design for robot-optimized behavior as presented
in this article is of interest to the field of Human-Robot Interaction, but the approach to determine
the robot behavior that follows the morphology of the robot and starts with understanding inter-
actional outcomes in human-human interaction. Hence, following the robot-optimized approach
will lead to more flexibility in robot design and robot behavior design. Even though other design-
ers/researchers might not come up with the exact behaviors as presented in the study, this alter-
native design approach for robot behaviors should lead to behavior that fits the robot better (e.g.,
perceived as more organic) and follows the morphology of the robot more naturally. Therefore,
we conclude that robot-optimized behavior is a promising approach to design nonverbal behavior
for robots that do not closely resemble people in appearance.

7.3 Use of Mixed Methods for Evaluation

To be able to draw results on the value of our alternative design approach to design behavior for
robots, we used a combination of study methods. We are aware that both studies introduced some
limitations.

First, the videos in the video study only took about 1:40min. Therefore, people may not have
had enough time to interpret and understand certain behaviors. This might explain why people
recalled more details correctly in the robot with human-like behavior condition, because people
were more familiar with this behavior.

A limitation of the in-the-wild study is that the sessions of this study were performed in different
timeslots during two days. In the robot-optimized condition the experiment was stopped due to
technical issues and was continued for 45 minutes in the afternoon of the same day. This might
have had some influence on the visitors’ reactions toward the robot. However, as we found that
the visitors’ opinions about the robot behaviors did not change over sessions, we decided to use
the interviews of all sessions in the analysis.
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Additionally, with this article, we show how in-the-wild Human-Robot Interaction studies can
be set up.

8 CONCLUSION AND FUTURE WORK

To conclude, we answer the question: “Do people respond more positively to a robot displaying robot-
optimized behavior compared with a robot displaying human-translated behavior?” Based on the
results of both studies, we found that the both methods to design robot behavior lead to under-
standable tour guide behavior for FROG. Nevertheless, the proposed robot-optimized behavior set
for FROG follows the robot’s morphology better and leads to slightly more positive attitudes and
responses from visitors toward the robot. Therefore, we argue that this approach is promising to
design behavior for robots and further exploration of the robot-optimized design approach seems
valuable.

Our alternative approach to develop robot behavior was based on methods used in product
design and interaction design. While this field is developing methods to design smart interactive
products that people can intuitively interact with and establish relationships with, the field of
Human-Robot Interaction is increasingly focusing on similar aims in the development of social
robots. Therefore, we argue that these fields can mutually learn from one another.

As a result, the difference between functionally designed smart products, which include robots
such as FROG, and biologically inspired social robots as was proposed by Fong et al. [26] is nar-
rowing. This is because knowledge and approaches to develop robots and smart products become
more widely accepted, understood and used. On the one hand, consumer products become more
and more robotic, in a sense that they become more autonomous, take over tasks from people and
communicate in a human-like manner, for example with speech. Consumer products that have be-
come more robotic are robotic vacuum cleaners such as the Roomba, which people might perceive
as social [27] and autonomous cars, which are originally designed in the fields of product design
and interaction design, but now need more and more knowledge from the field of Human-Robot
Interaction. On the other hand, a growing number of robots that were developed with knowledge
from the field of Human-Robot Interaction become interactive consumer products. Think, for ex-
ample, of the introduction of Aldebaran’s Pepper3 or Breazeal’s Jibo4, robots that are designed to
assist, engage, and entertain people in their homes as a day-to-day companion. Consequently, this
wider view enriches the development of social robots and interactive smart products.

We expect that more specific modalities, such as light, sound, and movement, will lead to better
distinguishable robot optimized behavior. Future studies should focus on these aspects. Moreover, a
focus on developing more robot-specific modalities will lead to consumer robots that not all closely
resemble people. Therefore, we argue that developing robot-optimized behavior specifically for the
modalities of a robot that does not closely resemble people in appearance is the future of robot
behavior design.

3For more information, see https://www.aldebaran.com/en/cool-robots/pepper.
4For more information, see www.jibo.com.
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APPENDIX

A.1 List of Behaviors in Both Studies

Interactional
outcome

Human tour guide
behavior [43]

Human-translated
behavior

Robot-optimized
behavior

Catch the attention
of the visitors

Check for busy and empty
spots near exhibit
Make eye contact with all
of the visitors
Start with a louder voice
to introduce themselves.
Finish at first spot by
breaking eye contact

Eyes blink once in a while
Screen shows a mouth
Turn on the spot to ‘look’ at
all visitors
Start with introduction of
itself
Pointer points at artworks
when robot mentions them
Finish at first spot with eyes
look down

Eyes in “drive mode”
(attention drawing eyes,
busily animated)
Pointer scans for visitors
Screen shows
“Welcome”
Start with introduction
of itself
Pointer and arrow on
screen point at artworks
when robot mentions
them
Finish at first spot by
showing “Follow me” on
the screen

Start tour at first
exhibit

Check if visitors follow
the tour
Start with trivial
information

Pick one visitor at a time
to address

Eyes blink once in a while
Screen shows a mouth
Turn front toward visitors

Start with trivial
information through a
prerecorded voice
Check visitors by turning
on the spot
Pick one visitor to look at

Eyes in “exhibit mode”
(understated animation)
Scan visitors with
pointer
Start with trivial
information through a
prerecorded voice
Turn front toward place
visitors should position
themselves for optimal
viewing the exhibit

Offer information
about exhibit

Keep visitors
engaged and check
them to get implicit
feedback

Gaze at one person and
move gaze to the others
intermittently

Eyes blink once in a while
Screen shows a mouth
Direct gaze at one person,
and by turning on the spot
alternate gaze-focus toward
others

Eyes in “exhibit mode”
Screes shows supporting
visuals
Scan visitors every once
in a while by moving
pointer

Direct the visitor’s
attention to the
exhibit/

Keep the visitor’s
attention to the
story

Point to exhibit, while
using directing language
(“there you can see”)
Gaze toward exhibit while
pointing
Show brought along
visuals to support story
(photos or objects)
Depict story with gestures
Stand close to the exhibit,
but not in front of it
Orientation of body
toward visitors

Point to exhibit with pointer
Gaze toward exhibit while
pointing by turning on the
spot and having eyes
directed to artwork
Shortly show additional
supporting visual on screen
Stand close to exhibit but
not in front of it
Orientation of body toward
visitors

Point to exhibit with
pointer and arrow on
screen
Show additional
supporting visual on
screen
Stand close to exhibit
but not in front of it
Orientation of body
toward visitors
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Interactional
outcome

Human tour guide
behavior [43]

Human-translated
behavior

Robot-optimized
behavior

Prepare group to
move attention

Indicate direction
of next exhibit

Finish at exhibit
Start moving to
next exhibit

Change subject
Tell visitors which exhibit
they will move to next
Point in direction of next
exhibit
Look in the direction of
next exhibit

Break eye-contact
Start moving in direction
of next exhibit

Eyes blink once in a while
Screen shows a mouth

Explain what is the next
exhibit

Shortly point in that
direction with pointer
Turn on the spot, as if
looking at all visitors, then
find small gap in between
visitors to drive through
Eyes look down
Start moving in next
direction

Eyes in “exhibit mode”
Explain what is next
exhibit

Point in that direction
with pointer

Turn to next direction
Pointer points to next
exhibit and sometimes
scans for visitors
Eyes change to
“driving mode”
Screen shows “Follow
me”

Guide visitors to
next exhibit

Walk in front of group.
Talk to visitors who are in
front
Only go for short
distances

Eyes blink every now and
then
Screen shows mouth
Move to next location

Eyes in “driving mode”
Screen shows “Follow
me”
Move to next location
Pointer keeps pointing
and sometimes scans
for visitors

Indicate having
arrived at next
exhibit

Stop waking
Turn body toward visitors
Make eye contact with all
of the visitors

Stop driving
Turn with front toward
visitors
Turn on the spot to look at
all visitors

Stop driving
Turn toward visitors
Eyes in “exhibit mode”
Pointer scans for
visitors

End tour Tell visitors tour is over
Break eye contact

Tell visitors tour is over
Eyes look down

Tell visitor tour is over
Eyes calm down
Pointer moves back to
rest position
Screen shows
“Goodbye”
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A.2 Eye Animations for Both Conditions

All pictures have a duration of 0.25s in the animations
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